Polynomial semantics of probabilistic circuits

Oliver Broadrick, UCLA

May, 2024

Based on joint work with Honghua Zhang and Guy Van den Broeck

Outline

- Tractable probabilistic models

Outline

- Tractable probabilistic models
- Probabilistic circuits

Outline

- Tractable probabilistic models
- Probabilistic circuits
- Several circuit semantics in the literature ...

Outline

- Tractable probabilistic models
- Probabilistic circuits
- Several circuit semantics in the literature ...
- are equivalent! (for binary random variables)

Outline

- Tractable probabilistic models
- Probabilistic circuits
- Several circuit semantics in the literature ...
- are equivalent! (for binary random variables)
- And, don't all extend to non-binary variables

Probabilistic Models

Probabilistic Models

How we think about the world: models with uncertainty

Probabilistic Models

How we think about the world: models with uncertainty

- Will I make it to the SNAIL talk on time, if I leave home at $2: 30 \mathrm{pm}$?

Probabilistic Models

How we think about the world: models with uncertainty

- Will I make it to the SNAIL talk on time, if I leave home at $2: 30 \mathrm{pm}$?
- Did I pass that final exam?

Probabilistic Models

How we think about the world: models with uncertainty

- Will I make it to the SNAIL talk on time, if I leave home at $2: 30 \mathrm{pm}$?
- Did I pass that final exam?

AI research

Probabilistic Models

How we think about the world: models with uncertainty

- Will I make it to the SNAIL talk on time, if I leave home at $2: 30 \mathrm{pm}$?
- Did I pass that final exam?

AI research

- Deep learning and formal methods:"neuro-symbolic AI"

Probabilistic Models

How we think about the world: models with uncertainty

- Will I make it to the SNAIL talk on time, if I leave home at $2: 30 \mathrm{pm}$?
- Did I pass that final exam?

AI research

- Deep learning and formal methods: "neuro-symbolic AI"
- Applications: images, language, audio, medicine, science, economics, etc.

The problem

X_{1}	X_{2}	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

The problem

- Expressive-efficient representation

X_{1}	X_{2}	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

The problem

- Expressive-efficient representation
- Tractable inference

X_{1}	X_{2}	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

The problem

- Expressive-efficient representation
- Tractable inference

X_{1}	X_{2}	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Marginal inference

X_{1}	X_{2}	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Marginal inference

$$
\text { If } \boldsymbol{X}=\boldsymbol{Y} \sqcup \boldsymbol{Z} \text {, then what is } \operatorname{Pr}[\boldsymbol{Y}=\boldsymbol{y}] \text { ? }
$$

X_{1}	X_{2}	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Marginal inference

$$
\text { If } \boldsymbol{X}=\boldsymbol{Y} \sqcup \boldsymbol{Z} \text {, then what is } \operatorname{Pr}[\boldsymbol{Y}=\boldsymbol{y}] \text { ? }
$$

In general:

X_{1}	X_{2}	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

$$
\operatorname{Pr}[\boldsymbol{Y}=\boldsymbol{y}]=\sum_{\boldsymbol{z}} \operatorname{Pr}[\boldsymbol{Y}=\boldsymbol{y}, \boldsymbol{Z}=\boldsymbol{z}]
$$

Marginal inference

If $\boldsymbol{X}=\boldsymbol{Y} \sqcup \boldsymbol{Z}$, then what is $\operatorname{Pr}[\boldsymbol{Y}=\boldsymbol{y}]$?
In general:

$$
\begin{array}{cc|c}
X_{1} & X_{2} & \operatorname{Pr} \\
\hline 0 & 0 & .1 \\
0 & 1 & .2 \\
1 & 0 & .3 \\
1 & 1 & .4
\end{array}
$$

$$
\operatorname{Pr}[\boldsymbol{Y}=\boldsymbol{y}]=\sum_{\boldsymbol{z}} \operatorname{Pr}[\boldsymbol{Y}=\boldsymbol{y}, \boldsymbol{Z}=\boldsymbol{z}]
$$

For example:

$$
\begin{aligned}
\operatorname{Pr}\left[X_{1}=1\right] & =\operatorname{Pr}\left[X_{1}=1, X_{2}=0\right]+\operatorname{Pr}\left[X_{1}=1, X_{2}=1\right] \\
& =0.3+0.4 \\
& =0.7
\end{aligned}
$$

Marginal inference

If $\boldsymbol{X}=\boldsymbol{Y} \sqcup \boldsymbol{Z}$, then what is $\operatorname{Pr}[\boldsymbol{Y}=\boldsymbol{y}]$?
In general:

X_{1}	X_{2}	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

$$
\operatorname{Pr}[\boldsymbol{Y}=\boldsymbol{y}]=\sum_{\boldsymbol{z}} \operatorname{Pr}[\boldsymbol{Y}=\boldsymbol{y}, \boldsymbol{Z}=\boldsymbol{z}]
$$

For example:

$$
\begin{aligned}
\operatorname{Pr}\left[X_{1}=1\right] & =\operatorname{Pr}\left[X_{1}=1, X_{2}=0\right]+\operatorname{Pr}\left[X_{1}=1, X_{2}=1\right] \\
& =0.3+0.4 \\
& =0.7
\end{aligned}
$$

Goal: Find a model of polysize that supports marginal inference in polytime, for as large a set of probability distributions as possible.

Approaches

Approaches

- Bayesian Networks (of bounded treewidth) (BNs)

Approaches

- Bayesian Networks (of bounded treewidth) (BNs)
- Determinantal Point Processes (DPPs)

Approaches

- Bayesian Networks (of bounded treewidth) (BNs)
- Determinantal Point Processes (DPPs)
- Probabilistic Sentential Decision Diagrams (PSDDs)

Approaches

- Bayesian Networks (of bounded treewidth) (BNs)
- Determinantal Point Processes (DPPs)
- Probabilistic Sentential Decision Diagrams (PSDDs)
- Probabilistic Circuits!

Probabilistic Circuits

X_{1}	X_{2}	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Probabilistic Circuits

Probabilistic Circuits

Marginal Inference:

Probabilistic Circuits

Marginal Inference:
If $X_{i}=b$ for $b \in\{0,1\}$, set $x_{i}=b$ and $\bar{x}_{i}=1-b$.

Probabilistic Circuits

Marginal Inference:
If $X_{i}=b$ for $b \in\{0,1\}$, set
$x_{i}=b$ and $\bar{x}_{i}=1-b$.
If X_{i} is not assigned, set $x_{1}=1$ and $\bar{x}_{1}=1$.

Probabilistic Circuits

Probabilistic Circuits

Probabilistic Circuits

"Network polynomial"

Circuit Semantics

Polynomial	Notation	Inference	Citation
Network polynomial	$p\left(x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}\right)$	\checkmark	Darwiche [2003]

Circuit Semantics

Polynomial	Notation	Inference	Citation
Network polynomial	$p\left(x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}\right)$	\checkmark	Darwiche [2003]
Likelihood polynomial	$p\left(x_{1}, \ldots, x_{n}\right)$	$?$	Roth and Samdani [2009]

Circuit Semantics

Polynomial	Notation	Inference	Citation
Network polynomial	$p\left(x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}\right)$	\checkmark	Darwiche [2003]
Likelihood polynomial	$p\left(x_{1}, \ldots, x_{n}\right)$	$?$	Roth and Samdani [2009]
Generating function	$g\left(x_{1}, \ldots, x_{n}\right)$	\checkmark	Zhang et al. [2021]

Circuit Semantics

Polynomial	Notation	Inference	Citation
Network polynomial	$p\left(x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}\right)$	\checkmark	Darwiche [2003]
Likelihood polynomial	$p\left(x_{1}, \ldots, x_{n}\right)$	$?$	Roth and Samdani [2009]
Generating function	$g\left(x_{1}, \ldots, x_{n}\right)$	\checkmark	Zhang et al. [2021]
Fourier transform	$\hat{p}\left(x_{1}, \ldots, x_{n}\right)$	\checkmark	Yu et al. [2023]

How do they relate?

$\begin{array}{ll}p(x, \bar{x}) & \text { Network polynomial } \\ p(x) & \text { Likelihood polynomial }\end{array}$
$g(x) \quad$ Generating function
$\hat{p}(x) \quad$ Fourier transform

How do they relate?

$$
\begin{array}{ll}
p(x, \bar{x}) & \text { Network polynomial } \\
p(x) & \text { Likelihood polynomial } \\
g(x) & \text { Generating function } \\
\hat{p}(x) & \text { Fourier transform }
\end{array}
$$

Likelihood polynomials

$$
p\left(x_{1}, x_{2}\right)=.2 x_{1}+.1 x_{2}+.1
$$

X_{1}	X_{2}	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Likelihood polynomials

$$
p\left(x_{1}, x_{2}\right)=.2 x_{1}+.1 x_{2}+.1
$$

Can we do marginal inference?

X_{1}	X_{2}	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Likelihood polynomials

$$
p\left(x_{1}, x_{2}\right)=.2 x_{1}+.1 x_{2}+.1
$$

Can we do marginal inference?

X_{1}	X_{2}	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Relation to network polynomial?

Likelihood polynomials

$$
p\left(x_{1}, x_{2}\right)=.2 x_{1}+.1 x_{2}+.1
$$

Can we do marginal inference?

X_{1}	X_{2}	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Relation to network polynomial?

Transformation from network to a likelihood: $p\left(x_{1}, x_{2}, \bar{x}_{1}, \bar{x}_{2}\right)=.1 \bar{x}_{1} \bar{x}_{2}+.2 \bar{x}_{1} x_{2}+.3 x_{1} \bar{x}_{2}+.4 x_{1} x_{2}$

Likelihood polynomials

$$
p\left(x_{1}, x_{2}\right)=.2 x_{1}+.1 x_{2}+.1
$$

Can we do marginal inference?

X_{1}	X_{2}	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Relation to network polynomial?

Transformation from network to a likelihood: $p\left(x_{1}, x_{2}, \bar{x}_{1}, \bar{x}_{2}\right)=.1 \bar{x}_{1} \bar{x}_{2}+.2 \bar{x}_{1} x_{2}+.3 x_{1} \bar{x}_{2}+.4 x_{1} x_{2}$ $p\left(x_{1}, x_{2}, 1-x_{1}, 1-x_{2}\right)$

Likelihood polynomials

$$
p\left(x_{1}, x_{2}\right)=.2 x_{1}+.1 x_{2}+.1
$$

Can we do marginal inference?

X_{1}	X_{2}	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Relation to network polynomial?

Transformation from network to a likelihood:
$p\left(x_{1}, x_{2}, \bar{x}_{1}, \bar{x}_{2}\right)=.1 \bar{x}_{1} \bar{x}_{2}+.2 \bar{x}_{1} x_{2}+.3 x_{1} \bar{x}_{2}+.4 x_{1} x_{2}$
$p\left(x_{1}, x_{2}, 1-x_{1}, 1-x_{2}\right)$
$=.1\left(1-x_{1}\right)\left(1-x_{2}\right)+.2\left(1-x_{1}\right) x_{2}+.3 x_{1}\left(1-x_{2}\right)+.4 x_{1} x_{2}$

Likelihood polynomials

$$
p\left(x_{1}, x_{2}\right)=.2 x_{1}+.1 x_{2}+.1
$$

Can we do marginal inference?

X_{1}	X_{2}	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Relation to network polynomial?

Transformation from network to a likelihood:
$p\left(x_{1}, x_{2}, \bar{x}_{1}, \bar{x}_{2}\right)=.1 \bar{x}_{1} \bar{x}_{2}+.2 \bar{x}_{1} x_{2}+.3 x_{1} \bar{x}_{2}+.4 x_{1} x_{2}$
$p\left(x_{1}, x_{2}, 1-x_{1}, 1-x_{2}\right)$
$=.1\left(1-x_{1}\right)\left(1-x_{2}\right)+.2\left(1-x_{1}\right) x_{2}+.3 x_{1}\left(1-x_{2}\right)+.4 x_{1} x_{2}$
$=.2 x_{1}+.1 x_{2}+.1$

Transformation from likelihood to network

Theorem 1. Let Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the likelihood polynomial for Pr can be transformed to a circuit of size $O\left(s n^{2}\right)$ computing the network polynomial for Pr.

Transformation from likelihood to network

Theorem 1. Let Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the likelihood polynomial for Pr can be transformed to a circuit of size $O\left(s n^{2}\right)$ computing the network polynomial for Pr.
Idea: $\left(\prod_{i=1}^{n}\left(x_{i}+\bar{x}_{i}\right)\right) p\left(\frac{x_{1}}{x_{1}+\bar{x}_{1}}, \ldots, \frac{x_{n}}{x_{n}+\bar{x}_{n}}\right)$

Transformation from likelihood to network

Theorem 1. Let Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the likelihood polynomial for Pr can be transformed to a circuit of size $O\left(s n^{2}\right)$ computing the network polynomial for Pr.
Idea: $\left(\prod_{i=1}^{n}\left(x_{i}+\bar{x}_{i}\right)\right) p\left(\frac{x_{1}}{x_{1}+\bar{x}_{1}}, \ldots, \frac{x_{n}}{x_{n}+\bar{x}_{n}}\right)$
Example: Starting with $p\left(x_{1}, x_{2}\right)=.2 x_{1}+.1 x_{2}+.1$, we form

Transformation from likelihood to network

Theorem 1. Let Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the likelihood polynomial for Pr can be transformed to a circuit of size $O\left(s n^{2}\right)$ computing the network polynomial for Pr.
Idea: $\left(\prod_{i=1}^{n}\left(x_{i}+\bar{x}_{i}\right)\right) p\left(\frac{x_{1}}{x_{1}+\bar{x}_{1}}, \ldots, \frac{x_{n}}{x_{n}+\bar{x}_{n}}\right)$
Example: Starting with $p\left(x_{1}, x_{2}\right)=.2 x_{1}+.1 x_{2}+.1$, we form

$$
\left(x_{1}+\bar{x}_{1}\right)\left(x_{2}+\bar{x}_{2}\right)\left(.2 \frac{x_{1}}{x_{1}+\bar{x}_{1}}+.1 \frac{x_{2}}{x_{2}+\bar{x}_{2}}+.1\right)
$$

Transformation from likelihood to network

Theorem 1. Let Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the likelihood polynomial for Pr can be transformed to a circuit of size $O\left(s n^{2}\right)$ computing the network polynomial for Pr.
Idea: $\left(\prod_{i=1}^{n}\left(x_{i}+\bar{x}_{i}\right)\right) p\left(\frac{x_{1}}{x_{1}+\bar{x}_{1}}, \ldots, \frac{x_{n}}{x_{n}+\bar{x}_{n}}\right)$
Example: Starting with $p\left(x_{1}, x_{2}\right)=.2 x_{1}+.1 x_{2}+.1$, we form

$$
\begin{aligned}
& \left(x_{1}+\bar{x}_{1}\right)\left(x_{2}+\bar{x}_{2}\right)\left(.2 \frac{x_{1}}{x_{1}+\bar{x}_{1}}+.1 \frac{x_{2}}{x_{2}+\bar{x}_{2}}+.1\right) \\
& =.2 x_{1}\left(x_{2}+\bar{x}_{2}\right)+.1 x_{2}\left(x_{1}+\bar{x}_{1}\right)+.1\left(x_{1}+\bar{x}_{1}\right)\left(x_{2}+\bar{x}_{2}\right)
\end{aligned}
$$

Transformation from likelihood to network

Theorem 1. Let Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the likelihood polynomial for Pr can be transformed to a circuit of size $O\left(s n^{2}\right)$ computing the network polynomial for Pr.
Idea: $\left(\prod_{i=1}^{n}\left(x_{i}+\bar{x}_{i}\right)\right) p\left(\frac{x_{1}}{x_{1}+\bar{x}_{1}}, \ldots, \frac{x_{n}}{x_{n}+\bar{x}_{n}}\right)$
Example: Starting with $p\left(x_{1}, x_{2}\right)=.2 x_{1}+.1 x_{2}+.1$, we form

$$
\begin{aligned}
& \left(x_{1}+\bar{x}_{1}\right)\left(x_{2}+\bar{x}_{2}\right)\left(.2 \frac{x_{1}}{x_{1}+\bar{x}_{1}}+.1 \frac{x_{2}}{x_{2}+\bar{x}_{2}}+.1\right) \\
& =.2 x_{1}\left(x_{2}+\bar{x}_{2}\right)+.1 x_{2}\left(x_{1}+\bar{x}_{1}\right)+.1\left(x_{1}+\bar{x}_{1}\right)\left(x_{2}+\bar{x}_{2}\right) \\
& =.2 x_{1} x_{2}+.2 x_{1} \bar{x}_{2}+.1 x_{1} x_{2}+.1 \bar{x}_{1} x_{2}+.1 x_{1} x_{2}+.1 \bar{x}_{1} x_{2}+.1 x_{1} \bar{x}_{2}+.1 \bar{x}_{1} \bar{x}_{2}
\end{aligned}
$$

Transformation from likelihood to network

Theorem 1. Let Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the likelihood polynomial for Pr can be transformed to a circuit of size $O\left(s n^{2}\right)$ computing the network polynomial for Pr.
Idea: $\left(\prod_{i=1}^{n}\left(x_{i}+\bar{x}_{i}\right)\right) p\left(\frac{x_{1}}{x_{1}+\bar{x}_{1}}, \ldots, \frac{x_{n}}{x_{n}+\bar{x}_{n}}\right)$
Example: Starting with $p\left(x_{1}, x_{2}\right)=.2 x_{1}+.1 x_{2}+.1$, we form

$$
\begin{aligned}
& \left(x_{1}+\bar{x}_{1}\right)\left(x_{2}+\bar{x}_{2}\right)\left(.2 \frac{x_{1}}{x_{1}+\bar{x}_{1}}+.1 \frac{x_{2}}{x_{2}+\bar{x}_{2}}+.1\right) \\
& =.2 x_{1}\left(x_{2}+\bar{x}_{2}\right)+.1 x_{2}\left(x_{1}+\bar{x}_{1}\right)+.1\left(x_{1}+\bar{x}_{1}\right)\left(x_{2}+\bar{x}_{2}\right) \\
& =.2 x_{1} x_{2}+.2 x_{1} \bar{x}_{2}+.1 x_{1} x_{2}+.1 \bar{x}_{1} x_{2}+.1 x_{1} x_{2}+.1 \bar{x}_{1} x_{2}+.1 x_{1} \bar{x}_{2}+.1 \bar{x}_{1} \bar{x}_{2} \\
& =.1 \bar{x}_{1} \bar{x}_{2}+.2 \bar{x}_{1} x_{2}+.3 x_{1} \bar{x}_{2}+.4 x_{1} x_{2}=p\left(x_{1}, x_{2}, \bar{x}_{1}, \bar{x}_{2}\right)
\end{aligned}
$$

Divisions?

Wait a second... $\left(\prod_{i=1}^{n}\left(x_{i}+\bar{x}_{i}\right)\right) p\left(\frac{x_{1}}{x_{1}+\bar{x}_{1}}, \ldots, \frac{x_{n}}{x_{n}+\bar{x}_{n}}\right)$

Divisions?

Wait a second... $\left(\prod_{i=1}^{n}\left(x_{i}+\bar{x}_{i}\right)\right) p\left(\frac{x_{1}}{x_{1}+\bar{x}_{1}}, \ldots, \frac{x_{n}}{x_{n}+\bar{x}_{n}}\right)$
Theorem 2 (Strassen). You can remove the divisions in polynomial time!

Divisions?

Wait a second... $\left(\prod_{i=1}^{n}\left(x_{i}+\bar{x}_{i}\right)\right) p\left(\frac{x_{1}}{x_{1}+\bar{x}_{1}}, \ldots, \frac{x_{n}}{x_{n}+\bar{x}_{n}}\right)$
Theorem 2 (Strassen). You can remove the divisions in polynomial time!

Lemma 3. For a circuit computing f of degree d, we can obtain circuits computing $H_{0}[f], H_{1}[f], \ldots, H_{d}[f]$ the homogeneous parts of f, i.e. $H_{i}[f]$ has degree i and $f=\sum_{i} H_{i}[f]$.

Divisions?

Wait a second... $\left(\prod_{i=1}^{n}\left(x_{i}+\bar{x}_{i}\right)\right) p\left(\frac{x_{1}}{x_{1}+\bar{x}_{1}}, \ldots, \frac{x_{n}}{x_{n}+\bar{x}_{n}}\right)$
Theorem 2 (Strassen). You can remove the divisions in polynomial time!

Lemma 3. For a circuit computing f of degree d, we can obtain circuits computing $H_{0}[f], H_{1}[f], \ldots, H_{d}[f]$ the homogeneous parts of f, i.e. $H_{i}[f]$ has degree i and $f=\sum_{i} H_{i}[f]$.
Idea: Move divisions to the root using $a / b+c / d=(a d+b c) / b d$ and $a / b * c / d=a c / b d$.

Divisions?

Wait a second... $\left(\prod_{i=1}^{n}\left(x_{i}+\bar{x}_{i}\right)\right) p\left(\frac{x_{1}}{x_{1}+\bar{x}_{1}}, \ldots, \frac{x_{n}}{x_{n}+\bar{x}_{n}}\right)$
Theorem 2 (Strassen). You can remove the divisions in polynomial time!

Lemma 3. For a circuit computing f of degree d, we can obtain circuits computing $H_{0}[f], H_{1}[f], \ldots, H_{d}[f]$ the homogeneous parts of f, i.e. $H_{i}[f]$ has degree i and $f=\sum_{i} H_{i}[f]$.
Idea: Move divisions to the root using $a / b+c / d=(a d+b c) / b d$ and $a / b * c / d=a c / b d$.
Then for circuit a / b computing polynomial $f=a / b$ of degree d, assume $b(0)=1$, and we have

$$
H_{i}[f]=H_{i}\left[a\left(1+(1-b)+(1-b)^{2}+\ldots+(1-b)^{d}\right] .\right.
$$

Progress update

$p(x, \bar{x}) \quad$ Network polynomial
$p(x) \quad$ Likelihood polynomial
$g(x) \quad$ Generating function
$\hat{p}(x) \quad$ Fourier transform

Progress update

$p(x, \bar{x}) \quad$ Network polynomial
$p(x) \quad$ Likelihood polynomial
$g(x) \quad$ Generating function
$\hat{p}(x) \quad$ Fourier transform

$$
\hat{p}(x)
$$

Progress update

$p(x, \bar{x}) \quad$ Network polynomial
$p(x) \quad$ Likelihood polynomial
$g(x) \quad$ Generating function
$\hat{p}(x) \quad$ Fourier transform

$$
g(x)
$$

Generating functions:

Generating functions: Why?

Generating functions: Why?

Circuits computing network polynomials (S, D, positive)

Generating functions: Why?

Circuits computing network polynomials (S, D, positive)

Generating functions

$$
g(x)=.1+.2 x_{2}+.3 x_{1}+.4 x_{1} x_{2}
$$

Can we do marginal inference?

X_{1}	X_{2}	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Generating functions

$$
g(x)=.1+.2 x_{2}+.3 x_{1}+.4 x_{1} x_{2}
$$

Can we do marginal inference?
For $X_{i}=1$, set $x_{i}=t$

X_{1}	X_{2}	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Generating functions

$$
g(x)=.1+.2 x_{2}+.3 x_{1}+.4 x_{1} x_{2}
$$

Can we do marginal inference?
For $X_{i}=1$, set $x_{i}=t$
For $X_{i}=0$, set $x_{i}=0$

X_{1}	X_{2}	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Generating functions

$$
g(x)=.1+.2 x_{2}+.3 x_{1}+.4 x_{1} x_{2}
$$

Can we do marginal inference?
For $X_{i}=1$, set $x_{i}=t$
For $X_{i}=0$, set $x_{i}=0$
For $X_{i}=$?, set $x_{i}=1$

X_{1}	X_{2}	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Generating functions

$$
g(x)=.1+.2 x_{2}+.3 x_{1}+.4 x_{1} x_{2}
$$

Can we do marginal inference?

$$
\text { For } X_{i}=1, \text { set } x_{i}=t
$$

$$
\text { For } X_{i}=0, \text { set } x_{i}=0
$$

X_{1}	X_{2}	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

$$
\text { For } X_{i}=?, \text { set } x_{i}=1
$$

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{1}=1\right] ? \\
& g(t, 1)=.1+.2+.3 t+.4 t=.3+.7 t
\end{aligned}
$$

Generating functions

$$
g(x)=.1+.2 x_{2}+.3 x_{1}+.4 x_{1} x_{2}
$$

Can we do marginal inference?

$$
\text { For } X_{i}=1, \text { set } x_{i}=t
$$

$$
\text { For } X_{i}=0, \text { set } x_{i}=0
$$

X_{1}	X_{2}	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

$$
\text { For } X_{i}=?, \text { set } x_{i}=1
$$

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{1}=1\right] ? \\
& g(t, 1)=.1+.2+.3 t+.4 t=.3+.7 t
\end{aligned}
$$

Relation to network polynomial?

Generating functions

$$
g(x)=.1+.2 x_{2}+.3 x_{1}+.4 x_{1} x_{2}
$$

Can we do marginal inference?
For $X_{i}=1$, set $x_{i}=t$
For $X_{i}=0$, set $x_{i}=0$
For $X_{i}=$?, set $x_{i}=1$

X_{1}	X_{2}	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

$\operatorname{Pr}\left[X_{1}=1\right]$?
$g(t, 1)=.1+.2+.3 t+.4 t=.3+.7 t$
Relation to network polynomial?

Transformation from network to a generating:

$$
p\left(x_{1}, x_{2}, \bar{x}_{1}, \bar{x}_{2}\right)=.1 \bar{x}_{1} \bar{x}_{2}+.2 \bar{x}_{1} x_{2}+.3 x_{1} \bar{x}_{2}+.4 x_{1} x_{2}
$$

Generating functions

$$
g(x)=.1+.2 x_{2}+.3 x_{1}+.4 x_{1} x_{2}
$$

Can we do marginal inference?
For $X_{i}=1$, set $x_{i}=t$
For $X_{i}=0$, set $x_{i}=0$
For $X_{i}=$?, set $x_{i}=1$

X_{1}	X_{2}	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

$\operatorname{Pr}\left[X_{1}=1\right]$?
$g(t, 1)=.1+.2+.3 t+.4 t=.3+.7 t$
Relation to network polynomial?

Transformation from network to a generating:

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, \bar{x}_{1}, \bar{x}_{2}\right)=.1 \bar{x}_{1} \bar{x}_{2}+.2 \bar{x}_{1} x_{2}+.3 x_{1} \bar{x}_{2}+.4 x_{1} x_{2} \\
& p\left(x_{1}, x_{2}, 1,1\right)=.1+.2 x_{2}+.3 x_{1}+.4 x_{1} x_{2}=g\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Transformation from generating to network

Transformation from generating to network

Theorem 4. Let Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the probability generating function for Pr can be transformed to a circuit of size $O\left(s n^{2}\right)$ computing the network polynomial for Pr.

Transformation from generating to network

Theorem 4. Let Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the probability generating function for Pr can be transformed to a circuit of size $O\left(s n^{2}\right)$ computing the network polynomial for Pr.
Idea: $\left(\prod_{i=1}^{n} \bar{x}_{i}\right) g\left(\frac{x_{1}}{\bar{x}_{1}}, \frac{x_{2}}{\bar{x}_{2}}, \ldots, \frac{x_{n}}{\bar{x}_{n}}\right)$

Transformation from generating to network

Theorem 4. Let Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the probability generating function for Pr can be transformed to a circuit of size $O\left(s n^{2}\right)$ computing the network polynomial for Pr. Idea: $\left(\prod_{i=1}^{n} \bar{x}_{i}\right) g\left(\frac{x_{1}}{\bar{x}_{1}}, \frac{x_{2}}{\bar{x}_{2}}, \ldots, \frac{x_{n}}{\bar{x}_{n}}\right)$

Example: Starting with $g(x)=.1+.2 x_{2}+.3 x_{1}+.4 x_{1} x_{2}$, we form

Transformation from generating to network

Theorem 4. Let Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the probability generating function for Pr can be transformed to a circuit of size $O\left(s n^{2}\right)$ computing the network polynomial for Pr.
Idea: $\left(\prod_{i=1}^{n} \bar{x}_{i}\right) g\left(\frac{x_{1}}{\bar{x}_{1}}, \frac{x_{2}}{\bar{x}_{2}}, \ldots, \frac{x_{n}}{\bar{x}_{n}}\right)$
Example: Starting with $g(x)=.1+.2 x_{2}+.3 x_{1}+.4 x_{1} x_{2}$, we form

$$
\left(\bar{x}_{1} \bar{x}_{2}\right)\left(.1+.2 \frac{x_{2}}{\bar{x}_{2}}+.3 \frac{x_{1}}{\bar{x}_{1}}+.4 \frac{x_{1}}{\bar{x}_{1}} \frac{x_{2}}{\bar{x}_{2}}\right)
$$

Transformation from generating to network

Theorem 4. Let Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the probability generating function for Pr can be transformed to a circuit of size $O\left(s n^{2}\right)$ computing the network polynomial for Pr.
Idea: $\left(\prod_{i=1}^{n} \bar{x}_{i}\right) g\left(\frac{x_{1}}{\bar{x}_{1}}, \frac{x_{2}}{\bar{x}_{2}}, \ldots, \frac{x_{n}}{\bar{x}_{n}}\right)$
Example: Starting with $g(x)=.1+.2 x_{2}+.3 x_{1}+.4 x_{1} x_{2}$, we form

$$
\begin{aligned}
& \left(\bar{x}_{1} \bar{x}_{2}\right)\left(.1+.2 \frac{x_{2}}{\bar{x}_{2}}+.3 \frac{x_{1}}{\bar{x}_{1}}+.4 \frac{x_{1}}{\bar{x}_{1}} \frac{x_{2}}{\bar{x}_{2}}\right) \\
& =.1 \bar{x}_{1} \bar{x}_{2}+.2 \bar{x}_{1} x_{2}+.3 x_{1} \bar{x}_{2}+.4 x_{1} x_{2}
\end{aligned}
$$

Transformation from generating to network

Theorem 4. Let Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the probability generating function for Pr can be transformed to a circuit of size $O\left(s n^{2}\right)$ computing the network polynomial for Pr.
Idea: $\left(\prod_{i=1}^{n} \bar{x}_{i}\right) g\left(\frac{x_{1}}{\bar{x}_{1}}, \frac{x_{2}}{\bar{x}_{2}}, \ldots, \frac{x_{n}}{\bar{x}_{n}}\right)$
Example: Starting with $g(x)=.1+.2 x_{2}+.3 x_{1}+.4 x_{1} x_{2}$, we form

$$
\begin{aligned}
& \left(\bar{x}_{1} \bar{x}_{2}\right)\left(.1+.2 \frac{x_{2}}{\bar{x}_{2}}+.3 \frac{x_{1}}{\bar{x}_{1}}+.4 \frac{x_{1}}{\bar{x}_{1}} \frac{x_{2}}{\bar{x}_{2}}\right) \\
& =.1 \bar{x}_{1} \bar{x}_{2}+.2 \bar{x}_{1} x_{2}+.3 x_{1} \bar{x}_{2}+.4 x_{1} x_{2} \\
& =p(x, \bar{x})
\end{aligned}
$$

Transformation from generating to network

Theorem 4. Let Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the probability generating function for Pr can be transformed to a circuit of size $O\left(s n^{2}\right)$ computing the network polynomial for Pr.
Idea: $\left(\prod_{i=1}^{n} \bar{x}_{i}\right) g\left(\frac{x_{1}}{\bar{x}_{1}}, \frac{x_{2}}{\bar{x}_{2}}, \ldots, \frac{x_{n}}{\bar{x}_{n}}\right)$
Example: Starting with $g(x)=.1+.2 x_{2}+.3 x_{1}+.4 x_{1} x_{2}$, we form

$$
\begin{aligned}
& \left(\bar{x}_{1} \bar{x}_{2}\right)\left(.1+.2 \frac{x_{2}}{\bar{x}_{2}}+.3 \frac{x_{1}}{\bar{x}_{1}}+.4 \frac{x_{1}}{\bar{x}_{1}} \frac{x_{2}}{\bar{x}_{2}}\right) \\
& =.1 \bar{x}_{1} \bar{x}_{2}+.2 \bar{x}_{1} x_{2}+.3 x_{1} \bar{x}_{2}+.4 x_{1} x_{2} \\
& =p(x, \bar{x})
\end{aligned}
$$

Progress update

$p(x, \bar{x}) \quad$ Network polynomial
$p(x) \quad$ Likelihood polynomial
$g(x) \quad$ Generating function
$\hat{p}(x) \quad$ Fourier transform

Progress update

$$
\begin{array}{ll}
p(x, \bar{x}) & \text { Network polynomial } \\
p(x) & \text { Likelihood polynomial } \\
g(x) & \text { Generating function } \\
\hat{p}(x) & \text { Fourier transform }
\end{array}
$$

Progress update

$$
\begin{array}{ll}
p(x, \bar{x}) & \text { Network polynomial } \\
p(x) & \text { Likelihood polynomial } \\
g(x) & \text { Generating function } \\
\hat{p}(x) & \text { Fourier transform }
\end{array}
$$

Progress update

$p(x, \bar{x}) \quad$ Network polynomial
$p(x) \quad$ Likelihood polynomial
$g(x) \quad$ Generating function
$\hat{p}(x) \quad$ Fourier transform

Proposition 1. For binary random variables, probability generating functions $g(x)$ and Fourier polynomials $\hat{p}(x)$ are the same function(!), on respective domains $\{-1,1\}^{n}$ and $\{0,1\}^{n}$, up to the bijection $\phi:\{0,1\} \rightarrow\{-1,1\}$ given by $\phi(b)=(-1)^{b}$ applied bitwise .

Progress update

$p(x, \bar{x}) \quad$ Network polynomial
$p(x) \quad$ Likelihood polynomial
$g(x) \quad$ Generating function
$\hat{p}(x) \quad$ Fourier transform

Proposition 1. For binary random variables, probability generating functions $g(x)$ and Fourier polynomials $\hat{p}(x)$ are the same function(!), on respective domains $\{-1,1\}^{n}$ and $\{0,1\}^{n}$, up to the bijection $\phi:\{0,1\} \rightarrow\{-1,1\}$ given by $\phi(b)=(-1)^{b}$ applied bitwise .

Progress update

$p(x, \bar{x}) \quad$ Network polynomial
$p(x) \quad$ Likelihood polynomial
$g(x) \quad$ Generating function
$\hat{p}(x) \quad$ Fourier transform

Proposition 1. For binary random variables, probability generating functions $g(x)$ and Fourier polynomials $\hat{p}(x)$ are the same function(!), on respective domains $\{-1,1\}^{n}$ and $\{0,1\}^{n}$, up to the bijection $\phi:\{0,1\} \rightarrow\{-1,1\}$ given by $\phi(b)=(-1)^{b}$ applied bitwise .

What have we done?

Progress update

$p(x, \bar{x}) \quad$ Network polynomial
$p(x) \quad$ Likelihood polynomial
$g(x) \quad$ Generating function
$\hat{p}(x) \quad$ Fourier transform

Proposition 1. For binary random variables, probability generating functions $g(x)$ and Fourier polynomials $\hat{p}(x)$ are the same function(!), on respective domains $\{-1,1\}^{n}$ and $\{0,1\}^{n}$, up to the bijection $\phi:\{0,1\} \rightarrow\{-1,1\}$ given by $\phi(b)=(-1)^{b}$ applied bitwise .

What have we done?

- several distinct circuit-based models are equally succinct

Progress update

$p(x, \bar{x}) \quad$ Network polynomial
$p(x) \quad$ Likelihood polynomial
$g(x) \quad$ Generating function
$\hat{p}(x) \quad$ Fourier transform

Proposition 1. For binary random variables, probability generating functions $g(x)$ and Fourier polynomials $\hat{p}(x)$ are the same function(!), on respective domains $\{-1,1\}^{n}$ and $\{0,1\}^{n}$, up to the bijection $\phi:\{0,1\} \rightarrow\{-1,1\}$ given by $\phi(b)=(-1)^{b}$ applied bitwise .

What have we done?

- several distinct circuit-based models are equally succinct
- distinct inference algorithms in a common framework

Non-binary distributions?

Non-binary distributions?

Let $\operatorname{Pr}: K^{n} \rightarrow \mathbb{R}$ be a probability mass function with $K=\{0,1,2, \ldots, k-1\}$. Then the probability generating polynomial of Pr is

$$
\begin{equation*}
g(x)=\sum_{\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in K^{n}} \operatorname{Pr}\left(d_{1}, \ldots, d_{n}\right) x_{1}^{d_{1}} x_{2}^{d_{2}} \cdots x_{n}^{d_{n}} \tag{1}
\end{equation*}
$$

Non-binary distributions?

Let $\operatorname{Pr}: K^{n} \rightarrow \mathbb{R}$ be a probability mass function with $K=\{0,1,2, \ldots, k-1\}$. Then the probability generating polynomial of Pr is

$$
\begin{equation*}
g(x)=\sum_{\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in K^{n}} \operatorname{Pr}\left(d_{1}, \ldots, d_{n}\right) x_{1}^{d_{1}} x_{2}^{d_{2}} \cdots x_{n}^{d_{n}} . \tag{1}
\end{equation*}
$$

Theorem 5. For $k \geq 4$, computing likelihoods on a circuit for $g(x)$ is \#P-hard. Proof idea: Reduce from 0,1-permanent.

Conclusion

What we did:

- Several distinct circuit-based models are equally succinct
- Distinct inference algorithms in a common framework
- Inference is hard in circuits computing generating functions for $k \geq 4$ categories

Conclusion

What we did:

- Several distinct circuit-based models are equally succinct
- Distinct inference algorithms in a common framework
- Inference is hard in circuits computing generating functions for $k \geq 4$ categories

What's next?

Conclusion

What we did:

- Several distinct circuit-based models are equally succinct
- Distinct inference algorithms in a common framework
- Inference is hard in circuits computing generating functions for $k \geq 4$ categories

What's next?

- Are there more succinct tractable representations? e.g., do we need multilinearity?

Conclusion

What we did:

- Several distinct circuit-based models are equally succinct
- Distinct inference algorithms in a common framework
- Inference is hard in circuits computing generating functions for $k \geq 4$ categories

What's next?

- Are there more succinct tractable representations? e.g., do we need multilinearity?
- Can we characterize all tractable marginal inference?

Conclusion

What we did:

- Several distinct circuit-based models are equally succinct
- Distinct inference algorithms in a common framework
- Inference is hard in circuits computing generating functions for $k \geq 4$ categories

What's next?

- Are there more succinct tractable representations? e.g., do we need multilinearity?
- Can we characterize all tractable marginal inference?
- How can theoretically more expressive models be learned/constructed in practice?

