
Symbolic Reasoning in the Age of
Large Language Models

Gwen Yidou-Weng, Benjie Wang, Guy Van den Broeck

Amazon AWS - Oct 15 2025

Computer
Science

Reasoning with Symbolic AI
■ Logic and probabilistic
■ Deductive reasoning algorithms
■ Correct on all problems
■ Limited scope
■ Intractable

Reasoning with Transformers
■ Build chains of thought
■ Inductive reasoning from data
■ Correct on many problems
■ Unlimited scope
■ Tractable

30 years

https://www.datacamp.com/blog/deepseek-r1-vs-v3

1. Do deductive reasoning algorithms still
have a purpose in the age of LLMs?

2. Can reasoning algorithms provide a path
to language model alignment, safety?

3. Where did reasoning algorithms go wrong?
What should they look like today?

Questions for this talk:

1. Do deductive reasoning algorithms still
have a purpose in the age of LLMs?

2. Can reasoning algorithms provide a path
to language model alignment, safety?

3. Where did reasoning algorithms go wrong?
What should they look like today?

Questions for this talk:

The frisbee flew through the air and the dog caught it with excitement.
 GPT 4.1-mini (apr 2025)

Generate a sentence using "frisbee", "caught", and "dog" in that order

A frisbee is caught by a dog.
A pair of frisbee players are caught in a dog fight. Ctrl-G (jun 2024)

The energetic dog leapt into the air, caught the frisbee in mid-flight, and
proudly trotted back to its owner. Llama-3.2-3B (sep 2024)

You got the order wrong, please respect the given order

Here is a new sentence with the words in that order: The dog's owner was
about to catch the frisbee that had been flying through the air.

p(next-token | α, prefix)

Reasoning about all Future Tokens: Constraints

p(next-token | α, prefix)

∝ p(next-token | prefix) ⋅ p(α | next-token, prefix)

Reasoning about all Future Tokens: Constraints

Bayes’ rule lets us reason backwards in time!

p(next-token | α, prefix)

∝ p(next-token | prefix) ⋅ p(α | next-token, prefix)

Reasoning about all Future Tokens: Constraints

p(next-token | α, prefix)

Reasoning about all Future Tokens: Alignment

Prefix: It’s a pain …

Constraint α: non-toxic

p(next-token | α, prefix)

∝ p(next-token | prefix) ⋅ p(α | next-token, prefix)

Reasoning about all Future Tokens: Alignment

Prefix: It’s a pain …

Constraint α: non-toxic

in 0.3
to 0.1

p(next-token | α, prefix)

∝ p(next-token | prefix) ⋅ p(α | next-token, prefix)

Reasoning about all Future Tokens: Alignment

Prefix: It’s a pain …

Constraint α: non-toxicin 0.03
to 0.08

in 0.3
to 0.1

in 0.1
to 0.8

Reasoning about all Future Tokens: Offline RL

······

Training: model the joint distribution over states, actions, rewards, etc.

Inference: sample next states and actions

Reasoning about all Future Tokens: Offline RL

······

Training: model the joint distribution over states, actions, rewards, etc.

Inference: sample next states and actions, as well as constraints.

Constraint α

Reward:

∈State:

≥ threshold

Action: ∈

p(action | α, prefix) ∝ p(action | prefix) ⋅ p(α | action, prefix)

plm(next-token | α, prefix)

∝ plm(next-token | prefix) ⋅ plm(α | next-token, prefix)

Reasoning about all Future Tokens

Intractable

Using Bayes rule,

Looking 20 tokens into the future amounts to
more sentences than atoms in the universe….

plm(next-token | α, prefix)

∝ plm(next-token | prefix) ⋅ pcircuit(α | next-token, prefix)

Reasoning about all Future Tokens

Abusing Bayes rule,

Use a tractable circuit model distilled from the transformer LLM…

A `digital twin’ that can do symbolic reasoning

p(next-token | α, prefix)

∝ p(next-token | prefix) ⋅ p(α | next-token, prefix)

Reasoning about all Future Tokens: Constraints

Representing Logical Constraints
as a deterministic finite automaton (DFA)

Example. Check if a string contains “gets cold”.

≠“gets”

“cold”

“gets”

≠“gets” or “cold”

“gets”

all

initial state accept state

String: “The weather gets cold in the winter.”

Representing Logical Constraints
as a deterministic finite automaton (DFA)

Example. Check if a string contains “gets cold”.

≠“gets”

“cold”

“gets”

≠“gets” or “cold”

“gets”

all

initial state accept state

String: “The weather gets cold in the winter.”

Representing Logical Constraints
as a deterministic finite automaton (DFA)

Example. Check if a string contains “gets cold”.

≠“gets”

“cold”

“gets”

≠“gets” or “cold”

“gets”

all

initial state accept state

String: “The weather gets cold in the winter.”

Representing Logical Constraints
as a deterministic finite automaton (DFA)

Example. Check if a string contains “gets cold”.

≠“gets”

“cold”

“gets”

≠“gets” or “cold”

“gets”

all

initial state accept state

Can represent:
Phrases/words must/must not appear From a restricted vocabulary.
Exactly k times. Must end a certain way Any regex
Anything over fixed sequence lengths (BDD) …

plm(next-token | α, prefix)

∝ plm(next-token | prefix) ⋅ pcircuit(α | next-token, prefix)

Reasoning about all Future Tokens: Constraints

Abusing Bayes rule,

Theorem. Given
1. a deterministic finite automata constraint α with m edges and
2. a probabilistic circuit p(.) with h hidden states

(representing a Hidden Markov Model) ,
computing p(α | x1:t) over a sequence of n future tokens takes O(nmh2) time.

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In NeurIPS, 2024.

https://arxiv.org/pdf/2406.13892

CommonGen Benchmark
Generate a sentence using 3 to 5 concepts (keywords).

Input: snow drive car

Reference 1: A car drives down a snow-covered road.

Reference 2: Two cars drove through the snow.

α = ("car" ∨ "cars"…) ∧ ("drive" ∨ "drove"…) ∧
…

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In Arxiv, 2024.

https://arxiv.org/pdf/2406.13892

Interactive Text Editing

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In NeurIPS, 2024.

https://arxiv.org/pdf/2406.13892

Interactive Text Editing

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In NeurIPS, 2024.

Ctrl-G

https://arxiv.org/pdf/2406.13892

Interactive Text Editing with key phrase (K) or length (L) constraints

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In NeurIPS, 2024.

Follows instructions?

How many stars by humans?

 & Up + Follows instructions?

Ctrl-G based on Llama2-7B wipes the floor
with GPT4, which is a >100x bigger LLM

https://arxiv.org/pdf/2406.13892

Interactive Text Editing with key phrase (K) or length (L) constraints

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In NeurIPS, 2024.

Follows instructions?

How many stars by humans?

 & Up + Follows instructions?

Ctrl-G based on Llama2-7B wipes the floor
with GPT4, which is a >100x bigger LLM

https://arxiv.org/pdf/2406.13892

Interactive Text Editing with key phrase (K) or length (L) constraints

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In NeurIPS, 2024.

Follows instructions?

How many stars by humans?

 & Up + Follows instructions?

Ctrl-G based on Llama2-7B wipes the floor
with GPT4, which is a >100x bigger LLM

https://arxiv.org/pdf/2406.13892

Grade School Math Benchmark

Question: Kylar went to the store to buy glasses for his new apartment. One glass
costs $5, but every second glass costs only 60% of the price. Kylar wants to buy
16 glasses. How much does he need to pay for them?

Vanilla LLM Answer: The price of the 2nd glass is (16 / 2) * 60% = 8 dollars. So
one pair of glasses costs 16 + 8 = 24 dollars. So the answer is 24.

Grade School Math Benchmark

Question: Kylar went to the store to buy glasses for his new apartment. One glass
costs $5, but every second glass costs only 60% of the price. Kylar wants to buy
16 glasses. How much does he need to pay for them?

Vanilla LLM Answer: The price of the 2nd glass is (16 / 2) * 60% = 8 dollars. So
one pair of glasses costs 16 + 8 = 24 dollars. So the answer is 24.

Ctrl-G Answer: The second glass costs 5 * .6 = $3. So each set of two glasses
actually costs 5 + 3 = $8. He wants 16 / 2 = 8 sets of two. That means he needs to
pay 8 * 8 = $64. So the answer is 64.

Which constraint improves accuracy?
Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In NeurIPS, 2024.

https://arxiv.org/pdf/2406.13892

Grade School Math Benchmark

Question: Kylar went to the store to buy glasses for his new apartment. One glass
costs $5, but every second glass costs only 60% of the price. Kylar wants to buy
16 glasses. How much does he need to pay for them?

Vanilla LLM Answer: The price of the 2nd glass is (16 / 2) * 60% = 8 dollars. So
one pair of glasses costs 16 + 8 = 24 dollars. So the answer is 24.

Ctrl-G Answer: The second glass costs 5 * .6 = $3. So each set of two glasses
actually costs 5 + 3 = $8. He wants 16 / 2 = 8 sets of two. That means he needs to
pay 8 * 8 = $64. So the answer is 64.

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In NeurIPS, 2024.

Use all the numbers in the problem statement!

https://arxiv.org/pdf/2406.13892

Advantages of Ctrl-G:

1. Constraint α is guaranteed to be satisfied:
if next-token makes α unsatisfiable, plm(next-token | α, prefix) = 0.

plm(next-token | prefix) ⋅ pcircuit(α | next-token, prefix) = 0

2. Generalizes well to unseen reasoning tasks, because all tasks are unseen :-)
(training on a distribution over tasks is slow and brittle!)

3. Bayesian = goal-oriented (↔ structured generation tools)

The bigger idea

1. You can control an intractable generative model
using a generative model that is
tractable for symbolic reasoning

2. Relieve the burden on inductive/transductive reasoning
and give it to deductive reasoning algorithms

1. Do deductive reasoning algorithms still
have a purpose in the age of LLMs?

2. Can reasoning algorithms provide a path
to language model alignment, safety?

3. Where did reasoning algorithms go wrong?
What should they look like today?

Questions for this talk:

p(next-token | α, prefix)

∝ p(next-token | prefix) ⋅ p(α | next-token, prefix)

Reasoning about all Future Tokens: Alignment

Prefix: It’s a pain …

Constraint α: non-toxicin 0.03
to 0.08

in 0.3
to 0.1

in 0.1
to 0.8

Future Attribute Probability
(AP) is intractable to know!

H1 Ht-1 Ht

Tractable Lookahead with Hidden Markov Models

Hidden
State
Dist.

e.g.
Health 0.4

Emotion 0.1
…
…

X1 Xt-1

… Hn

Xn

…Ht+1

Xt+1Xt

It’s a pain … … …

Transition (HxH)

in 0.3
to 0.1

…
…

Vocab
dist.

Emission (HxV)

Assumption: Max output length = n.

H1 Ht-1 Ht

p(EAP | prefix) = ∑ p(EAP|hidden) ⋅ p(hidden|prefix)
hidden

prefix Suffix(EAP)

Expected Attribute Probability (EAP) via HMM

It’s Pain

… Hn

Xn

…Ht+1

Xt+1X1a

H1 Ht-1 Ht

prefix

It’s Pain

…

a

 p(hidden|prefix)

Update State Given Prefix per Decoding Step

p(EAP | prefix) = ∑ p(EAP|hidden) ⋅ p(hidden|prefix)
hidden O(1) per decoding step

Ht

Suffix

Hn

Xn

…Ht+1

Xt+

1

Lookahead Given State

hidden

?

p(EAP | prefix) = ∑ p(EAP|hidden) ⋅ p(hidden|prefix)

Ht Hn

Xn

…Ht+1

Xt+

1

hidden

?

Suffix

Each State Depends on Past AND Future

p(EAP | prefix) = ∑ p(EAP|hidden) ⋅ p(hidden|prefix)

Ht Hn

Xn

…Ht+1

Xt+

1

hidden

Suffix

Lookahead in One Right to Left Pass

p(EAP | prefix) = ∑ p(EAP|hidden) ⋅ p(hidden|prefix)

Ht Hn

Xn

…Ht+1

Xt+

1

Is Suffix Distribution Tractable?

hidden

Suffix
 p(suffix|hidden)?

p(EAP | prefix) = ∑ p(EAP|hidden) ⋅ p(hidden|prefix)

Ht Hn

Xn

…Ht+1

hidden

Suffix
 p(suffix|hidden)? Xn

Is Suffix Distribution Tractable?

p(EAP | prefix) = ∑ p(EAP|hidden) ⋅ p(hidden|prefix)

Ht Hn

Xn-1Xn

…Ht+1

hidden

Suffix
 p(suffix|hidden)? Xn

Is Suffix Distribution Tractable?

p(EAP | prefix) = ∑ p(EAP|hidden) ⋅ p(hidden|prefix)

Ht Hn

Xt+1….Xn

…Ht+1

Suffix Joint Distribution Explodes

hidden

Suffix
 p(suffix|hidden)? XnXt+2 …

p(EAP | prefix) = ∑ p(EAP|hidden) ⋅ p(hidden|prefix)

Ht Hn

Xn-1 EAP(Xn)

…Ht+1

Compute EAP Given H in Linear Time

hidden

EAP

 p(EAP|hidden)? EAP(Xn)

p(EAP | prefix) = ∑ p(EAP|hidden) ⋅ p(hidden|prefix)

Ht Hn

EAP(Xt+1…Xn)

…Ht+1

hidden

EAP

 p(EAP|hidden)? EAP(Xt+1…Xn) … EAP(Xn)

Compute EAP Given H in Linear Time

O(n) per decoding step

p(EAP | prefix) = ∑ p(EAP|hidden) ⋅ p(hidden|prefix)

hidden

Can we do better than linear?

O(1)? per decoding step

p(EAP | prefix) = ∑ p(EAP|hidden) ⋅ p(hidden|prefix)

Ht Ht+1

 p(EAP|hidden)

Hn…

Precompute a N-step EAP Table Given H

Ht Ht+1

Ht+2Ht Ht+1

…

H1 Ht-1 Ht

prefix

It’s Pain

…

a

 p(hidden|prefix)

EAP Given Prefix in O(1) per Decoding Step

p(EAP | prefix) = ∑ p(EAP|hidden) ⋅ p(hidden|prefix)
hidden O(1) per decoding step

 p(EAP|hidden)

O(1) per decoding step

Hn

Xn

…Ht+1

Xt+1

EAP

Gwen Yidou Weng, Benjie Wang and Guy Van den Broeck.
TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation, 2025

HMM

HMM

Hidden Markov
Model

+ Token-level
 Attribute Classifier

https://starai.cs.ucla.edu/papers/WengArxiv25.pdf

Hidden Markov
Model

 =
Efficient Expected
Attribute Probability

(EAP)!

+ Token-level
 Attribute Classifier

HMM

HMM

HMM

HMM

Gwen Yidou Weng, Benjie Wang and Guy Van den Broeck. TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation, ICML 2025

TRACE is Blazingly Fast

Given a language model, and its tractable twin,
train log-linear attribute classifier

https://starai.cs.ucla.edu/papers/WengArxiv25.pdf

Gwen Yidou Weng, Benjie Wang and Guy Van den Broeck. TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation, ICML 2025

TRACE is Blazingly Fast

Given a language model, and its tractable twin,
train log-linear attribute classifier,
then use Bayesian logits at decoding time

https://starai.cs.ucla.edu/papers/WengArxiv25.pdf

State-of-the-art LLM Detoxification

Gwen Yidou Weng, Benjie Wang and Guy Van den Broeck. TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation, ICML 2025

https://starai.cs.ucla.edu/papers/WengArxiv25.pdf

….but…
it’s easy to be non-toxic

by reusing
the same bland response…

State-of-the-art LLM Detoxification

Gwen Yidou Weng, Benjie Wang and Guy Van den Broeck. TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation, ICML 2025

https://starai.cs.ucla.edu/papers/WengArxiv25.pdf

….but…
it’s easy to be non-toxic

by responding gibberish…

State-of-the-art LLM Detoxification

Gwen Yidou Weng, Benjie Wang and Guy Van den Broeck. TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation, ICML 2025

https://starai.cs.ucla.edu/papers/WengArxiv25.pdf

Personalized Language Model: Twilight Sparkle

https://docs.google.com/file/d/1UIrQVEyRdRkeP60IFr8d0eTQ5XhSUTmX/preview

76 Personalized Language Models

Gwen Yidou Weng, Benjie Wang and Guy Van den Broeck. TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation, ICML 2025

https://starai.cs.ucla.edu/papers/WengArxiv25.pdf

Reasoning about all Future Tokens: Offline RL

······

Training: model the joint distribution over states, actions, rewards, etc.

Inference: sample next states and actions, as well as constraints.

Constraint α

Reward:

∈State:

≥ threshold

Action: ∈

p(action | α, prefix) ∝ p(action | prefix) ⋅ p(α | action, prefix)

Reasoning about all Future Tokens: Offline RL

······ Constraints

Reward:

∈State:

≥ threshold

Action: ∈

Constraints

Constraints

Autoregressive Transformers
(GPTs)

Probabilistic Circuits
(PCs)

Bayes’ rule

Inference: sample actions condition on past states and actions, as well as constraints.

Xuejie Liu, Anji Liu, Guy Van den Broeck and Yitao Liang. A Tractable Inference Perspective of Offline RL, In Advances in Neural Information Processing Systems 37 (NeurIPS), 2024.

| |

https://starai.cs.ucla.edu/papers/LiuNeurIPS24.pdf

71

Condition on Various Constraints in Offline RL
▪ Condition on high reward: SoTA performance on standard offline RL benchmarks.

▪ Also works in stochastic environments ▪ Condition on safe actions

Xuejie Liu, Anji Liu, Guy Van den Broeck and Yitao Liang. A Tractable Inference Perspective of Offline RL, In Advances in Neural Information Processing Systems 37 (NeurIPS), 2024.

https://starai.cs.ucla.edu/papers/LiuNeurIPS24.pdf

1. Do deductive reasoning algorithms still
have a purpose in the age of LLMs?

2. Can reasoning algorithms provide a path
to language model alignment, safety?

3. Where did reasoning algorithms go wrong?
What should they look like today?

Questions for this talk:

74

Less expressive More expressive

More tractable

Less tractable

GMMs
Trees

HMMs

NBs

Flows

Diffusion
GPTs

VAEs

GANs

Circuits

Circuits Circuits
Circuits

Bayes Nets

Tractable Deep Generative Models

Multilinear circuit polynomials model joint distributions compactly

Oliver Broadrick, Sanyam Agarwal, Guy Van den Broeck and Markus Bläser. The Limits of Tractable Marginalization, 2025.

https://starai.cs.ucla.edu/papers/BroadrickArxiv25.pdf

Tractable Deep Generative Models

Multilinear circuit polynomials model joint distributions compactly
(and can have billions of trainable parameters)

Oliver Broadrick, Sanyam Agarwal, Guy Van den Broeck and Markus Bläser. The Limits of Tractable Marginalization, 2025.

https://starai.cs.ucla.edu/papers/BroadrickArxiv25.pdf

Compute Likelihood

0.5 0.5

0.5
0.5 0.5

0.5

Compute

0.0 1.0

0.0 1.0 0.0 0.0 1.0 0.0▪ Compute the likelihood of
every input node.

0.0 1.0 0.0

0.5 0.5

0.50.0

0.25

▪ Compute the likelihood of
every sum/product node.

▪ Readout likelihood from the output node.

Probabilistic Reasoning Task

Marginal inference:

Application: Ctrl-G

pcircuit(α | next-token, prefix) is summing over all future text

Tractable Deep Generative Models

Multilinear circuit polynomials model joint distributions compactly
(and can have billions of trainable parameters)

Oliver Broadrick, Sanyam Agarwal, Guy Van den Broeck and Markus Bläser. The Limits of Tractable Marginalization, 2025.

https://starai.cs.ucla.edu/papers/BroadrickArxiv25.pdf

Tractable Deep Generative Models

Multilinear circuit polynomials model joint distributions compactly
and allow efficient probabilistic reasoning (marginalization)

Oliver Broadrick, Sanyam Agarwal, Guy Van den Broeck and Markus Bläser. The Limits of Tractable Marginalization, 2025.

https://starai.cs.ucla.edu/papers/BroadrickArxiv25.pdf

Keep it simple… just a classic Hidden Markov Model (HMM) with
32,768 hidden states and 2 billion parameters… on the GPU

Probabilistic Circuit Language Model

How did we train a probabilistic circuit to solve Ctrl-G?

Theorem. Given a DFA constraint α with m edges and an HMM p(x) with h hidden
states, computing p(α | x1:t+1) over a sequence of n tokens takes O(nmh2) time.

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In Arxiv, 2024.

https://arxiv.org/pdf/2406.13892

An Open-Source Package: PyJuice

▪ Orders of magnitude faster!
▪ Extremely scalable!

Probabilistic Circuits

State Space Models

HMMs

https://github.com/Tractables/pyjuice

by Cambridge, TU Darmstadt, Max-Planck-Institute et al.

by Edinburgh, EPFL et al.
by Google Deepmind et al.

Runtime (in seconds) for training on 60K samples
Custom data structure +
CUDA kernels

Anji Liu, Kareem Ahmed and Guy Van den Broeck. Scaling Tractable Probabilistic Circuits: A Systems Perspective, In Proceedings of the 41th International Conference on Machine Learning (ICML), 2024.

http://starai.cs.ucla.edu/papers/LiuICML24.pdf

T R A N S P O S E

T R A N S P O S E

Dense Matrices

e.g. a model w/ just 250K nodes requires 69B parameters (memory + time)…

… now just 134M parameters required!

Monarch Matrices

Scaling Up Probabilistic Circuits

Linear Layers

Honghua Zhang, Meihua Dang, Benjie Wang, Stefano Ermon, Nanyun Peng and Guy Van den Broeck. Scaling Probabilistic Circuits via Monarch Matrices, In Proceedings of the 42th International Conference on Machine Learning (ICML), 2025.

https://starai.cs.ucla.edu/papers/ZhangICML25.pdf

Scaling Up Probabilistic Circuits

Text8 Character-Level Language Modelling
Roughly on par with Flow and Diffusion models

Honghua Zhang, Meihua Dang, Benjie Wang, Stefano Ermon, Nanyun Peng and Guy Van den Broeck. Scaling Probabilistic Circuits via Monarch Matrices, In Proceedings of the 42th International Conference on Machine Learning (ICML), 2025.

https://starai.cs.ucla.edu/papers/ZhangICML25.pdf

You Tricked Us

You promised us reasoning algorithms…

… and all we got was another lousy feedforward neural network!

Oliver Broadrick, Sanyam Agarwal, Guy Van den Broeck and Markus Bläser. The Limits of Tractable Marginalization, 2025.

Theorem. If there exists a polynomial time (real RAM) algorithm
that computes (virtual evidence) marginal probabilities for a class of distributions,
then there exist poly-size circuits for their multilinear polynomials.

https://starai.cs.ucla.edu/papers/BroadrickArxiv25.pdf

1. Do deductive reasoning algorithms still
have a purpose in the age of LLMs?

2. Where did reasoning algorithms go wrong?

What should they look like today?

Conclusions for this talk:

1. Do deductive reasoning algorithms still
have a purpose in the age of LLMs?
Yes, more cool applications of reasoning
algorithms than can fit on these slides!

2. Where did reasoning algorithms go wrong?

What should they look like today?

Conclusions for this talk:

1. Do deductive reasoning algorithms still
have a purpose in the age of LLMs?
Yes, more cool applications of reasoning
algorithms than can fit on these slides!

2. Where did reasoning algorithms go wrong?
Learn at scale, be tractable
What should they look like today?

Conclusions for this talk:

1. Do deductive reasoning algorithms still
have a purpose in the age of LLMs?
Yes, more cool applications of reasoning
algorithms than can fit on these slides!

2. Where did reasoning algorithms go wrong?
Learn at scale, be tractable
What should they look like today?
Circuits! Circuits! Circuits!

Conclusions for this talk:

Thanks

This was the work of many wonderful
students/postdocs/collaborators!

References: http://starai.cs.ucla.edu

http://starai.cs.ucla.edu/publications/

