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Tractable probabilistic models

Probabilistic circuits
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>

» Several circuit semantics in the literature ...
» are equivalent! (for binary random variables)
>

And, don’t all extend to non-binary variables
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Probabilistic Models

How we think about the world: models with uncertainty
> Will I make it to the SNAIL talk on time, if I leave home at 2:30pm?
» Did I pass that final exam?

Al research
» Deep learning and formal methods: “neuro-symbolic AT”

» Applications: images, language, audio, medicine, science, economics, etc.
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X1 X2 Pr
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» FExpressive-efficient representation

» Tractable inference

Fully factorized
HMMs 7777

Mixture models

Tractable

GANs
Diffusion models

VAEs

Expressive-efficient 4,
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Marginal inference

If X =Y U Z, then what is Pr[Y = y]?

In general:

PrY =y|=> Pr[Y =y, Z = z|

X1 X2 Pr
0 0| .1
(1) (1] g For example:
1174 PriX, =1 =Pr[X; =1, X, = 0] + Pr[X; = 1, X5 = 1]
=03+04
=0.7

Goal: Find a model of polysize that supports marginal inference in polytime, for as

large a set of probability distributions as possible.
5
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» Determinantal Point Processes (DPPs)

» Probabilistic Sentential Decision Diagrams (PSDDs)
>

>

Probabilistic Circuits!
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Probabilistic Circuits

Marginal Inference:
If X; =0 forbe{0,1}, set

z;=band z; =1—0.
If X; is not assigned, set z; =1
and 71 = 1.
Pl“[Xl = 1]?
Set 1 =1,21 =0, 29 =1,
o =1
p(:Cl, X9, ..., Tn,T1,T2,. .. ,.Tn) = 12129 + 22120 4+ .32122 + 42122

“Network polynomial”
/19
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Polynomial

Notation

Inference

Citation

Network polynomial

p(T1,. oy Tny T1,y - -

, Tn)

v’

Darwiche [2003]
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Circuit Semantics

Polynomial Notation Inference Citation
Network polynomial P(T1y .oy Ty Ty e ey Ty) Darwiche [2003]
Likelihood polynomial p(z1,...,xy) ? Roth and Samdani [2009]
Generating function g(x1, ... xp) Zhang et al. [2021]
Fourier transform p(z, ... ,azn) Yu et al. [2023]

8
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How do they relate?

Z) Network polynomial

(z,
p(z) Likelihood polynomial
g(x) Generating function
p(z) Fourier transform
p(z,7) g(z)
/ ~_
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How do they relate?

,Z) Network polynomial

) Likelihood polynomial
x) Generating function
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Likelihood polynomials

p(x1,x2) = 221 + 1z9 + .1

Can we do marginal inference?
Relation to network polynomial?

Transformation from network to a likelihood:

p(xl, To9,T1, fg) = 12122 + .2Z122 + .3T122 + 4x122

p(z1, 22,1 — 21,1 — x9)

= .1(1 — xl)(l — .%'2> + .2(1 — l‘l)xg + .3$1(1 - mg) + 4x129
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Likelihood polynomials

_ -0 O

p(x1,x2) = 221 + 1z9 + .1

Can we do marginal inference?
Relation to network polynomial?

Transformation from network to a likelihood:

p(xl, To9,T1, fg) = 12122 + .2Z122 + .3T122 + 4x122

p(z1, 22,1 — 21,1 — x9)

= .1(1 — xl)(l — .%'2> + .2(1 — l‘l)xg + .3$1(1 - mg) + 4x129
= 2x1 + .10+ .1
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Transformation from likelihood to network

Theorem 1. Let Pr be a probability distribution on n binary random variables.
Then a circuit of size s computing the likelihood polynomial for Pr can be
transformed to a circuit of size O(sn?) computing the network polynomial for Pr.

n
€T €T
e (Lo 20) o (2505 5255
n n

i=1

Example: Starting with p(z1,x2) = .22 + .12 + .1, we form

LN P +.1>

1+ T T2 + T2

= .21‘1(1’2 + Zfz) + .1$2(l’1 + 2_71) + .1(1’1 + i‘l)(l‘g + i‘g)

= .2x122 + 22172 + 1x1209 + 1Z1220 + 12129 + 1T129 + 121Z2 + 12129

(1 + Z1)(z2 + T2) <.2
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Transformation from likelihood to network

Theorem 1. Let Pr be a probability distribution on n binary random variables.
Then a circuit of size s computing the likelihood polynomial for Pr can be
transformed to a circuit of size O(sn?) computing the network polynomial for Pr.

n
T T
Idea: (H(xi—i_xi))p(xl—i—lrm’.”’x —:fE >
n n

i=1

Example: Starting with p(z1,x2) = .22 + .12 + .1, we form

LN P +.1>

1+ T T2 + T2

= .21‘1(1’2 + Zfz) + .1$2(l’1 + 2_71) + .1(1’1 + i‘l)(.’L‘g + i‘g)

2x110 + 22129 + dx1290 + 1170 + 2129 + 1T120 + 12122 + . 1T172

(1 + Z1)(z2 + T2) <.2

= 12122 + .2Z122 + .321%T2 + AT120 = p(l‘l, x9,T1, fg)
11
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)
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Divisions?

n
. _ €1 T,
Wait a second... T+ T s —
(Tleesa0) o (2022

i=1

Theorem 2 (Strassen). You can remove the divisions in polynomial time!

Lemma 3. For a circuit computing f of degree d, we can obtain circuits computing
Holf], H1[f], ..., Hqlf] the homogeneous parts of f, i.e. H;[f] has degree i and
Idea: Move divisions to the root using a/b+ ¢/d = (ad + bc) /bd and

a/bxc/d = ac/bd.

Then for circuit a/b computing polynomial f = a/b of degree d, assume b(0) = 1,
and we have

Hilf] = Hila(1+ (1 =b) + (1 = b)? + ...+ (1 = b)7.
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Generating functions: Why?

Circuits computing network polynomials (S, D, positive)

Circuits computing generating functions

Spanning tree distribution
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Can we do marginal inference?
For X; =1,set x; =t
For X; =0, set x; =0
For X; =7, set x; =1

PI‘[Xl = 1]?
g(t,1) =1+ .2+ .3t + .4t = 3+ .7t

Relation to network polynomial?

Transformation from network to a generating:
p(l‘l, To,T1, fg) =.1Z21%2 + .2T129 + 31172 + 4T129
p(z1,29,1,1) = .1+ 229 + 321 + Az129 = g(21, 22)
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Transformation from generating to network

Theorem 4. Let Pr be a probability distribution on n binary random variables.
Then a circuit of size s computing the probability generating function for Pr can be
transformed to a circuit of size O(sn?) computing the network polynomial for Pr.

X xz In
Idea: — e, —
o () o (22222)

Example: Starting with g(x) = .1+ .2z + .3z1 + .4x129, we form
(%172) (.1 pof2 3T 4““)
xI9 X 1 X9
= . 12122 + .2Z122 + 32122 + 4x120
= p(z,7)

Strassen to the rescue! 16



Progress update

p(x,Z) Network polynomial
p(x) Likelihood polynomial
g(z) Generating function
p(z) Fourier transform

p(z, ) 9(x)

17



Progress update

p(x,Z) Network polynomial
p(x) Likelihood polynomial
g(z) Generating function
p(z) Fourier transform

p(x,T) —— g(x)

17



Progress update

p(x,Z) Network polynomial
p(x) Likelihood polynomial
g(z) Generating function
p(z) Fourier transform

p(x,T) —— g(x)

17



Progress update

p(x,Z) Network polynomial
p(x) Likelihood polynomial
g(z) Generating function
p(z) Fourier transform

p(x,T) —— g(x)

Proposition 1. For binary random
variables, probability generating functions
g(z) and Fourier polynomials p(x) are
the same function(!), on respective
domains {—1,1}" and {0,1}", up to the
bijection ¢ : {0,1} — {—1,1} given by
#(b) = (—1) applied bitwise.

17



Progress update

p(x,Z) Network polynomial
p(x) Likelihood polynomial
g(z) Generating function
p(z) Fourier transform

Proposition 1. For binary random
variables, probability generating functions
g(z) and Fourier polynomials p(x) are
the same function(!), on respective
domains {—1,1}" and {0,1}", up to the
bijection ¢ : {0,1} — {—1,1} given by
#(b) = (—1) applied bitwise.

17



Progress update

p(x,Z) Network polynomial
p(x) Likelihood polynomial
g(z) Generating function
p(z) Fourier transform

Proposition 1. For binary random
variables, probability generating functions
g(z) and Fourier polynomials p(x) are
the same function(!), on respective
domains {—1,1}" and {0,1}", up to the
bijection ¢ : {0,1} — {—1,1} given by
#(b) = (—1) applied bitwise.

What have we done?

17



Progress update

p(x,Z) Network polynomial
p(x) Likelihood polynomial
g(z) Generating function
p(z) Fourier transform

Proposition 1. For binary random
variables, probability generating functions
g(z) and Fourier polynomials p(x) are
the same function(!), on respective
domains {—1,1}" and {0,1}", up to the
bijection ¢ : {0,1} — {—1,1} given by
#(b) = (—1) applied bitwise.

What have we done?

» several distinct circuit-based models
are equally succinct

17



Progress update

p(x,Z) Network polynomial
p(x) Likelihood polynomial
g(z) Generating function
p(z) Fourier transform

Proposition 1. For binary random
variables, probability generating functions
g(z) and Fourier polynomials p(x) are
the same function(!), on respective
domains {—1,1}" and {0,1}", up to the
bijection ¢ : {0,1} — {—1,1} given by
#(b) = (—1) applied bitwise.

What have we done?

» several distinct circuit-based models
are equally succinct

» distinct inference algorithms in a

common framework 17
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Non-binary distributions?

Let Pr: K™ — R be a probability mass function with K = {0,1,2,...,k — 1}.

Then the probability generating polynomial of Pr is

g(x) - Z Pr(dl,...,dn)x‘flx? xzn

(d1,dz,...,dn)EK™
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Non-binary distributions?

Let Pr: K™ — R be a probability mass function with K = {0,1,2,...,k — 1}.
Then the probability generating polynomial of Pr is

g(x) - Z Pr(d17 R dn)xflx? s .Z'z"
(dlzd27~-~’dn)€Kn

Theorem 5. For k > 4, computing likelihoods on a circuit for g(x) is #P-hard.

Proof idea: Reduce from 0, 1-permanent.
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» Inference is hard in circuits computing generating functions for k > 4
categories
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Conclusion

What we did:
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