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Outline

▶ Tractable probabilistic models

▶ Probabilistic circuits

▶ Several circuit semantics in the literature ...

▶ are equivalent! (for binary random variables)

▶ And, don’t all extend to non-binary variables
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Probabilistic Models

How we think about the world: models with uncertainty

▶ Will I make it to the SNAIL talk on time, if I leave home at 2:30pm?

▶ Did I pass that final exam?

AI research

▶ Deep learning and formal methods: “neuro-symbolic AI”

▶ Applications: images, language, audio, medicine, science, economics, etc.
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The problem

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

▶ Expressive-efficient representation

▶ Tractable inference

Diffusion models

GANs

VAEs

HMMs

Fully factorized

Mixture models
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Expressive-efficient
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Marginal inference

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

If X = Y ⊔Z, then what is Pr[Y = y]?

In general:

Pr[Y = y] =
∑
z

Pr[Y = y,Z = z]

For example:

Pr[X1 = 1] = Pr[X1 = 1, X2 = 0] + Pr[X1 = 1, X2 = 1]

= 0.3 + 0.4

= 0.7

Goal: Find a model of polysize that supports marginal inference in polytime, for as
large a set of probability distributions as possible.
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Approaches

▶ Bayesian Networks (of bounded treewidth) (BNs)

▶ Determinantal Point Processes (DPPs)

▶ Probabilistic Sentential Decision Diagrams (PSDDs)

▶ . . .

▶ Probabilistic Circuits!
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Probabilistic Circuits

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

+

× × ×

x̄2 + x2 x1

x1 x̄1

0.4 0.2 0.4

0.75 0.25

Marginal Inference:
If Xi = b for b ∈ {0, 1}, set
xi = b and x̄i = 1− b.
If Xi is not assigned, set x1 = 1
and x̄1 = 1.

Pr[X1 = 1]?
Set x1 = 1, x̄1 = 0, x2 = 1,
x̄2 = 1

p(x1, x2, . . . , xn, x̄1, x̄2, . . . , x̄n) = .1x̄1x̄2 + .2x̄1x2 + .3x1x̄2 + .4x1x2

“Network polynomial”
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Circuit Semantics

Polynomial Notation Inference Citation

Network polynomial p(x1, . . . , xn, x̄1, . . . , x̄n) Darwiche [2003]

Likelihood polynomial p(x1, . . . , xn) ? Roth and Samdani [2009]
Generating function g(x1, . . . , xn) Zhang et al. [2021]
Fourier transform p̂(x1, . . . , xn) Yu et al. [2023]
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How do they relate?

p(x, x̄) Network polynomial
p(x) Likelihood polynomial
g(x) Generating function
p̂(x) Fourier transform

g(x)p(x, x̄)

p(x)

p−1,1(x) p̂(x, x̄)

p̂(x)

g(x)p(x, x̄)

p(x)

p−1,1(x) p̂(x, x̄)

p̂(x)
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Likelihood polynomials

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

p(x1, x2) = .2x1 + .1x2 + .1

Can we do marginal inference?
Relation to network polynomial?

Transformation from network to a likelihood:
p(x1, x2, x̄1, x̄2) = .1x̄1x̄2 + .2x̄1x2 + .3x1x̄2 + .4x1x2
p(x1, x2, 1− x1, 1− x2)
= .1(1− x1)(1− x2) + .2(1− x1)x2 + .3x1(1− x2) + .4x1x2
= .2x1 + .1x2 + .1
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Transformation from likelihood to network

Theorem 1. Let Pr be a probability distribution on n binary random variables.
Then a circuit of size s computing the likelihood polynomial for Pr can be
transformed to a circuit of size O(sn2) computing the network polynomial for Pr.

Idea:

(
n∏

i=1

(xi + x̄i)

)
p

(
x1

x1 + x̄1
, . . . ,

xn
xn + x̄n

)
Example: Starting with p(x1, x2) = .2x1 + .1x2 + .1, we form

(x1 + x̄1)(x2 + x̄2)

(
.2

x1
x1 + x̄1

+ .1
x2

x2 + x̄2
+ .1

)
= .2x1(x2 + x̄2) + .1x2(x1 + x̄1) + .1(x1 + x̄1)(x2 + x̄2)

= .2x1x2 + .2x1x̄2 + .1x1x2 + .1x̄1x2 + .1x1x2 + .1x̄1x2 + .1x1x̄2 + .1x̄1x̄2

= .1x̄1x̄2 + .2x̄1x2 + .3x1x̄2 + .4x1x2 = p(x1, x2, x̄1, x̄2)
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Divisions?

Wait a second...

(
n∏

i=1

(xi + x̄i)

)
p

(
x1

x1 + x̄1
, . . . ,

xn
xn + x̄n

)

Theorem 2 (Strassen). You can remove the divisions in polynomial time!

Lemma 3. For a circuit computing f of degree d, we can obtain circuits computing
H0[f ], H1[f ], . . . ,Hd[f ] the homogeneous parts of f , i.e. Hi[f ] has degree i and
f =

∑
iHi[f ].

Idea: Move divisions to the root using a/b+ c/d = (ad+ bc)/bd and
a/b ∗ c/d = ac/bd.
Then for circuit a/b computing polynomial f = a/b of degree d, assume b(0) = 1,
and we have

Hi[f ] = Hi[a(1 + (1− b) + (1− b)2 + . . .+ (1− b)d].
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Progress update

p(x, x̄) Network polynomial
p(x) Likelihood polynomial
g(x) Generating function
p̂(x) Fourier transform

g(x)p(x, x̄)

p(x)

p−1,1(x) p̂(x, x̄)

p̂(x)

p̂(x, x̄)
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Generating functions:

Why?

Circuits computing generating functions

Circuits computing network polynomials (S, D, positive)

Spanning tree distribution
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Generating functions

X1 X2 Pr

0 0 .1
0 1 .2
1 0 .3
1 1 .4

g(x) = .1 + .2x2 + .3x1 + .4x1x2

Can we do marginal inference?

For Xi = 1, set xi = t
For Xi = 0, set xi = 0
For Xi =?, set xi = 1

Pr[X1 = 1]?
g(t, 1) = .1 + .2 + .3t+ .4t = .3 + .7t

Relation to network polynomial?

Transformation from network to a generating:
p(x1, x2, x̄1, x̄2) = .1x̄1x̄2 + .2x̄1x2 + .3x1x̄2 + .4x1x2
p(x1, x2, 1, 1) = .1 + .2x2 + .3x1 + .4x1x2 = g(x1, x2)
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Transformation from generating to network

Theorem 4. Let Pr be a probability distribution on n binary random variables.
Then a circuit of size s computing the probability generating function for Pr can be
transformed to a circuit of size O(sn2) computing the network polynomial for Pr.

Idea:

(
n∏

i=1

x̄i

)
g

(
x1
x̄1

,
x2
x̄2

, . . . ,
xn
x̄n

)
Example: Starting with g(x) = .1 + .2x2 + .3x1 + .4x1x2, we form

(x̄1x̄2)

(
.1 + .2

x2
x̄2

+ .3
x1
x̄1

+ .4
x1
x̄1

x2
x̄2

)
= .1x̄1x̄2 + .2x̄1x2 + .3x1x̄2 + .4x1x2

= p(x, x̄)

Strassen to the rescue!
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Theorem 4. Let Pr be a probability distribution on n binary random variables.
Then a circuit of size s computing the probability generating function for Pr can be
transformed to a circuit of size O(sn2) computing the network polynomial for Pr.

Idea:

(
n∏

i=1

x̄i

)
g

(
x1
x̄1

,
x2
x̄2

, . . . ,
xn
x̄n

)
Example: Starting with g(x) = .1 + .2x2 + .3x1 + .4x1x2, we form
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Progress update

p(x, x̄) Network polynomial
p(x) Likelihood polynomial
g(x) Generating function
p̂(x) Fourier transform

g(x)p(x, x̄)

p(x)

p̂(x, x̄)

p̂(x)

p̂(x, x̄)

p−1,1(x)

Proposition 1. For binary random
variables, probability generating functions
g(x) and Fourier polynomials p̂(x) are
the same function(!), on respective
domains {−1, 1}n and {0, 1}n, up to the
bijection ϕ : {0, 1} → {−1, 1} given by
ϕ(b) = (−1)b applied bitwise.

What have we done?

▶ several distinct circuit-based models
are equally succinct

▶ distinct inference algorithms in a
common framework
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Non-binary distributions?

Let Pr : Kn → R be a probability mass function with K = {0, 1, 2, . . . , k − 1}.
Then the probability generating polynomial of Pr is

g(x) =
∑

(d1,d2,...,dn)∈Kn

Pr(d1, . . . , dn)x
d1
1 xd22 · · ·xdnn . (1)

Theorem 5. For k ≥ 4, computing likelihoods on a circuit for g(x) is #P-hard.

Proof idea: Reduce from 0, 1-permanent.
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Conclusion

What we did:

▶ Several distinct circuit-based models are equally succinct

▶ Distinct inference algorithms in a common framework

▶ Inference is hard in circuits computing generating functions for k ≥ 4
categories

What’s next?

▶ Are there more succinct tractable representations? e.g., do we need
multilinearity?

▶ Can we characterize all tractable marginal inference?

▶ How can theoretically more expressive models be learned/constructed in
practice?
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