

Tractable Probabilistic Circuits

Guy Van den Broeck

appliedAI Seminar - Jan 18 2024

Outline

- 1. What are probabilistic circuits? *tractable deep generative models*
- 2. What are they useful for?

controlling generative AI

3. What is the underlying theory? *probability generating polynomials*

Outline

1. What are probabilistic circuits? tractable deep generative models

2. What are they useful for?

controlling generative AI

3. What is the underlying theory? *probability generating polynomials*

Why probabilistic inference?

q₁: What is the probability that today is a Monday and there is a traffic jam on Westwood Blvd.?

$$\mathbf{X} = \{\mathsf{Day}, \mathsf{Time}, \mathsf{Jam}_{\mathsf{Str1}}, \mathsf{Jam}_{\mathsf{Str2}}, \dots, \mathsf{Jam}_{\mathsf{StrN}}\}$$

 $\mathbf{q}_1(\mathbf{m}) = p_{\mathbf{m}}(\mathsf{Day} = \mathsf{Mon}, \mathsf{Jam}_{\mathsf{Wwood}} = 1)$

 \Rightarrow marginals

[©] fineartamerica.com

Tractable Probabilistic Inference

A class of queries Q is tractable on a family of probabilistic models \mathcal{M} iff for any query $\mathbf{q} \in Q$ and model $\mathbf{m} \in \mathcal{M}$ **exactly** computing $\mathbf{q}(\mathbf{m})$ runs in time $O(\operatorname{poly}(|\mathbf{m}|))$.

 \Rightarrow often poly will in fact be **linear**!

Complete evidence (EVI)

q₃: What is the probability that today is a Monday at 12.00 and there is a traffic jam only on Westwood Blvd.?

$$\mathbf{X} = \{ \mathsf{Day}, \mathsf{Time}, \mathsf{Jam}_{\mathsf{Wwood}}, \mathsf{Jam}_{\mathsf{Str2}}, \dots, \mathsf{Jam}_{\mathsf{StrN}} \\ \mathbf{q}_{\mathbf{3}}(\mathbf{m}) = p_{\mathbf{m}}(\mathbf{X} = \{\mathsf{Mon}, 12.00, 1, 0, \dots, 0\})$$

...fundamental in maximum likelihood learning

$$\theta_{\mathbf{m}}^{\mathsf{MLE}} = \operatorname{argmax}_{\theta} \prod_{\mathbf{x} \in \mathcal{D}} p_{\mathbf{m}}(\mathbf{x}; \theta)$$

© fineartamerica.com

Variational Autoencoders

 $\log p_{\theta}(\mathbf{x}) \geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})} \left[\log p_{\theta}(\mathbf{x} \mid \mathbf{z}) \right] - \mathbb{KL}(q_{\phi}(\mathbf{z} \mid \mathbf{x}) || p(\mathbf{z}))$

an explicit likelihood model!

... but computing $\log p_{ heta}(\mathbf{x})$ is intractable

 \Rightarrow an infinite and uncountable mixture \Rightarrow no tractable EVI

we need to optimize the ELBO...

 \Rightarrow which is "tricky"

Normalizing flows

$$p_{\mathbf{X}}(\mathbf{x}) = p_{\mathbf{Z}}(f^{-1}(\mathbf{x})) \left| \det \left(\frac{\delta f^{-1}}{\delta \mathbf{x}} \right) \right|$$

an explicit likelihood!

 \Rightarrow tractable EVI queries!

many neural variants

RealNVP (Dinh et al. 2016), MAF (Papamakarios et al. 2017) MADE (Germain et al. 2015), PixelRNN (Oord et al. 2016)

Marginal queries (MAR)

q₁: What is the probability that today is a Monday et 12:00 and there is a traffic jam only on Westwood Blvd.?

$$\mathbf{q}_1(\mathbf{m}) = p_{\mathbf{m}}(\mathsf{Day} = \mathsf{Mon}, \mathsf{Jam}_{\mathsf{Wwood}} = 1)$$

General: $p_{\mathbf{m}}(\mathbf{e}) = \int p_{\mathbf{m}}(\mathbf{e}, \mathbf{H}) \, d\mathbf{H}$

where $\mathbf{E} \subset \mathbf{X}, \quad \mathbf{H} = \mathbf{X} \setminus \mathbf{E}$

© fineartamerica.com

Normalizing flows

$$p_{\mathbf{X}}(\mathbf{x}) = p_{\mathbf{Z}}(f^{-1}(\mathbf{x})) \left| \det \left(\frac{\delta f^{-1}}{\delta \mathbf{x}} \right) \right|$$

an explicit likelihood!

 \Rightarrow tractable EVI queries!

MAR is generally intractable:

we cannot easily integrate over high-dimensional \boldsymbol{f}

more tractable

Probabilistic circuits

computational graphs that recursively define distributions

Probabilistic circuits

computational graphs that recursively define distributions

Probabilistic circuits

a unifying framework for tractable models

Likelihood
$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$$

Likelihood $p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$

Likelihood
$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$$

Tractable marginals

A sum node is *smooth* if its children depend on the same set of variables.

A product node is *decomposable* if its children depend on disjoint sets of variables.

smooth circuit

decomposable circuit

Smoothness + decomposability = tractable MAR

If $m{p}(\mathbf{x}) = \sum_i w_i m{p}_i(\mathbf{x})$, (smoothness):

$$\int \mathbf{p}(\mathbf{x}) d\mathbf{x} = \int \sum_{i} w_{i} \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x} =$$
$$= \sum_{i} w_{i} \int \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x}$$

 \Rightarrow integrals are "pushed down" to children

Smoothness + decomposability = tractable MAR

If $p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = p(\mathbf{x})p(\mathbf{y})p(\mathbf{z})$, (decomposability):

$$\int \int \int \mathbf{p}(\mathbf{x}, \mathbf{y}, \mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$
$$= \int \int \int \int \mathbf{p}(\mathbf{x}) \mathbf{p}(\mathbf{y}) \mathbf{p}(\mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$
$$= \int \mathbf{p}(\mathbf{x}) d\mathbf{x} \int \mathbf{p}(\mathbf{y}) d\mathbf{y} \int \mathbf{p}(\mathbf{z}) d\mathbf{z}$$

 \Rightarrow integrals decompose into easier ones

Smoothness + decomposability = tractable MAR

Forward pass evaluation for MAR

inear in circuit size!

E.g. to compute $p(x_2, x_4)$: leafs over X_1 and X_3 output $\mathbf{Z}_i = \int p(x_i) dx_i$ for normalized leaf distributions: 1.0

leafs over X_2 and X_4 output **EVI**

feedforward evaluation (bottom-up)

Outline

- 1. What are probabilistic circuits? *tractable deep generative models*
- 2. What are they useful for? *controlling generative AI*
- 3. What is the underlying theory? *probability generating polynomials*

bpd	2008-2020
Tabular	•••
MNIST	\mathbf{Q}
F-MNIST	\mathbf{Q}
EMNIST-L	\mathbf{Q}
CIFAR	\mathbf{Q}
Imagenet32	\mathbf{Q}
Imagenet64	\mathbf{Q}

bpd	2008-2020	2020-2021
Tabular	•••	0
MNIST	\mathbf{Q}	😱 > 1.67
F-MNIST	\mathbf{Q}	😱 > 4.29
EMNIST-L	\mathbf{Q}	😱 > 2.73
CIFAR	\mathbf{Q}	\mathbf{Q}
Imagenet32	\mathbf{Q}	\mathbf{Q}
Imagenet64	\mathbf{Q}	\mathbf{Q}

General-purpose architecture

bpd	2008-2020	2020-2021	ICLR 22
Tabular	::	<u></u>	
MNIST	\mathbf{Q}	😱 > 1.67	1.20
F-MNIST	\mathbf{Q}	♀ > 4.29	3.34
EMNIST-L	\mathbf{Q}	😱 > 2.73	1.80
CIFAR	\mathbf{Q}	$\mathbf{\Theta}$	♀ > 5.50
Imagenet32	\mathbf{Q}	$\mathbf{\Theta}$	\mathbf{Q}
Imagenet64	\mathbf{Q}	$\mathbf{\Theta}$	\mathbf{Q}
			,

General-purpose architecture

Custom GPU kernels

	bpd	2008-2020	2020-2021	ICLR 22	NeurIPS 22	
	Tabular	•••	0			
	MNIST	\mathbf{Q}	😱 > 1.67	1.20	1.14	
	F-MNIST	\mathbf{Q}	♀ > 4.29	3.34	3.27	
	EMNIST-L	\mathbf{Q}	😱 > 2.73	1.80	1.58	
	CIFAR	\mathbf{Q}	$\mathbf{\Theta}$	<mark>♀</mark> > 5.50	\mathbf{Q}	
	Imagenet32	\mathbf{Q}	$\mathbf{\Theta}$	\mathbf{Q}	\mathbf{Q}	
	Imagenet64	\mathbf{Q}	$\mathbf{\Theta}$	\mathbf{Q}	\mathbf{Q}	
General-purpose architecture						
Custom GPU kernels						

Pruning without losing likelihood

bpd	2008-2020	2020-2021	ICLR 22	NeurIPS 22
Tabular	•••	0		
MNIST	\mathbf{Q}	😱 > 1.67	1.20	1.14
F-MNIST	\mathbf{Q}	♀ > 4.29	3.34	3.27
EMNIST-L	\mathbf{Q}	😱 > 2.73	1.80	1.58
CIFAR	\mathbf{Q}	\mathbf{Q}	♀ > 5.50	\mathbf{Q}
Imagenet32	\mathbf{Q}	\mathbf{Q}	\mathbf{Q}	\mathbf{Q}
Imagenet64	\mathbf{Q}	\mathbf{Q}	\mathbf{Q}	\mathbf{Q}

	Discrete Flow	Hierarchical VAE	PixelVAE
MNIST	1.90	1.27	1.39
F-MNIST	3.47	3.28	3.66
EMNIST-L	1.95	1.84	2.26

	hnd	2008-2020	2020-2021	ICLR 22	NeurIPS 22	ICLR 23
	Tabular	•••	<u></u>			
	MNIST	•	😱 > 1.67	1.20	1.14	
_	F-MNIST	•	♀ > 4.29	3.34	3.27	
	EMNIST-L	\mathbf{Q}	😱 > 2.73	1.80	1.58	
	CIFAR	\mathbf{Q}	\mathbf{Q}	😱 > 5.50	\mathbf{Q}	4.38
-	Imagenet32	$\mathbf{\Theta}$	\mathbf{Q}	\mathbf{Q}	$\mathbf{\Theta}$	4.39
-	Imagenet64	\mathbf{Q}	\mathbf{Q}	\mathbf{Q}	\bigcirc	4.12
Ge	neral-purpose	e architectu	re /	/	/	/
	(Custom GP	U kernels	/		
	Prun	ing withou	t losing lik	elihood /	/ /	Latent Va

bpd	2008-2020	2020-2021	ICLR 22	NeurIPS 22	ICLR 23	ICML 23
Tabular	•••	<u></u>				
MNIST	\mathbf{Q}	😱 > 1.67	1.20	1.14	2	
F-MNIST	\mathbf{Q}	😱 > 4.29	3.34	3.27		
EMNIST-L	\mathbf{Q}	😱 > 2.73	1.80	1.58	2	2
CIFAR	\mathbf{Q}	$\mathbf{\Theta}$	😱 > 5.50	$\mathbf{\Theta}$	4.38	3.87
Imagenet32	\mathbf{Q}	$\mathbf{\Theta}$	\mathbf{Q}	$\mathbf{\Theta}$	4.39	4.06
Imagenet64	\mathbf{Q}	$\mathbf{\Theta}$	\mathbf{Q}	$\mathbf{\Theta}$	4.12	3.80

	Flow	Hierarchical VAE	Diffusion
CIFAR	3.35	3.08	2.65
Imagenet32	4.09	3.96	3.72
Imagenet64	3.81	-	3.40

Generate a sentence using "frisbee", "caught" and "dog", following the given order.

Generate a sentence using "frisbee", "caught" and "dog", following the given order.

After a perfect throw, the <u>frisbee</u> glided through the air, and the <u>dog</u>, with incredible agility, <u>caught</u> it mid-flight.

ChatGPT

Generate a sentence using "frisbee", "caught" and "dog", following the given order.

After a perfect throw, the <u>frisbee</u> glided through the air, and the <u>dog</u>, with incredible agility, <u>caught</u> it mid-flight.

 \bigcirc

That's not correct. Generate a sentence using "frisbee", "caught" and "dog". The keywords should appear in the order as specified.

Here's the correct sentence: The <u>dog caught</u> the <u>frisbee</u> in mid-air, showing off its amazing catching skills.

ChatGPT

ChatGPT

Generate a sentence using "frisbee", "caught" and "dog", following the given order.

After a perfect throw, the <u>frisbee</u> glided through the air, and the <u>dog</u>, with incredible agility, <u>caught</u> it mid-flight.

That's not correct. Generate a sentence using "frisbee", "caught" and "dog". The keywords should appear in the order as specified.

Here's the correct sentence: The <u>dog caught</u> the <u>frisbee</u> in mid-air, showing off its amazing catching skills.

A <u>frisbee</u> is <u>caught</u> by a <u>dog</u>.

A pair of <u>frisbee</u> players are <u>caught</u> in a <u>dog</u> fight.

ChatGPT

ChatGPT

GeLaTo

Inpainting/constrained generation is still challenging

Diffusion models are good at fine-grained details, but not so good at global consistency of generated images.

Inpainting/constrained generation is still challenging

What do we have?

Prefix: "The weather is"

Constraint α: text contains "winter"

Model only does n(next-token)	rofiv) —	cold	0.05
would only uses $p(\text{mext-token} p)$		warm	0.10

Train some $q(. | \alpha)$ for a specific task distribution $\alpha \sim p_{\text{task}}$ (amortized inference, encoder, masked model, seq2seq, prompt tuning,...)

Train $q(\text{next-token}|\text{prefix}, \alpha)$

What do we need?

Prefix: "The weather is"

Constraint α: text contains "winter"

$$\propto \sum_{\text{text}} p(\text{next-token, text, prefix}, \alpha)$$

Marginalization!

Step 1: Distill an HMM p_{hmm} that approximates p_{gpt}

- 1. HMM with 4096 hidden states and 50k emission tokens
- 2. Data sampled from GPT2-large (domain-adapted), minimizing KL($p_{apt} \parallel p_{HMM}$)
- Leverages <u>latent variable distillation</u> for training PCs at scale [ICLR 23]. (Cluster embeddings of examples to estimate latent Z_i)

CommonGen: a Challenging Benchmark

Given 3-5 keywords, generate a sentence using all keywords, in any order and any form of inflections. e.g.,

Input: snow drive car

Reference 1: A car drives down a snow covered road.

Reference 2: Two cars drove through the snow.

Constraint α in CNF: (w

Each clause represents the inflections for one keyword.

Computing $p(\alpha \mid x_{1:t+1})$

For constraint α in CNF:

$$(w_{1,1} \vee \ldots \vee w_{1,d1}) \wedge \ldots \wedge (w_{m,1} \vee \ldots \vee w_{m,dm})$$

where each w_{ij} is a keyword (i.e. a string of tokens), representing that w_{ij} appears in the generated text.

```
e.g., \alpha = ("swims" V "like swimming") \wedge ("lake" V "pool")
```

Computing $p(\alpha | x_{1:t+1})$

For constraint α in CNF:

$$(w_{1,1} \vee \ldots \vee w_{1,d1}) \wedge \ldots \wedge (w_{m,1} \vee \ldots \vee w_{m,dm})$$

where each w_{ij} is a keyword (i.e. a string of tokens), representing that w_{ii} appears in the generated text.

```
e.g., \alpha = ("swims" V "like swimming") \wedge ("lake" V "pool")
```

Efficient algorithm:

For m clauses and sequence length n, time-complexity for HMM generation is O(2^{|m|}n)

<u>Trick</u>: dynamic programming with clever preprocessing and local belief updates

Step 2: Control p_{gpt} via p_{hmm}

<u>Unsupervised</u>

Language model is not fine-tuned/prompted to satisfy constraints

By Bayes rule: $p_{gpt}(x_{t+1} | x_{1:t}, \alpha) \propto p_{gpt}(\alpha | x_{1:t+1}) \cdot p_{gpt}(x_{t+1} | x_{1:t})$

Assume $p_{hmm}(\alpha | x_{1:t+1}) \approx p_{gpt}(\alpha | x_{1:t+1})$, we generate from:

 $p(x_{t+1} | x_{1:t}, \alpha) \propto p_{hmm}(\alpha | x_{1:t+1}) \cdot p_{gpt}(x_{t+1} | x_{1:t})$

Mathad	Generation Quality								Constraint Satisfaction			
Method	ROU	GE-L	BLE	EU-4	CIL	DEr	SPI	CE	Cove	erage	Succes	s Rate
Unsupervised	dev	test	dev	test	dev	test	dev	test	dev	test	dev	test
InsNet (Lu et al., 2022a)	-	-	18.7	-	-	-	-		100.0	-	100.0	() - ()
NeuroLogic (Lu et al., 2021)	-	41.9	-	24.7	-	14.4	-	27.5	-	96.7	-	-
A*esque (Lu et al., 2022b)	-	44.3	-	28.6	1.0	15.6	-	29.6	-	97.1	-	
NADO (Meng et al., 2022)	-	-	26.2	-	-	2.		-	96.1	-	-	-
GeLaTo	44.6	44.1	29.9	29.4	16.0	15.8	31.3	31.0	100.0	100.0	100.0	100.0

Step 2: Control p_{gpt} via p_{hmm}

Supervised

Language model is fine-tuned to perform constrained generation (e.g. seq2seq)

Empirically $p_{HMM}(\alpha | x_{1:t+1}) \approx p_{gpt}(\alpha | x_{1:t+1})$ does not hold well enough; we view $p_{HMM}(x_{t+1} | x_{1:t}, \alpha)$ and $p_{gpt}(x_{t+1} | x_{1:t})$ as classifiers trained for the same task with different biases; thus we generate from their <u>weighted</u> <u>geometric mean</u>:

 $p(x_{t+1} | x_{1:t}, \alpha) \propto p_{hmm}(x_{t+1} | x_{1:t}, \alpha)^{w} \cdot p_{gpt}(x_{t+1} | x_{1:t})^{1-w}$

Mathad	Generation Quality								Constraint Satisfaction			
Method	ROU	GE-L	BLE	EU-4	CIE	DEr	SPI	CE	Cove	erage	Succes	ss Rate
Supervised	dev	test	dev	test	dev	test	dev	test	dev	test	dev	test
NeuroLogic (Lu et al., 2021)	-	42.8	-	26.7	17 <u>-</u> -	14.7	2	30.5	-	97.7	-	93.9 [†]
A*esque (Lu et al., 2022b)	-	43.6	-	28.2		15.2	-	30.8	-	97.8	-	97.9 [†]
NADO (Meng et al., 2022)	44.4 [†]	-	30.8	-	16.1^{\dagger}	-	32.0 [†]	-	97.1	-	88.8 [†]	-
GeLaTo	46.0	45.6	34.1	32.9	16.7	16.8	31.3	31.9	100.0	100.0	100.0	100.0

Advantages of GeLaTo:

- 1. Constraint α is <u>guaranteed to be satisfied</u>: for any next-token x_{t+1} that would make α unsatisfiable, $p(x_{t+1} | x_{1:t}, \alpha) = 0$.
- 2. Training p_{hmm} does not depend on α , which is only imposed at inference (generation) time.
- 3. Can impose <u>additional tractable constraints</u>:
 - keywords follow a particular order
 - keywords appear at a particular position
 - keywords must not appear

Conclusion: you can control an intractable generative model using a tractable probabilistic circuit.

Inpainting/constrained generation is still challenging

Constrained posterior in diffusion models

Unconstrained denoising step:
$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) := \sum_{\tilde{\mathbf{x}}_0} q(\mathbf{x}_{t-1}|\tilde{\mathbf{x}}_0, \mathbf{x}_t) \cdot p_{\theta}(\tilde{\mathbf{x}}_0|\mathbf{x}_t)$$

Constraint c on the generated image (e.g., inpainting)

Constrained denoising step:
$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t, c) := \sum_{\tilde{\mathbf{x}}_0} q(\mathbf{x}_{t-1}|\tilde{\mathbf{x}}_0, \mathbf{x}_t) \cdot p_{\theta}(\tilde{\mathbf{x}}_0|\mathbf{x}_t, c)$$

Computing or sampling from the constrained posterior $p_{\theta}(\tilde{\mathbf{x}}_0 | \mathbf{x}_t, c)$ is **intractable** for diffusion models.

Denoising $p(\tilde{\boldsymbol{x}}_0|\boldsymbol{x}_t, \boldsymbol{x}_0^{\mathrm{k}}) \propto p_{\mathrm{DM}}(\tilde{\boldsymbol{x}}_0|\boldsymbol{x}_t, \boldsymbol{x}_0^{\mathrm{k}})^{\alpha} \cdot p_{\mathrm{TPM}}(\tilde{\boldsymbol{x}}_0|\boldsymbol{x}_t, \boldsymbol{x}_0^{\mathrm{k}})^{1-\alpha}$

 $p_{\rm DM}(\tilde{\mathbf{x}}_0|\mathbf{x}_t,c)$ From the diffusion model: Good at generating vivid details

$$p_{\mathrm{TPM}}(\tilde{\mathbf{x}}_0|\mathbf{x}_t,c)$$

From the probabilistic circuit: Exact samples – better global coherence

Controlling the denoiser with a probabilistic circuit

High-resolution image benchmarks

Tasks				Alg	orithms			
Dataset	Mask	Tiramisu (ours)	CoPaint	RePaint	DDNM	DDRM	DPS	Resampling
	Left	0.189	0.185	0.195	0.254	0.275	0.201	0.257
	Тор	0.187	0.182	0.187	0.248	0.267	0.187	0.251
CalabA UO	Expand1	0.454	0.468	0.504	0.597	0.682	0.466	0.613
CEIEDA-IIQ	Expand2	0.442	0.455	0.480	0.585	0.686	0.434	0.601
	V-strip	0.487	0.502	0.517	0.625	0.724	0.535	0.647
	H-strip	0.484	0.488	0.517	0.626	0.731	0.492	0.639
	Left	0.286	0.289	0.296	0.410	0.369	0.327	0.369
	Тор	0.308	0.312	0.336	0.427	0.373	0.343	0.368
ImagaNat	Expand1	0.616	0.623	0.691	0.786	0.726	0.621	0.711
magenet	Expand2	0.597	0.607	0.692	0.799	0.724	0.618	0.721
	V-strip	0.646	0.654	0.741	0.851	0.761	0.637	0.759
	H-strip	0.657	0.660	0.744	0.851	0.753	0.647	0.774
	Left	0.285	0.287	0.314	0.345	0.366	0.314	0.367
	Тор	0.310	0.323	0.347	0.376	0.368	0.355	0.372
LSUN-Bedroom	Expand1	0.615	0.637	0.676	0.716	0.695	0.641	0.699
	Expand2	0.635	0.641	0.666	0.720	0.691	0.638	0.690
	V-strip	0.672	0.676	0.711	0.760	0.721	0.674	0.725
	H-strip	0.679	0.686	0.722	0.766	0.726	0.674	0.724
Average		0.474	0.481	0.518	0.596	0.591	0.489	0.571

Qualitative results on high-resolution image datasets

Outline

- 1. What are probabilistic circuits? *tractable deep generative models*
- 2. What are they useful for?

controlling generative AI

3. What is the underlying theory? *probability generating polynomials*

Probabilistic circuits seem awfully general.

Are all tractable probabilistic models probabilistic circuits?

Enter: Determinantal Point Processes (DPPs)

DPPs are models where probabilities are specified by (sub)determinants

$$L = \begin{bmatrix} 1 & 0.9 & 0.8 & 0\\ 0.9 & 0.97 & 0.96 & 0\\ 0.8 & 0.96 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Global Negative Dependence

Diversity in recommendation systems

Tractable likelihoods and marginals

$$\Pr_L(X_1 = 1, X_2 = 0, X_3 = 1, X_4 = 0) = \frac{1}{\det(L+I)} \det(L_{\{1,2\}})$$

Are all tractable probabilistic models probabilistic circuits?

Are all tractable probabilistic models probabilistic circuits?

A separation between PCs and DPPs

Theorem (Martens and Medabalimi, 2014). Let P_n be the uniform distribution over spanning trees on K_n . For $n \ge 20$, the size of any smooth and decomposable PC that represents P_n is at least $2^{n/30240}$.

Theorem (Snell, 1995). The uniform distribution over spanning trees on the complete graph K_n is a DPP over $\binom{n}{2}$ edges.

Probabilistic Generating Circuits

A Tractable Unifying Framework for PCs and DPPs

Probability Generating Functions

X_1	X_2	X_3	\Pr_{β}
0	0	0	0.02
0	0	1	0.08
0	1	0	0.12
0	1	1	0.48
1	0	0	0.02
1	0	1	0.08
1	1	0	0.04
1	1	1	0.16

$$g_{\beta} = \underbrace{0.16z_1z_2z_3}_{+ 0.48z_2z_3} + 0.04z_1z_2 + 0.08z_1z_3 + 0.02z_1 + 0.48z_2z_3 + 0.12z_2 + 0.08z_3 + 0.02z_1$$

Probability Generating Functions

Probabilistic Generating Circuits (PGCs)

- Sum nodes with weighted edges to children.
- 2. Product nodes 🚫 with unweighted edges to children.
- 3. Leaf nodes: z_i or constant.

PGCs Support Tractable Likelihoods

How to extract the right monomial's coefficient?

PGCs Support Tractable Likelihoods

0.8

 z_3

1.0

0.2

1.0

0.1

6.0

 z_2

How to extract the right monomial's coefficient?

$$\Pr(X_1 = 1, X_2 = 0, ...) =?$$

-0.4

 (z_2)

complexity O(circuit size x degree)

$$p(t) = \alpha_k t^k + \dots + \alpha_1 t$$

- Monomials setting to true variables that must be false are 0-ed out
- Only the monomial that sets all required variables to true has max degree.

PGCs Support Tractable Marginals

How to sum the right monomial's coefficients?

PGCs Support Tractable Marginals

0.8

1.0

0.2

1.0

0.1

6.0

 z_2

How to sum the right monomial's coefficients?

$$z_i = \begin{cases} t & \text{if } X_i = 1 \\ 0 & \text{if } X_i = 0 \\ 1 & \text{if } X_i = ? \end{cases}$$

$$\Pr(X_1 = 1, X_2 = 0, ...) = ?$$

-0.4

 z_2

$$p(t) = \alpha_k t^k + \dots + \alpha_1 t$$

- Monomials setting to true variables that must be false are 0-ed out
- Other monomials contribute to result.
- Only monomials that set all required variables to true have max degree.

Example
$$z_i = \begin{cases} t & \text{if } X_i = 1 \\ 0 & \text{if } X_i = 0 \\ 1 & \text{if } X_i = ? \end{cases}$$

Example
$$z_i = \begin{cases} t & \text{if } X_i = 1 \\ 0 & \text{if } X_i = 0 \\ 1 & \text{if } X_i = ? \end{cases}$$

Example
$$z_i = \begin{cases} t & \text{if } X_i = 1 \\ 0 & \text{if } X_i = 0 \\ 1 & \text{if } X_i = ? \end{cases}$$

X_1	X_2	X_3	\Pr_{β}
0	0	0	0.02
0	0	1	0.08
0	1	0	0.12
0	1	1	0.48
1	0	0	0.02
1	0	1	0.08
1	1	0	0.04
1	1	1	0.16

Probabilistic circuits are probabilistic generating circuits

PCs represents probability mass functions:

$$\begin{split} m_{\beta} &= 0.16X_{1}X_{2}X_{3} + 0.04X_{1}X_{2}\overline{X_{3}} + 0.08X_{1}\overline{X_{2}}X_{3} + 0.02X_{1}\overline{X_{2}}\overline{X_{3}} \\ &+ 0.48\overline{X_{1}}X_{2}X_{3} + 0.12\overline{X_{1}}X_{2}\overline{X_{3}} + 0.08\overline{X_{1}}\overline{X_{2}}X_{3} + 0.02\overline{X_{1}}\overline{X_{2}}\overline{X_{3}} \end{split}$$

PGCs represent probability generating functions:

$$g_{\beta} = 0.16z_1z_2z_3 + 0.04z_1z_2 + 0.08z_1z_3 + 0.02z_1 + 0.48z_2z_3 + 0.12z_2 + 0.08z_1z_3 + 0.02z_1$$

Given a smooth & decomposable PC, by setting $\overline{X_i}$ to 1, and X_i to z_i , we obtain an equivalent PGC

DPPs are probabilistic generating circuits

The generating polynomial for a DPP with kernel L is given by:

$$g_L = \frac{1}{\det(L+I)} \det(I + L \operatorname{diag}(z_1, \dots, z_n)).$$

We need it as a sum of products to obtain a Probabilistic Generating Circuit

DPPs are probabilistic generating circuits

The generating polynomial for a DPP with kernel *L* is given by:

$$g_L = \underbrace{\frac{1}{\det(L+I)}\det(I + L\operatorname{diag}(z_1, \dots, z_n))}_{\mathsf{Constant}}$$

We need it as a sum of products to obtain a Probabilistic Generating Circuit

DPPs are probabilistic generating circuits

The generating polynomial for a DPP with kernel L is given by:

Probabilistic **generating** circuits seem awfully general.

Are all tractable probabilistic models probabilistic **generating** circuits?

Queries as pipelines: KLD

 $\mathbb{KLD}(p \parallel q) = \int p(\mathbf{x}) \times \log((p(\mathbf{x})/q(\mathbf{x}))d\mathbf{X})$

Queries as pipelines: Cross Entropy

 $H(p,q) = \int p(\boldsymbol{x}) \times \log(q(\boldsymbol{x})) d\boldsymbol{X}$

Determinism

A sum node is *deterministic* if only one of its children outputs non-zero for any input

 \Rightarrow allows **tractable MAP** inference argmax_x p(x)

deterministic circuit

Darwiche and Marquis, "A Knowledge Compilation Map", 2002

Operation		Tractability	
		Input conditions	Output conditions
Log	$\log(p)$	Sm, Dec, Det	Sm, Dec
			\overline{Q}
	$\Delta $		
	smooth,		smooth,
	decomposable,		decomposable
	deterministic		

Tractable circuit operations

Operation		Tractability		Hanland	
		Input properties	Output properties	nardness	
SUM	$\theta_1 p + \theta_2 q$	(+Cmp)	(+SD)	NP-hard for Det output	
PRODUCT	$p\cdot q$	Cmp (+Det, +SD)	Dec (+Det, +SD)	#P-hard w/o Cmp	
POWER	$p^n, n \in \mathbb{N}$	SD (+Det)	SD (+Det)	#P-hard w/o SD	
	$p^{\alpha}, \alpha \in \mathbb{R}$	Sm, Dec, Det (+SD)	Sm, Dec, Det (+SD)	#P-hard w/o Det	
QUOTIENT	p/q	Cmp; q Det (+ p Det,+SD)	Dec (+Det,+SD)	#P-hard w/o Det	
LOG	$\log(p)$	Sm, Dec, Det	Sm, Dec	#P-hard w/o Det	
Exp	$\exp(p)$	linear	SD	#P-hard	

Inference by tractable operations

systematically derive tractable inference algorithm of complex queries

	Query	Tract. Conditions	Hardness
CROSS ENTROPY	$-\int p(oldsymbol{x})\log q(oldsymbol{x})\mathrm{d}\mathbf{X}$	Cmp, q Det	#P-hard w/o Det
SHANNON ENTROPY	$-\sum p(oldsymbol{x})\log p(oldsymbol{x})$	Sm, Dec, Det	coNP-hard w/o Det
Rényi Entropy	$(1-lpha)^{-1}\log\int p^lpha(oldsymbol{x})d\mathbf{X}, lpha\in\mathbb{N}$	SD	#P-hard w/o SD
	$(1-lpha)^{-1}\log\int p^lpha(oldsymbol{x})d\mathbf{X}, lpha\in\mathbb{R}_+$	Sm, Dec, Det	#P-hard w/o Det
MUTUAL INFORMATION	$\int p(oldsymbol{x},oldsymbol{y}) \log(\hat{p}(oldsymbol{x},oldsymbol{y})/(p(oldsymbol{x})p(oldsymbol{y})))$	Sm, SD, Det*	coNP-hard w/o SD
KULLBACK-LEIBLER DIV.	$\int p(oldsymbol{x}) \log(p(oldsymbol{x})/q(oldsymbol{x})) d \mathbf{X}$	Cmp, Det	#P-hard w/o Det
Rényi's Alpha Div.	$(1-lpha)^{-1}\log\int p^{lpha}(oldsymbol{x})q^{1-lpha}(oldsymbol{x})\;d\mathbf{X},lpha\in\mathbb{N}$	Cmp, q Det	#P-hard w/o Det
	$(1-lpha)^{-1}\log \int p^{lpha}(\boldsymbol{x})q^{1-lpha}(\boldsymbol{x}) d\mathbf{X}, lpha \in \mathbb{R}$	Cmp, Det	#P-hard w/o Det
Itakura-Saito Div.	$\int [p(oldsymbol{x})/q(oldsymbol{x}) - \log(p(oldsymbol{x})/q(oldsymbol{x})) - 1] d \mathbf{X}$	Cmp, Det	#P-hard w/o Det
CAUCHY-SCHWARZ DIV.	$-\lograc{\int p(oldsymbol{x})q(oldsymbol{x})d\mathbf{X}}{\sqrt{\int p^2(oldsymbol{x})d\mathbf{X}\int q^2(oldsymbol{x})d\mathbf{X}}}$	Cmp	#P-hard w/o Cmp
SQUARED LOSS	$\int (p(oldsymbol{x}) - q(oldsymbol{x}))^2 d \ \mathbf{X}$	Cmp	#P-hard w/o Cmp

Conclusions

- 1. What are probabilistic circuits? *tractable deep generative models*
- 2. What are they useful for?

controlling generative AI

3. What is the underlying theory? *probability generating polynomials*

Thanks

This was the work of many wonderful students/postdocs/collaborators!

References: http://starai.cs.ucla.edu/publications/