Polynomial semantics of probabilistic circuits

Oliver Broadrick, UCLA

May, 2024

Based on joint work with Honghua Zhang and Guy Van den Broeck

▶ Tractable probabilistic models

Tractable probabilistic modelsProbabilistic circuits

- ▶ Tractable probabilistic models
- ▶ Probabilistic circuits
- ▶ Several circuit semantics in the literature ...

- ▶ Tractable probabilistic models
- ▶ Probabilistic circuits
- ▶ Several circuit semantics in the literature ...
- ▶ are equivalent! (for binary random variables)

- ▶ Tractable probabilistic models
- Probabilistic circuits
- ▶ Several circuit semantics in the literature ...
- ▶ are equivalent! (for binary random variables)
- ▶ And, don't all extend to non-binary variables

How we think about the world: models with uncertainty

How we think about the world: models with uncertainty

▶ Will I make it to the SNAIL talk on time, if I leave home at 2:30pm?

How we think about the world: models with uncertainty

- ▶ Will I make it to the SNAIL talk on time, if I leave home at 2:30pm?
- ▶ Did I pass that final exam?

How we think about the world: models with uncertainty

- ▶ Will I make it to the SNAIL talk on time, if I leave home at 2:30pm?
- ▶ Did I pass that final exam?

AI research

How we think about the world: models with uncertainty

- ▶ Will I make it to the SNAIL talk on time, if I leave home at 2:30pm?
- ▶ Did I pass that final exam?

AI research

▶ Deep learning and formal methods: "neuro-symbolic AI"

How we think about the world: models with uncertainty

- ▶ Will I make it to the SNAIL talk on time, if I leave home at 2:30pm?
- ▶ Did I pass that final exam?

AI research

- ▶ Deep learning and formal methods: "neuro-symbolic AI"
- ▶ Applications: images, language, audio, medicine, science, economics, etc.

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

► Expressive-efficient representation

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

- ► Expressive-efficient representation
- ▶ Tractable inference

X_2	\Pr	
0	.1	
1	.2	
0	.3	
1	.4	
	$egin{array}{c} X_2 \\ 0 \\ 1 \\ 0 \\ 1 \end{array}$	$\begin{array}{c c} X_2 & \Pr \\ \hline 0 & .1 \\ 1 & .2 \\ 0 & .3 \\ 1 & .4 \\ \end{array}$

If
$$X = Y \sqcup Z$$
, then what is $\Pr[Y = y]$?

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

If
$$X = Y \sqcup Z$$
, then what is $\Pr[Y = y]$?

In general:

$$\Pr[\boldsymbol{Y} = \boldsymbol{y}] = \sum_{\boldsymbol{z}} \Pr[\boldsymbol{Y} = \boldsymbol{y}, \boldsymbol{Z} = \boldsymbol{z}]$$

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

If
$$X = Y \sqcup Z$$
, then what is $\Pr[Y = y]$?

In general:

$$\Pr[\boldsymbol{Y} = \boldsymbol{y}] = \sum_{\boldsymbol{z}} \Pr[\boldsymbol{Y} = \boldsymbol{y}, \boldsymbol{Z} = \boldsymbol{z}]$$

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

For example:

$$Pr[X_1 = 1] = Pr[X_1 = 1, X_2 = 0] + Pr[X_1 = 1, X_2 = 1]$$

= 0.3 + 0.4
= 0.7

 $\begin{array}{c|cc} X_1 & X_2 & \Pr\\ \hline 0 & 0 & .1 \end{array}$

If
$$X = Y \sqcup Z$$
, then what is $\Pr[Y = y]$?

In general:

$$Pr[\mathbf{Y} = \mathbf{y}] = \sum_{\mathbf{z}} Pr[\mathbf{Y} = \mathbf{y}, \mathbf{Z} = \mathbf{z}]$$

For example:
$$Pr[X_1 = 1] = Pr[X_1 = 1, X_2 = 0] + Pr[X_1 = 1, X_2 = 0.3 + 0.4]$$
$$= 0.3 + 0.4$$
$$= 0.7$$

Goal: Find a model of polysize that supports marginal inference in polytime, for as large a set of probability distributions as possible.

1

▶ Bayesian Networks (of bounded treewidth) (BNs)

▶ Bayesian Networks (of bounded treewidth) (BNs)

Determinantal Point Processes (DPPs)

- ▶ Bayesian Networks (of bounded treewidth) (BNs)
- Determinantal Point Processes (DPPs)
- Probabilistic Sentential Decision Diagrams (PSDDs)

▶ ...

- ▶ Bayesian Networks (of bounded treewidth) (BNs)
- Determinantal Point Processes (DPPs)
- Probabilistic Sentential Decision Diagrams (PSDDs)
- Probabilistic Circuits!

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Marginal Inference:

Marginal Inference: If $X_i = b$ for $b \in \{0, 1\}$, set $x_i = b$ and $\bar{x}_i = 1 - b$.

Marginal Inference: If $X_i = b$ for $b \in \{0, 1\}$, set $x_i = b$ and $\bar{x}_i = 1 - b$. If X_i is not assigned, set $x_1 = 1$ and $\bar{x}_1 = 1$.

Marginal Inference: If $X_i = b$ for $b \in \{0, 1\}$, set $x_i = b$ and $\bar{x}_i = 1 - b$. If X_i is not assigned, set $x_1 = 1$ and $\bar{x}_1 = 1$.

$$\Pr[X_1 = 1]?$$

Set $x_1 = 1, \, \bar{x}_1 = 0, \, x_2 = 1,$
 $\bar{x}_2 = 1$

 ${\bf 7}_{_{/19}}$

 $p(x_1, x_2, \dots, x_n, \bar{x}_1, \bar{x}_2, \dots, \bar{x}_n) = .1\bar{x}_1\bar{x}_2 + .2\bar{x}_1x_2 + .3x_1\bar{x}_2 + .4x_1x_2$

 $p(x_1, x_2, \dots, x_n, \bar{x}_1, \bar{x}_2, \dots, \bar{x}_n) = .1\bar{x}_1\bar{x}_2 + .2\bar{x}_1x_2 + .3x_1\bar{x}_2 + .4x_1x_2$ "Network polynomial"

Circuit Semantics

Polynomial	Notation	Inference	Citation
Network polynomial	$p(x_1,\ldots,x_n,\bar{x}_1,\ldots,\bar{x}_n)$	\checkmark	Darwiche [2003]
Circuit Semantics

Polynomial	Notation	Inference	Citation
Network polynomial	$p(x_1,\ldots,x_n,\bar{x}_1,\ldots,\bar{x}_n)$	\checkmark	Darwiche [2003]
Likelihood polynomial	$p(x_1,\ldots,x_n)$?	Roth and Samdani [2009]

Circuit Semantics

Polynomial	Notation	Inference	Citation
Network polynomial	$p(x_1,\ldots,x_n,\bar{x}_1,\ldots,\bar{x}_n)$	\checkmark	Darwiche [2003]
Likelihood polynomial	$p(x_1,\ldots,x_n)$?	Roth and Samdani [2009]
Generating function	$g(x_1,\ldots,x_n)$	\checkmark	Zhang et al. [2021]

Circuit Semantics

[2009]

How do they relate?

How do they relate?

$$p(x_1, x_2) = .2x_1 + .1x_2 + .1$$

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

$$p(x_1, x_2) = .2x_1 + .1x_2 + .1$$

Can we do marginal inference?

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

$$p(x_1, x_2) = .2x_1 + .1x_2 + .1$$

Can we do marginal inference? Relation to network polynomial?

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

$$p(x_1, x_2) = .2x_1 + .1x_2 + .1$$

Can we do marginal inference? Relation to network polynomial?

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Transformation from network to a likelihood: $p(x_1, x_2, \bar{x}_1, \bar{x}_2) = .1\bar{x}_1\bar{x}_2 + .2\bar{x}_1x_2 + .3x_1\bar{x}_2 + .4x_1x_2$

$$p(x_1, x_2) = .2x_1 + .1x_2 + .1$$

Can we do marginal inference? Relation to network polynomial?

X_1	X_2	\mathbf{Pr}
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Transformation from network to a likelihood: $p(x_1, x_2, \bar{x}_1, \bar{x}_2) = .1\bar{x}_1\bar{x}_2 + .2\bar{x}_1x_2 + .3x_1\bar{x}_2 + .4x_1x_2$ $p(x_1, x_2, 1 - x_1, 1 - x_2)$

$$p(x_1, x_2) = .2x_1 + .1x_2 + .1$$

Can we do marginal inference? Relation to network polynomial?

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Transformation from network to a likelihood: $p(x_1, x_2, \bar{x}_1, \bar{x}_2) = .1\bar{x}_1\bar{x}_2 + .2\bar{x}_1x_2 + .3x_1\bar{x}_2 + .4x_1x_2$ $p(x_1, x_2, 1 - x_1, 1 - x_2)$ $= .1(1 - x_1)(1 - x_2) + .2(1 - x_1)x_2 + .3x_1(1 - x_2) + .4x_1x_2$

$$p(x_1, x_2) = .2x_1 + .1x_2 + .1$$

Can we do marginal inference? Relation to network polynomial?

Transfe	ormation from network to a likelihood.
$p(x_1, x)$	$(x_1, x_2) = .1x_1x_2 + .2x_1x_2 + .3x_1x_2 + .4x_1x_2$
$p(x_1, x)$	$(2, 1 - x_1, 1 - x_2)$
= .1(1)	$-x_1(1-x_2) + .2(1-x_1)x_2 + .3x_1(1-x_2) + .4x_1x_2$
$= .2x_1$	$+.1x_2 + .1$

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Theorem 1. Let \Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the likelihood polynomial for \Pr can be transformed to a circuit of size $O(sn^2)$ computing the network polynomial for \Pr .

Theorem 1. Let \Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the likelihood polynomial for \Pr can be transformed to a circuit of size $O(sn^2)$ computing the network polynomial for \Pr .

Idea:
$$\left(\prod_{i=1}^{n} (x_i + \bar{x}_i)\right) p\left(\frac{x_1}{x_1 + \bar{x}_1}, \dots, \frac{x_n}{x_n + \bar{x}_n}\right)$$

Theorem 1. Let \Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the likelihood polynomial for \Pr can be transformed to a circuit of size $O(sn^2)$ computing the network polynomial for \Pr .

Idea:
$$\left(\prod_{i=1}^{n} (x_i + \bar{x}_i)\right) p\left(\frac{x_1}{x_1 + \bar{x}_1}, \dots, \frac{x_n}{x_n + \bar{x}_n}\right)$$

Theorem 1. Let \Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the likelihood polynomial for \Pr can be transformed to a circuit of size $O(sn^2)$ computing the network polynomial for \Pr .

Idea:
$$\left(\prod_{i=1}^{n} (x_i + \bar{x}_i)\right) p\left(\frac{x_1}{x_1 + \bar{x}_1}, \dots, \frac{x_n}{x_n + \bar{x}_n}\right)$$

$$(x_1 + \bar{x}_1)(x_2 + \bar{x}_2)\left(.2\frac{x_1}{x_1 + \bar{x}_1} + .1\frac{x_2}{x_2 + \bar{x}_2} + .1\right)$$

Theorem 1. Let \Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the likelihood polynomial for \Pr can be transformed to a circuit of size $O(sn^2)$ computing the network polynomial for \Pr .

Idea:
$$\left(\prod_{i=1}^{n} (x_i + \bar{x}_i)\right) p\left(\frac{x_1}{x_1 + \bar{x}_1}, \dots, \frac{x_n}{x_n + \bar{x}_n}\right)$$

$$(x_1 + \bar{x}_1)(x_2 + \bar{x}_2) \left(.2\frac{x_1}{x_1 + \bar{x}_1} + .1\frac{x_2}{x_2 + \bar{x}_2} + .1 \right)$$

= $.2x_1(x_2 + \bar{x}_2) + .1x_2(x_1 + \bar{x}_1) + .1(x_1 + \bar{x}_1)(x_2 + \bar{x}_2)$

Theorem 1. Let \Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the likelihood polynomial for \Pr can be transformed to a circuit of size $O(sn^2)$ computing the network polynomial for \Pr .

Idea:
$$\left(\prod_{i=1}^{n} (x_i + \bar{x}_i)\right) p\left(\frac{x_1}{x_1 + \bar{x}_1}, \dots, \frac{x_n}{x_n + \bar{x}_n}\right)$$

$$(x_1 + \bar{x}_1)(x_2 + \bar{x}_2) \left(.2\frac{x_1}{x_1 + \bar{x}_1} + .1\frac{x_2}{x_2 + \bar{x}_2} + .1 \right)$$

= $.2x_1(x_2 + \bar{x}_2) + .1x_2(x_1 + \bar{x}_1) + .1(x_1 + \bar{x}_1)(x_2 + \bar{x}_2)$
= $.2x_1x_2 + .2x_1\bar{x}_2 + .1x_1x_2 + .1\bar{x}_1x_2 + .1x_1x_2 + .1\bar{x}_1x_2 + .1\bar{x}_1\bar{x}_2$

Theorem 1. Let \Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the likelihood polynomial for \Pr can be transformed to a circuit of size $O(sn^2)$ computing the network polynomial for \Pr .

Idea:
$$\left(\prod_{i=1}^{n} (x_i + \bar{x}_i)\right) p\left(\frac{x_1}{x_1 + \bar{x}_1}, \dots, \frac{x_n}{x_n + \bar{x}_n}\right)$$

$$(x_1 + \bar{x}_1)(x_2 + \bar{x}_2) \left(.2\frac{x_1}{x_1 + \bar{x}_1} + .1\frac{x_2}{x_2 + \bar{x}_2} + .1 \right)$$

= $.2x_1(x_2 + \bar{x}_2) + .1x_2(x_1 + \bar{x}_1) + .1(x_1 + \bar{x}_1)(x_2 + \bar{x}_2)$
= $.2x_1x_2 + .2x_1\bar{x}_2 + .1x_1x_2 + .1\bar{x}_1x_2 + .1x_1x_2 + .1\bar{x}_1x_2 + .1\bar{x}_1\bar{x}_2$
= $.1\bar{x}_1\bar{x}_2 + .2\bar{x}_1x_2 + .3x_1\bar{x}_2 + .4x_1x_2 = p(x_1, x_2, \bar{x}_1, \bar{x}_2)$

Wait a second...
$$\left(\prod_{i=1}^{n} (x_i + \bar{x}_i)\right) p\left(\frac{x_1}{x_1 + \bar{x}_1}, \dots, \frac{x_n}{x_n + \bar{x}_n}\right)$$

Wait a second...
$$\left(\prod_{i=1}^{n} (x_i + \bar{x}_i)\right) p\left(\frac{x_1}{x_1 + \bar{x}_1}, \dots, \frac{x_n}{x_n + \bar{x}_n}\right)$$

Theorem 2 (Strassen). You can remove the divisions in polynomial time!

Wait a second...
$$\left(\prod_{i=1}^{n} (x_i + \bar{x}_i)\right) p\left(\frac{x_1}{x_1 + \bar{x}_1}, \dots, \frac{x_n}{x_n + \bar{x}_n}\right)$$

Theorem 2 (Strassen). You can remove the divisions in polynomial time!

Lemma 3. For a circuit computing f of degree d, we can obtain circuits computing $H_0[f], H_1[f], \ldots, H_d[f]$ the homogeneous parts of f, i.e. $H_i[f]$ has degree i and $f = \sum_i H_i[f]$.

Wait a second...
$$\left(\prod_{i=1}^{n} (x_i + \bar{x}_i)\right) p\left(\frac{x_1}{x_1 + \bar{x}_1}, \dots, \frac{x_n}{x_n + \bar{x}_n}\right)$$

Theorem 2 (Strassen). You can remove the divisions in polynomial time!

Lemma 3. For a circuit computing f of degree d, we can obtain circuits computing $H_0[f], H_1[f], \ldots, H_d[f]$ the homogeneous parts of f, i.e. $H_i[f]$ has degree i and $f = \sum_i H_i[f]$.

Idea: Move divisions to the root using a/b + c/d = (ad + bc)/bd and a/b * c/d = ac/bd.

Wait a second...
$$\left(\prod_{i=1}^{n} (x_i + \bar{x}_i)\right) p\left(\frac{x_1}{x_1 + \bar{x}_1}, \dots, \frac{x_n}{x_n + \bar{x}_n}\right)$$

Theorem 2 (Strassen). You can remove the divisions in polynomial time!

Lemma 3. For a circuit computing f of degree d, we can obtain circuits computing $H_0[f], H_1[f], \ldots, H_d[f]$ the homogeneous parts of f, i.e. $H_i[f]$ has degree i and $f = \sum_i H_i[f]$.

Idea: Move divisions to the root using a/b + c/d = (ad + bc)/bd and a/b * c/d = ac/bd. Then for circuit a/b computing polynomial f = a/b of degree d, assume b(0) = 1, and we have

$$H_i[f] = H_i[a(1 + (1 - b) + (1 - b)^2 + \dots + (1 - b)^d].$$

Progress update

Progress update

Progress update

Generating functions: Why?

Generating functions: Why?

Generating functions: Why?

$$g(x) = .1 + .2x_2 + .3x_1 + .4x_1x_2$$

Can we do marginal inference?

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

$$g(x) = .1 + .2x_2 + .3x_1 + .4x_1x_2$$

Can we do marginal inference? For $X_i = 1$, set $x_i = t$

$$g(x) = .1 + .2x_2 + .3x_1 + .4x_1x_2$$

Can we do marginal inference? For $X_i = 1$, set $x_i = t$ For $X_i = 0$, set $x_i = 0$

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

$$g(x) = .1 + .2x_2 + .3x_1 + .4x_1x_2$$

Can we do marginal inference? For $X_i = 1$, set $x_i = t$ For $X_i = 0$, set $x_i = 0$ For $X_i = ?$, set $x_i = 1$

X_1	X_2	\mathbf{Pr}
0	0	.1
0	1	.2
1	0	.3
1	1	.4

$$g(x) = .1 + .2x_2 + .3x_1 + .4x_1x_2$$

Can we do marginal inference? For $X_i = 1$, set $x_i = t$ For $X_i = 0$, set $x_i = 0$ For $X_i = ?$, set $x_i = 1$ $\Pr[X_i = 1]^2$

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

$$\begin{aligned} &\Pr[X_1 = 1]?\\ &g(t,1) = .1 + .2 + .3t + .4t = .3 + .7t \end{aligned}$$
Generating functions

$$g(x) = .1 + .2x_2 + .3x_1 + .4x_1x_2$$

Can we do marginal inference? For $X_i = 1$, set $x_i = t$ For $X_i = 0$, set $x_i = 0$ For $X_i = ?$, set $x_i = 1$ $\Pr[X_1 = 1]?$ g(t, 1) = .1 + .2 + .3t + .4t = .3 + .7t

Relation to network polynomial?

X_1	X_2	Pr
$\frac{1}{0}$	0	.1
0	1	.2
1	0	.3
1	1	.4

Generating functions

$$g(x) = .1 + .2x_2 + .3x_1 + .4x_1x_2$$

Can we do marginal inference? For $X_i = 1$, set $x_i = t$ For $X_i = 0$, set $x_i = 0$ For $X_i = ?$, set $x_i = 1$ $\Pr[X_1 = 1]?$ g(t, 1) = .1 + .2 + .3t + .4t = .3 + .7t

Relation to network polynomial?

Transformation from network to a generating: $p(x_1, x_2, \bar{x}_1, \bar{x}_2) = .1\bar{x}_1\bar{x}_2 + .2\bar{x}_1x_2 + .3x_1\bar{x}_2 + .4x_1x_2$

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Generating functions

$$g(x) = .1 + .2x_2 + .3x_1 + .4x_1x_2$$

Can we do marginal inference? For $X_i = 1$, set $x_i = t$ For $X_i = 0$, set $x_i = 0$ For $X_i = ?$, set $x_i = 1$ $\Pr[X_1 = 1]?$ g(t, 1) = .1 + .2 + .3t + .4t = .3 + .7t

Relation to network polynomial?

Transformation from network to a generating: $p(x_1, x_2, \bar{x}_1, \bar{x}_2) = .1\bar{x}_1\bar{x}_2 + .2\bar{x}_1x_2 + .3x_1\bar{x}_2 + .4x_1x_2$ $p(x_1, x_2, 1, 1) = .1 + .2x_2 + .3x_1 + .4x_1x_2 = g(x_1, x_2)$

X_1	X_2	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

 $15_{/19}$

Theorem 4. Let Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the probability generating function for Pr can be transformed to a circuit of size $O(sn^2)$ computing the network polynomial for Pr.

Theorem 4. Let Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the probability generating function for Pr can be transformed to a circuit of size $O(sn^2)$ computing the network polynomial for Pr.

Idea:
$$\left(\prod_{i=1}^{n} \bar{x}_i\right) g\left(\frac{x_1}{\bar{x}_1}, \frac{x_2}{\bar{x}_2}, \dots, \frac{x_n}{\bar{x}_n}\right)$$

Theorem 4. Let \Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the probability generating function for \Pr can be transformed to a circuit of size $O(sn^2)$ computing the network polynomial for \Pr .

Idea:
$$\left(\prod_{i=1}^{n} \bar{x}_{i}\right) g\left(\frac{x_{1}}{\bar{x}_{1}}, \frac{x_{2}}{\bar{x}_{2}}, \dots, \frac{x_{n}}{\bar{x}_{n}}\right)$$

Theorem 4. Let \Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the probability generating function for \Pr can be transformed to a circuit of size $O(sn^2)$ computing the network polynomial for \Pr .

Idea:
$$\left(\prod_{i=1}^{n} \bar{x}_{i}\right) g\left(\frac{x_{1}}{\bar{x}_{1}}, \frac{x_{2}}{\bar{x}_{2}}, \dots, \frac{x_{n}}{\bar{x}_{n}}\right)$$

$$(\bar{x}_1\bar{x}_2)\left(.1+.2\frac{x_2}{\bar{x}_2}+.3\frac{x_1}{\bar{x}_1}+.4\frac{x_1}{\bar{x}_1}\frac{x_2}{\bar{x}_2}\right)$$

Theorem 4. Let \Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the probability generating function for \Pr can be transformed to a circuit of size $O(sn^2)$ computing the network polynomial for \Pr .

Idea:
$$\left(\prod_{i=1}^{n} \bar{x}_{i}\right) g\left(\frac{x_{1}}{\bar{x}_{1}}, \frac{x_{2}}{\bar{x}_{2}}, \dots, \frac{x_{n}}{\bar{x}_{n}}\right)$$

$$(\bar{x}_1 \bar{x}_2) \left(.1 + .2 \frac{x_2}{\bar{x}_2} + .3 \frac{x_1}{\bar{x}_1} + .4 \frac{x_1}{\bar{x}_1} \frac{x_2}{\bar{x}_2} \right)$$

= $.1 \bar{x}_1 \bar{x}_2 + .2 \bar{x}_1 x_2 + .3 x_1 \bar{x}_2 + .4 x_1 x_2$

Theorem 4. Let \Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the probability generating function for \Pr can be transformed to a circuit of size $O(sn^2)$ computing the network polynomial for \Pr .

Idea:
$$\left(\prod_{i=1}^{n} \bar{x}_{i}\right) g\left(\frac{x_{1}}{\bar{x}_{1}}, \frac{x_{2}}{\bar{x}_{2}}, \dots, \frac{x_{n}}{\bar{x}_{n}}\right)$$

$$(\bar{x}_1 \bar{x}_2) \left(.1 + .2 \frac{x_2}{\bar{x}_2} + .3 \frac{x_1}{\bar{x}_1} + .4 \frac{x_1}{\bar{x}_1} \frac{x_2}{\bar{x}_2} \right) = .1 \bar{x}_1 \bar{x}_2 + .2 \bar{x}_1 x_2 + .3 x_1 \bar{x}_2 + .4 x_1 x_2 = p(x, \bar{x})$$

Theorem 4. Let \Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the probability generating function for \Pr can be transformed to a circuit of size $O(sn^2)$ computing the network polynomial for \Pr .

Idea:
$$\left(\prod_{i=1}^{n} \bar{x}_{i}\right) g\left(\frac{x_{1}}{\bar{x}_{1}}, \frac{x_{2}}{\bar{x}_{2}}, \dots, \frac{x_{n}}{\bar{x}_{n}}\right)$$

Example: Starting with $g(x) = .1 + .2x_2 + .3x_1 + .4x_1x_2$, we form

$$(\bar{x}_1 \bar{x}_2) \left(.1 + .2 \frac{x_2}{\bar{x}_2} + .3 \frac{x_1}{\bar{x}_1} + .4 \frac{x_1}{\bar{x}_1} \frac{x_2}{\bar{x}_2} \right) = .1 \bar{x}_1 \bar{x}_2 + .2 \bar{x}_1 x_2 + .3 x_1 \bar{x}_2 + .4 x_1 x_2 = p(x, \bar{x})$$

Strassen to the rescue!

- $p(x, \bar{x})$ Network polynomial p(x)
 - Likelihood polynomial
- g(x)Generating function
- $\hat{p}(x)$ Fourier transform

- $p(x, \bar{x})$ Network polynomial
- p(x) Likelihood polynomial
- g(x) Generating function
- $\hat{p}(x)$ Fourier transform

- $p(x, \bar{x})$ Network polynomial
- p(x) Likelihood polynomial
- g(x) Generating function
- $\hat{p}(x)$ Fourier transform

- $p(x, \bar{x})$ Network polynomial p(x) Likelihood polynomial g(x) Generating function
- $\hat{p}(x)$ Fourier transform

Proposition 1. For binary random variables, probability generating functions g(x) and Fourier polynomials $\hat{p}(x)$ are the same function(!), on respective domains $\{-1,1\}^n$ and $\{0,1\}^n$, up to the bijection $\phi: \{0,1\} \rightarrow \{-1,1\}$ given by $\phi(b) = (-1)^b$ applied bitwise.

- $p(x, \bar{x})$ Network polynomial p(x) Likelihood polynomial g(x) Generating function
- $\hat{p}(x)$ Fourier transform

Proposition 1. For binary random variables, probability generating functions g(x) and Fourier polynomials $\hat{p}(x)$ are the same function(!), on respective domains $\{-1,1\}^n$ and $\{0,1\}^n$, up to the bijection $\phi: \{0,1\} \rightarrow \{-1,1\}$ given by $\phi(b) = (-1)^b$ applied bitwise.

- $p(x, \bar{x})$ Network polynomial p(x) Likelihood polynomial g(x) Generating function
- $\hat{p}(x)$ Fourier transform

Proposition 1. For binary random variables, probability generating functions g(x) and Fourier polynomials $\hat{p}(x)$ are the same function(!), on respective domains $\{-1,1\}^n$ and $\{0,1\}^n$, up to the bijection $\phi: \{0,1\} \rightarrow \{-1,1\}$ given by $\phi(b) = (-1)^b$ applied bitwise.

What have we done?

- $p(x, \bar{x})$ Network polynomial p(x) Likelihood polynomial g(x) Generating function
- $\hat{p}(x)$ Fourier transform

Proposition 1. For binary random variables, probability generating functions g(x) and Fourier polynomials $\hat{p}(x)$ are the same function(!), on respective domains $\{-1,1\}^n$ and $\{0,1\}^n$, up to the bijection $\phi: \{0,1\} \rightarrow \{-1,1\}$ given by $\phi(b) = (-1)^b$ applied bitwise.

What have we done?

 several distinct circuit-based models are equally succinct

- $p(x, \bar{x})$ Network polynomial p(x) Likelihood polynomial g(x) Generating function
- $\hat{p}(x)$ Fourier transform

Proposition 1. For binary random variables, probability generating functions g(x) and Fourier polynomials $\hat{p}(x)$ are the same function(!), on respective domains $\{-1,1\}^n$ and $\{0,1\}^n$, up to the bijection $\phi: \{0,1\} \rightarrow \{-1,1\}$ given by $\phi(b) = (-1)^b$ applied bitwise.

What have we done?

- several distinct circuit-based models are equally succinct
- distinct inference algorithms in a common framework

Non-binary distributions?

Non-binary distributions?

Let $\Pr: K^n \to \mathbb{R}$ be a probability mass function with $K = \{0, 1, 2, \dots, k-1\}$. Then the probability generating polynomial of \Pr is

$$g(x) = \sum_{(d_1, d_2, \dots, d_n) \in K^n} \Pr(d_1, \dots, d_n) x_1^{d_1} x_2^{d_2} \cdots x_n^{d_n}.$$
 (1)

Non-binary distributions?

Let $\Pr: K^n \to \mathbb{R}$ be a probability mass function with $K = \{0, 1, 2, \dots, k-1\}$. Then the probability generating polynomial of \Pr is

$$g(x) = \sum_{(d_1, d_2, \dots, d_n) \in K^n} \Pr(d_1, \dots, d_n) x_1^{d_1} x_2^{d_2} \cdots x_n^{d_n}.$$
 (1)

Theorem 5. For $k \ge 4$, computing likelihoods on a circuit for g(x) is #P-hard. Proof idea: Reduce from 0, 1-permanent.

What we did:

- ▶ Several distinct circuit-based models are equally succinct
- ▶ Distinct inference algorithms in a common framework
- ▶ Inference is hard in circuits computing generating functions for $k \ge 4$ categories

What we did:

- ▶ Several distinct circuit-based models are equally succinct
- ▶ Distinct inference algorithms in a common framework
- ▶ Inference is hard in circuits computing generating functions for $k \ge 4$ categories

What's next?

What we did:

- ▶ Several distinct circuit-based models are equally succinct
- ▶ Distinct inference algorithms in a common framework
- ▶ Inference is hard in circuits computing generating functions for $k \ge 4$ categories

What's next?

▶ Are there more succinct tractable representations? e.g., do we need multilinearity?

What we did:

- ▶ Several distinct circuit-based models are equally succinct
- ▶ Distinct inference algorithms in a common framework
- ▶ Inference is hard in circuits computing generating functions for $k \ge 4$ categories

What's next?

- ▶ Are there more succinct tractable representations? e.g., do we need multilinearity?
- ▶ Can we characterize *all* tractable marginal inference?

What we did:

- ▶ Several distinct circuit-based models are equally succinct
- ▶ Distinct inference algorithms in a common framework
- ▶ Inference is hard in circuits computing generating functions for $k \ge 4$ categories

What's next?

- ▶ Are there more succinct tractable representations? e.g., do we need multilinearity?
- ▶ Can we characterize *all* tractable marginal inference?
- ▶ How can theoretically more expressive models be learned/constructed in practice?