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In presence of uncertainty, one needs to probabilistically reason / \ 6 T 4 o A A A ll [ |.
about the expected predictions of regressors and classifiers. = /‘\ B O A ‘ 3
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Expected Prediction appears in many interesting applications X X X [G] [56] 56 ] 5 Y (Xa] 6] O] (X2 56 ] C6
such as handling missing values, fairness, and data analysis. A vtree (left), and a generative (center) and discriminative circuit (right)

conforming to it. Determinism is shown by a red “hot” wire.
More generally, we want to compute the k-th moment of a

predictive model f w.r.t. the feature distribution p: Recursive moment decomposition

Mk ; = i | X '
(f:p) x~p(X) <f( ) ] Recursively "pushes down” the computation to their children.
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In general, this computation is not tractable. It is hard even for 1 2 3 4

simple pairs of models naive Bayes and logistic regression [2]. For example, for the pair of OR nodes (n, m) the computation involves
solving subproblems (1,3), (1,4), (2,3), (3, 4).

We consider expressive models represented as probabilistic

circuits [1]: The £ moments are computed exactly in O(k* - |p,| - |gm|).
f is a regression circuit and p is a generative circuit . . —
with different vtree — proved #P-Hard! ® Reasoning with missing values
f is a classification circuit and p is a generative circuit Given partial evidence X° we want to compute
even with same vtree —> proved NP-Hard! ® 1
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f is a regression circuit and p is a generative circuit xonplxre) L (X7 p(x°) > ploxnxo) Lf (X7X7)]

with the same vtree —> polytime algorithm! ® : L . .
Regression: Expected prediction outperforms many imputation

strategies such as mean, median, sampling, MPE, and MICE.
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Generative and discriminative circuits
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For p we consider a generative circuit like a probabilistic
sentential decision diagram (PSDD) [3]
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1,(x) if nis a leaf,
Classification: We provide an approximation involving Taylor

0 o series and moments of g, which also outperforms several
2 icchn) PiPi(X) if 1 is an OR gate, baselines (see paper).

—> structured decomposable, smooth

pn(X) — pL(XL) °pR(XR) it . is an AND gate,

Analyze behaviour of predictive models

For regression, we employ a regression circuit (RC), defining:
Insurance dataset: yearly health insurance costs of people

living in the USA.

Q1: “Difference of insurance costs between smokers and non
ZjEch(m) 1;(x)(¢; + gj(x)) if misan OR gate. smokers?”

M (f, p(. | Smoker)) — M;(f, p(.| Non Smoker)) = 22,614

0 if m is a leaf,

Qm(X) — gL(XL) + gR(XR) it m is an AND gate,

For classification, we use a logistic circuit (LC) [4], modeling
f(x)=7v0g/(x)=1/(1+ 6_9”“<X>). Q2: "Is the predictive model biased by gender?”

—> structured decomposable, smooth, deterministic M1< f p(. ‘ Fema/e)) _ Ml( f p(. | Ma/e)) — 974
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