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Motivation

 Many real-world decision problems are relational
and probabilistic

Wildfire control

Who to vaccinate for swine flu

Viral marketing
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 Combination of relations, uncertainty and
decision theory largely ignored

some exceptions are MLDNs, DTLPs and FOMDPs
* Relations with uncertainty

= Statistical Relational Learning

* ProbLog is a simple probabilistic Prolog
« DTProbLog is a decision-theoretic ProblLog
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 DTProbLog: the Language
 DTProbLog: the Algorithms

» Exact Solution Algorithm
» Approximate Solution Algorithms

* Experiments: Viral Marketing
» Related Work & Conclusions
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D TProblLog: the Language
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Probabilistic Facts
0.3 :: buy trust(_,_ ).

Background Knowledge
buys (X) :-
trusts (X, Y),
buys (Y) ,
buy trust (X,Y).
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Probabilistic Facts
0.3 :: buy_trust(_,_).

0.2 :: buy _marketing(_ ).
Background Knowledge

buys (X) :— buys (X) :-
trusts (X,Y), marketed (X),
buys (Y), buy marketing (X) .

buy_trust (X,Y) .
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Which strategy
gives the
maximum
expected utility”?
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Probabilistic Facts

Background Knowledge

Decisions

? :: marketed(P) :- person(P).
Utility Facts

buys (P) => 5 :- person(P).
marketed(P) => -3 :—- person(P).
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D TProblLog: the Algorithms
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DTProblLog: the Algorithms

 DTProbLog solves decision problems in
complex relational and uncertain environments.

» Exact solution algorithm

» Extends ProbLog's BDD-based inference
 Efficient datastructures: BDD and ADD

* Approximate algorithms

 Local search
o K-best proofs
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Example:

Dressing for unpredictable weather

Decision Facts Probabilistic Facts
? :: umbrella. 0.3 :: rainy.
? :: raincoat. 0.5 :: windy.

Background Knowledge
dry :— rainy, umbrella, not (broken_umbrella).

dry :— rainy, raincoat.
dry :— not (rainy).

broken_umbrella :- umbrella, rainy, windy.
Utility Facts
umbrella => -2. dry => 60.

raincoat => -20. broken umbrella => -40.
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Exact Solution Algorithm
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a Find all proofs for each utility attribute (Prolog)

a Binary decision diagrams from the proofs
 Leafs indicate attribute frue or false

 Nodes are probabilistic facts or decisions

rainy

fals e1_.' true

umbrella

windy
raincoat
W v
1 0 1
dry => 60. umbrella => -2.

broken umbrella => -40. raincoat => -20.
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e Algebraic decision diagrams for the probability
of each attribute

* Probabilistic facts are marginalized out
 Nodes are decisions only
» |eafs are probabilities

umbrella
raincoat raincoat
v v 1 y y
0.85 1 0.7 0.15 0 0 1 0 1
dry => 60. umbrella => -2.
broken umbrella => -40. raincoat => -20.
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° Algebraic decision diagrams for the utility of
each attribute

* Leafs are expected utilities

umbrella

raincoat raincoat umbrella umbrella raincoat
4 4 r

51 60 42 6| |0 2| |0 o| |-20
dry => 60. umbrella => -2.
broken umbrella => -40. raincoat => -20.
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6 Algebraic decision diagram for the total utility

2

umbrella
T
raincoat raincoat
A
1Y
4 4

32| [a3 [a0] [a2

+ sound pruning (ADD not built entirely in memory)
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Approximate Solution: Local Search
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Approximate Solution: Local Search

a Find all proofs for each utility attribute (Prolog)

a Binary decision diagrams from the proofs

a Greedy hillclimber search
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Approximate Solution: K-best Proofs
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Approximate Solution: K-best Proofs

a Find the k most likely proofs for each utility
attribute

a Binary decision diagrams from the proofs

e Algebraic decision diagrams for the probability
of each attribute

Algebraic decision diagrams for the utility of
each attribute

e Algebraic decision diagram for the total ut|I|ty
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Experiments: Viral Marketing
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Experiments: Viral Marketing

* Synthetic dataset
Random power law graphs of increasing size

» Real-world Epinions dataset [Domingos02]
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(Q1) Does the exact solution algorithm perform better

than naively calculating the utility of all strategies?

exact
l | | | ---@:=: local
10000 R e local+k-best
I I I W
1000 L
3
100 100
10 — 60
=
E l 20
0.1 -5

10 20 30 40 50 60 70
Number of Nodes
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(Q2) What is the difference in runtime and solution quality

between exact and local search?

exact
l | | | ---@:=: local
10000 R e local+k-best
I ! ! W
1000 e
3
100 100
10 — 60
=
£ 1 s et W)
Z 0.1 s

10 20 30 40 50 60 70
Number of Nodes
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(Q3) What is the difference in runtime and solution quality

between for different values of k in k-best.

exact
l | | | ---@:=: local
10000 R e local+k-best
I I I W
1000 L
3
100 100
10 — 60
=
E l 20
0.1 -5

10 20 30 40 50 60 70
Number of Nodes
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(Q4) Do the algorithms scale?

Epinions social network
e /5,000 people
* 500,000 trust relations

YES

 Local search
» 17-best proofs
e Solved in 16 hours
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Related Work & Conclusions
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Related Work
=

Relational | Probabilities =~ _C1oPa Local Exact | Approximate
optimum optimum inference inference
Influence \
Diagrams K

MLDNs
N

ICL
[Poole]

&
&
DTProbLog J J J J J J
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Summary

 DTProblLog, the programming language

* Probabillistic Prolog
* Decisions
« Utilities: rewards or costs attached to goals

» Solution algorithms
e Exactly
* Approximately

* Experiments

o Effective

e Scale well
07/14/10 DTProbLog 40



Ongoing and Future Work

« Sequential decision problems

« Easy to represented in DTProblLog
» Bad fit for solution algorithms

» Solvers
 |nteger linear programming

 Bounded approximation
 Monte-Carlo

o Lifting (many BDDs have same structure)
* Learning DTProblLog programs
 Inverse reinforcement learning
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Thank You!

07/14/10 DTProbLog 42



Viral Marketing

Decisions
? :: marketed(P) :- person(P).

Probabilistic Facts
0.3 :: buy trust(_,_).
0.2 :: buy marketing(_).

Background Knowledge

buys (X) :- buys (X) :-
trusts (X, Y), marketed (X),
buys (Y) , buy_ marketing (X) .
buy_ trust (X,Y).

Utility Facts

buys (P) => 5 :- person(P).

marketed (P) => -3 :- person(P).
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