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Clear Modeling Assumption “Black Box”
Well-understood Good performance
on Image Classification
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Motivation: Video

if they appear in the same time ¢. We then introduce an
edge potential that enforces mutual exclusion:

1 lf Yt.i ; yt.]
0 otherwise

L'mutux(yt.b yt.j) = { (5)
This potential specifies the constraint that a player can
belappear only once in a frame] For example, if the i-th
detection y; ; has been assign to Bryant, y,; ; cannot have
the same identity because Bryant is impossible to appear

twice in a frame.

[Lu, W. L., Ting, J. A,, Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.]



Motivation: Robotics

The method developed in this paper can be used in a
broad variety of semantic mapping and object manipulation
tasks, providing an efficient and effective way to incorporate
collision constraints|into a recursive state estimator, obtaining
optimal or near-optimal solutions.

[Wong, L. L., Kaelbling, L. P., & Lozano-Perez, T., Collision-free state estimation. ICRA 2012]



Motivation: Language

* Non-local dependencies:
At least one verb in each sentence

« Sentence compression
If a modifier is kept, its subject is also kept

® I n fo rm ati O n eXt raCti O n Start The Ei];?itcfl?];?ust start with author

or editor.
AppearsOnce || Each field must be a consecutive list
of words, and can appear at most

| L ]
» Semantic role labelin
Punctuation State transitions must occur on

punctuation marks.

BooklJournal || The words proc, journal, proceed-
ings, ACM

are JOURNAL or BOOKTITLE.

TechReport The words tech, technical are

TECH_REPORT.

e a n d l I l a n y I I I O re ! Title Quotations can appear only in titles.

Location The words CA, Australia, NY are
LOCATION.
[Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as prior knowledgel],..., [Chang, M. W., Ratinov, L., & Roth, D. (2012).

Structured learning with constrained conditional models.], [https://en.wikipedia.org/wiki/Constrained_conditional_model]



Motivation: Deep Learning

To ensure that the
network always moved to a valid node, the output distribution was renormalized
over the set of possible triples outgoing from the current node

it also received input triples during the answer phase, indicating the actions cho-
sen on the previous time-step.

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwinska, A., et al.. (2016).
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.]




Running Example

Courses:

* Logic (L) Data
« Knowledge Representation (K)
 Probability (P)

« Atrtificial Intelligence (A)

Constraints




Structured Space

unstructured > structured
L[ K[ P[A] L K [P [A
0 0 0 0
0 0 0 1
0 0 1 0 0 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1 0
1 0 0 0 1
1 0 0 1
1 7 out of 16 instantiations —— -
1 1 0 o0 are impossible 0
1 1 0 1
1 1 1 0 1 0
1 1 1 1 1 1



Boolean Constraints

unstructured > structured
L[ K[ P[A] L K [P [A
0 0 0 0
0 0 0 1
0 0 1 0 0 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0 1
1 0 0 1
1 7 out of 16 instantiations —— -
1 1 0 o0 are impossible 0
1 1 0 1
1 1 1 0 1 0
1 1 1 1 1 1



Learning In Structured Spaces

+--

Today’s machine learning tools
don’t take knowledge as input! ®



Deep Learnlng + [Constraints]

Wlth [Deep Neural ]

Logical Knowledge

Neural Network

Output is

probabillity vector p,
not Boolean logic!




Semantic Loss

Q: How close is output p to satisfying constraint?
Answer. Semantic loss function L(a,p)

« AXioms, for example:
— If p Is Boolean then L(p,p) =0
— If a implies B then L(a,p) 2 L(B,p) (a more strict)

* Properties: SEMANTIC
— If ais equivalent to 3 then L(a,p) = L(3,p) Loss!

— If p Is Boolean and satisfies a then L(a,p) =0



Semantic Loss: Definition

Theorem: Axioms imply unique semantic loss:

L(ap)x—log S J[ » I (1-po

x=a ix=X; drm—— X,

. /
Y

Probability of getting x after
flipping coins with prob. p

N\ /
Y

Probability of satisfying a after
flipping coins with prob. p




Example: Exactly-One

« Data must have some label 3
We agree this must be one of the 10 digits:

« Exactly-one constraint  (x; vV x;Vvx;

] X1 V —1X?9

— For 3 classes: « VRV

« Semantic loss: \ X1 vﬂxg
L*(exactly-one, p) o< — log Z o H (1—p;)

=Ll = 1J7£?

J

Only xi =1 after flipping coins

L J
Y

Exactly one true x after flipping coins




Semi-Supervised Learning

* [ntuition: Unlabeled data must have some label
Cf. entropy constraints, manifold learning

* C(Class1 ¢ C(Class1

4 Class 2 . - 4 Class?2

= Unlabeled A, . = Unlabeled
N A

« Minimize exactly-one semantic loss on unlabeled data

Train with
existing loss + w - semantic loss




MNIST Experiment

Accuracy % with # of used labels 100 1000 ALL
AtlasRBF (Pitelis et al.. 2014) 91.9 (= 0.95) 06.32 (£ 0.12) | 98.69
Deep Generative (Kingma et al., 2014) 06.67(+=0.14) | 97.60(£ 0.02) | 99.04
Virtual Adversarial (Miyato et al., 2016) | 97.67 08.64 09.36
Ladder Net (Rasmus et al.. 2015) 98.94 (+0.37) | 99.16 (=0.08) | 99.43 (£ 0.02)
Baseline: MLP, Gaussian Noise 78.46 (£1.94) | 94.26 (£0.31) | 99.34 (£0.08)

Baseline: Self-Training
MLP with Semantic Loss

Competitive with state of the art

72.55 (+4.21)
98.38 (£0.51)

87.43 (£=3.07)
98.78 (£0.17)

99.36 (£0.02)

INn semi-supervised deep learning



FASHION Experiment

¥
"N
|

(a) Confidently Correct (b) Unconfidently Correct (c) Unconfidently Incorrect (d) Confidently Incorrect
Accuracy % with # of used labels | 100 500 1000 ALL
Ladder Net (Rasmus et al.. 2015) | 81.46 (£0.64 ) | 85.18 (£0.27) | 86.48 (£ 0.15) | 90.46
Baseline: MLP, Gaussian Noise 69.45 (£2.03) | 78.12 (£1.41) | 80.94 (+0.84) | 89.87
MLP with Semantic Loss 86.74 (+0.71) | 89.49 (+0.24) | 89.67 (£0.09) | 89.81

Outperforms Ladder Nets!

Same conclusion on CIFAR10

Accuracy % with # of used labels 4000 ALL
CNN Baseline in Ladder Net 76.67 (= 0.61) | 90.73
Ladder Net (Rasmus et al., 2013) 79.60 (£0.47)

Baseline: CNN, Whitening, Cropping | 77.13 90.96
CNN with Semantic Loss 81.79 90.92




What about real constraints?

P ath S cf. Nature paper @i
@ @ O
® @ @
Good variable assignment Bad variable assignment
(represents route) (does not represent route)
184 16,777,032

Unstructured probability space: 184+16,777,032 = 224

Space easily encoded in logical constraints © ishinoetal]



How to Compute Semantic Loss?

 |[n general: #P-hard ®



Negation Normal Form Circuits

A = (sun A rain = rainbow)

rainbow

SUn

— rainbow

— rairl/q

—sun

rain

[Darwiche 2002]



Logical Circuits

@

Input: A
0 (& Al

A B C D (0)

Bottom-up Evaluation

O=1ANDO




Decomposable Circuits

rainbow

Sun

— rainbow

rain

[Darwiche 2002]



Tractable for Logical Inference

* |s there a solution? (SAT) v
— SAT(a v B) iff SAT(a) or SAT(B) (always)
— SAT(a A B) iff SAT(a) and SAT(B) (decomposable)

 How many solutions are there? (#SAT)

« Complexity linear in circuit size ©



Deterministic Circuits

rainbow — rainbow

sun —sun rain

[Darwiche 2002]



How many solutions are there?
(#SAT)

— rainbow

— rairl/q

Sun —sun rain

rainbow




How many solutions are there?
(#SAT)




Tractable for Logical Inference

Is there a solution? (SAT) v

How many solutions are there? (#SAT) v
Stricter languages (e.g., BDD, SDD):

— Equivalence checking

— Conjoin/disjoint/negate circuits v
Complexity linear in circuit size ©
Compilation into circuit language by either

— | exhaustive SAT solver
— 1 conjoin/disjoin/negate



How to Compute Semantic Loss?

* |n general: #P-hard ®
« With a logical circuit for a: Linear!
« Example: exactly-one constraint:

N
S AN

XL L2 —&r3 S| €2 €r3 Pl'(.l.’l) Pl( ﬁ;l’g) Pl'(ﬁ;l':g) Pl'(_kf.'l) Pl‘(;l'g) Pl‘(;l’g)

L(a,p) =L(/ ), p)

X

 Why? Decomposability and determinism!



Predict Shortest Paths

Add semantic loss
for path constraint

Test accuracy % | Coherent | Incoherent | Constraint
d-layer MLP 5.62 85.91 6.99
Semantic loss 28.51 83.14 69.89
Is prediction Are individual Is output
the shortest path? edge predictions a path?
This is the real task! correct?

(same conclusion for predicting sushi preferences, see paper)



Outline

« Adding knowledge to deep learning
* Probabilistic circuits
 Logistic circuits for image classification



Logical Circuits

v T /é/\ A /é
PA —PL L1 —LL —P-A P L-K LL P Pl

K=K A —-A A —-A

Can we represent a distribution

over the solutions to the constraint?



Probabilistic Circuits

0.1 0.6
N
11 10 11 [0 1 0
[\ [\ [\ [\ /
-L K L 1 P A =P L P -P 1
0.9 0.1
A -A

Syntax: assign a normalized probability to each OR gate input



Bottom-Up Evaluation of PSDDs

Pr(4,B,C,D) =0.096

Input: 0.9 Q 0.1

A B C D Pr(AB,CD) @ 0.24=0.8*0.3 'm'

A A
o 1 1 0 ? 0 02%3 o3 0.40@% 0.6 1

0.1=0.1*1 + 0.9%0

0.11]10.9 0.8

Multiply the parameters [B

bottom-up 1




Alternative View of PSDDs

0.6

-LK L1 PA -PL1

Input: L, K, P, A
are true

0.25 0.75
A -A

Pr(L,K,PA)=0.3x1x0.8x0.4x0.25=0.024




Each node represents

: L K P A|Pr(L.K,P,A)
a normalized 00 0 0 0.00%
: : : 00 0 1 0.005%
distribution! 00 10 6,009
00 1 1 54.00%
01 00 0.00%
h 001 01 0.00%
| | 01 10 0.005%
01 1 1 10.00%
10 00 4,405
1 00 1 0.00% |
ﬂ ﬂ ﬂ ﬂ 1010 1.00%
=8 1011 (Joﬂ‘l
LK L1 L] Pr ()P )(ﬂ 1/L\L P-A P L1100 6
‘-’ U 73.33% 1101 (J )n/;
0 1| 0.00% 02l lors 11 10 4.00%
1 0| 16.67% A-A 1 1 11 2.40%
1 1 1.0 N7

Can read probabilistic independences off the circuit structure!

Can interpret every parameter as a conditional probability! (XAl)



Tractable for
Probabilistic Inference

MAP inference:

Find most-likely assignment to x given y
(otherwise NP-hard)

Computing conditional probabilities Pr(x|y)
(otherwise #P-hard)

Sample from Pr(x|y)

Algorithms linear in circuit size ©
(pass up, pass down, similar to backprop)



Parameter Learning Algorithms

(@TINE—
Closed form N I
max likelihood Lotol
from complete data Gt

One pass over data to estimate Pr(x|y)

Not a lot to say: very easy! ©



PSDDs

...are Sum-Product Networks
...are Arithmetic Circuits

LN
*/O{ */\a__ i\a
/N I\ I\
P1 Sq P- S, ' Pn Sy




Learn Mixtures of PSDD Structures

LearnPSDD
Datasets | |Var| Ensemble Best-to-Date
= e . State of the art

SNBC | 17 —6.047 —6.041

1 on 6 datasets!

Plants 69 =153-02 —11.991

Audio 100 —30.94 —39.497

Jester 100 —51.29 —41.117

etflix | 100 —55.717 - Q: “Help! | need to learn a
Accidents =306:16 —34.87 . i . . ”

o o ——um >  discrete probability distribution...
Pumsb-Star | 163 —26.12 —22.401 A: Learn mixture of PSDDs!

DNA 180 —88.01 —80.037

Kosarek | 190 —10.521 —10.54

MSWeb | 294 —9.89 %? Strongly outperforms

Book | 500 —34.97 —30,181 « Bayesian network learners
EachMovie | 500 —58.01 —51.141

weres | 6 G Rt  Markov network learners
Reuters-52 | 889 —89.61 ~80.66' Competitive with
20NewsGrp. | 910 —155.97 —150.881 o

BBC 1058 —253.19 —233.261 SPN |earnerS

AD 1556 —31.78 —14.36 o Cutset network learners




Outline

* Adding knowledge to deep learning
* Probabillistic circuits

* Logistic circuits for image
classification



What if | only want to classify Y?

Pr(Y,4,B,C,D)
0.6 0.4
. A
a &
0.9 0.1 0.4
AN
0.2 0.8 0.6 0.4

.

.

T

A

i

What if we only want to
learn a classifier Pr(Y|X)

@




Logistic Circuits: Evaluation

Pr(Y =1|4,B,C,D) = — —— =0.869

—2.6 —5.8

Input: C]
A

A B C D Pr(Y|A=B107D) O —1 @ 3 2.3 @ zt

0 1 I O ? Q

Aggregate the parameters LT —0.5 o3
bottom-up '
Logistic function on final B _B
output 1 0 T

~[a
o
N
ols



Alternative View on Logistic Circults

by Q Represents Pr(Y | A,B,C,D)

* Take all ‘hot’ wires
. =« Sum their weights
e ol 2.3 bl 4 « Push through logistic function

A B C D g (ABCD) Pr(Y =1|ABCD)
1 0 1+— =3 4.31%

<01 1 0 1.9 86.99%
] | [ 0 5.8 99.70%




Special Case: Logistic Regression

To, » Logistic Regression

/’

ey

:

Al [=A|l |B| |=B| |c| |=C| |[D]| [=D

1
1+exp(—Ax0,——Ax0_,—Bx0Og—-)

Pr(Y = 1|A4,B,C,D) =

What about other logistic circuits In
more general forms?



Parameter Learning

Reduce to logistic regression:
1
PriY =1 |x) = 1+ex)

Features associated with each wire J

“Global Circuit Flow” features

Learning parameters 6 Is convex optimization!



Structure Learning Primitive




Logistic Circuit Structure Learning

N N N0 0

B t j -B g—!B
-Al| |B 1*!1 -A

Generate alculate
candidate Gradient
operations Variance

Execute the
best operation




Comparable Accuracy with Neural Nets

ACCURACY % ON DATASET MNIST FASHION
BASELINE: LOGISTIC REGRESSION 85.3 79.3
BASELINE: KERNEL LOGISTIC REGRESSION 97.7 88.3
RANDOM FOREST 97.3 81.6
3-LAYER MLP 97.5 84.8
RAT-SPN (PEHARZ ET AL. 2018) 98.1 89.5
SVM WITH RBF KERNEL 98.5 87.8
5-LAYER MLP 99.3 89.8
LOGISTIC CIRCUIT (BINARY) 97.4 87.6
LOGISTIC CIRCUIT (REAL-VALUED) 99 4 91.3
CNN WITH 3 CONV LAYERS 99.1 90.7

RESNET (HE ET AL. 2016) 99.5 93.6




Significantly Smaller in Size

NUMBER OF PARAMETERS MNIST FASHION
BASELINE: LOGISTIC REGRESSION <1K <1K
BASELINE: KERNEL LOGISTIC REGRESSION 1,521 K 3.930K
LLOGISTIC CIRCUIT (REAL-VALUED) 182K 467K
LOGISTIC CIRCUIT (BINARY) 268K 614K
3-LAYER MLP 1.411K 1.411K
RAT-SPN (PEHARZ ET AL. 2018) 8.500K 650K
CNN WITH 3 CONV LAYERS 2,.196K 2.196K
5-LAYER MLP 2.411K 2.411K

RESNET (HE ET AL. 2016) 4,838K 4,838K




Better Data Efficiency

ACCURACY % WITH % OF TRAINING DATA MNIST FASHION

100% 10% 2% 100% 10%
5-LAYER MLP 99.3 98.2 94.3 89.8 86.5
CNN WITH 3 CONV LAYERS 99.1 08.1 95.3 90.7 87.6
LOGISTIC CIRCUIT (BINARY) 97.4 96.9 94.1 87.6 86.7

LOGISTIC CIRCUIT (REAL-VALUED) 94 97.6 961 91.3 87.8




Logistic vs. Probabilistic Circuits
Pr(Y | A,B,C,D)

Probabilities
become
log-odds

0.9 0.3 0.7
In 55 In 0.5 In o
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Logistic Circuits: Conclusions

Synthesis of symbolic Al and statistical
learning

Discriminative counterparts of probabilistic
CIrcults

Convex parameter learning

Simple heuristic for structure learning
Good performance

Easy to interpret



Conclusions

Statistical ML
“Probability”

Connectionism

Symbolic Al Deep

“Logic”



