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Abstract
Logical reasoning is needed in a wide range of NLP
tasks. Can a BERT model be trained end-to-end to
solve logical reasoning problems presented in nat-
ural language? We attempt to answer this question
in a confined problem space where there exists a set
of parameters that perfectly simulates logical rea-
soning. We make observations that seem to con-
tradict each other: BERT attains near-perfect ac-
curacy on in-distribution test examples while fail-
ing to generalize to other data distributions over the
exact same problem space. Our study provides an
explanation for this paradox: instead of learning
to emulate the correct reasoning function, BERT
has, in fact, learned statistical features that inher-
ently exist in logical reasoning problems. We also
show that it is infeasible to jointly remove statisti-
cal features from data, illustrating the difficulty of
learning to reason in general. Our result naturally
extends to other neural models (e.g. T5) and un-
veils the fundamental difference between learning
to reason and learning to achieve high performance
on NLP benchmarks using statistical features.

1 Introduction
Logical reasoning is needed in a wide range of NLP tasks,
including natural language inference (NLI) [Williams et al.,
2018; Bowman et al., 2015], question answering (QA) [Ra-
jpurkar et al., 2016; Yang et al., 2018] and common-sense
reasoning [Zellers et al., 2018; Talmor et al., 2019]. The
ability to draw conclusions based on given facts and rules
is essential to solving these tasks.1 Though NLP models,
empowered by the Transformer neural architecture [Vaswani
et al., 2017], can achieve high performance on task-specific
datasets, it is unclear whether they are “reasoning” follow-
ing the rules of logic. A research question naturally arises:
can neural models be trained end-to-end to conduct logical
reasoning in natural language?

Following prior work, we attempt to answer this question
by training and testing a neural model (e.g. BERT [Devlin

1A.k.a., deductive reasoning; in this paper, we do not consider
inductive reasoning, where rules need to be learned.

Facts:
Alice is fast.
Alice is normal.

Rules:
If Alice is fast and smart, then Alice is bad.
If Alice is normal, then Alice is smart.
If Alice is normal and happy, then Alice is sad.

Query 1: Alice is bad.                               [Answer: True]
Query 2: Alice is sad.                               [Answer: False]

Figure 1: A confined problem space (SimpleLogic) consisting of
exponentially many (≈ 10360) logical reasoning problems; dots and
triangles denote examples sampled from two different distributions
over the same problem space.

et al., 2019]) on a confined problem space (see Fig. 1 and
Sec. 2) consisting of logical reasoning problems written in
English [Johnson et al., 2017; Sinha et al., 2019]. Yet, we
observe evidences that seemingly lead to a contradiction.

On the one hand, echoing the findings of prior work [Clark
et al., 2020; Talmor et al., 2020], we observe evidences that
seem to imply that neural models can learn to reason (i.e.
reliably emulate the correct reasoning function): (E1) exam-
ples in the problem space only test model’s reasoning ability:
they have no language variance and require no prior knowl-
edge; (E2) we prove by construction that the BERT model
has enough capacity to represent the correct reasoning func-
tion (Sec 2.2); (E3) the BERT model can be trained to achieve
near-perfect test accuracy on data distributions covering the
whole problem space.

On the other hand, we observe a contradictory phe-
nomenon: the models attaining near-perfect accuracy on
one data distribution do not generalize to other distributions
within the same problem space (Sec. 3). Since the correct
reasoning function does not change across data distributions,
it follows that the model has not learned to reason.

The paradox lies in that if a neural model has learned rea-
soning, it should not exhibit such a generalization failure;
if the model has not learned reasoning, it is baffling how
it manages to achieve near-perfect test accuracy on training



distributions covering the entire problem space. What we ob-
served is not a common case of out-of-distribution (OOD)
generalization failure: (1) our problem space is confined and
simple (see E1, E2); (2) the correct reasoning function is
invariant across data distributions; on the contrary, discus-
sions about OOD generalization often involve open problem
spaces [Lin et al., 2019; Gontier et al., 2020; Yin et al., 2020;
Wald et al., 2021] and domain mismatch between training and
testing distribution [Yin et al., 2021; Koh et al., 2021].

Upon further investigation, we provide an explanation for
this paradox: the model attaining high accuracy only on in-
distribution test examples has not learned to reason. In fact,
the model has learned to use statistical features in logical rea-
soning problems to make predictions rather than to emulate
the correct reasoning function.

Our first observation is that even the simplest statistic of
a reasoning problem can give away significant information
about the true label (Sec. 4.1): for example, by only looking
at the number of rules in a reasoning problem, we can pre-
dict the correct label better than a random guess. This is dif-
ferent from the common artifacts/shortcuts identified in NLP
datasets, which often arise when dataset collection/annotation
are not representative of the real world (the ground-truth func-
tion) [Torralba and Efros, 2011; Gururangan et al., 2018;
Clark et al., 2019; He et al., 2019]. In our setting, even
though (1) we have access to the ground-truth reasoning func-
tion and (2) the problem space is simple, finite and free of
language variations, statistical features still inherently exist
and are not specific to certain data distributions. We show
that statistical features can hinder model generalization per-
formance (Sec. 4.2); in addition, we argue that there are po-
tentially countless statistical features and it is computation-
ally expensive to jointly remove them from data (Sec. 4.3).

Our study implies the difficulty of learning to reason from
data: while a model always tends to learn statistical features,
it is difficult to construct a logical reasoning dataset with no
statistical features. Though we use BERT as the running
example throughout this paper, our argument assumes little
about model architecture and naturally extends to other neu-
ral models. This intuition is supported by experiments with
T5 [Raffel et al., 2020], which exhibits similar behaviors.

Our findings unveil the fundamental difference between
“learning to reason” and “learning to attain high performance
on NLP benchmarks.” Learning statistical features is not al-
ways undesirable; in fact, for most NLP tasks, one of the
major goal for a neural model is to learn statistical patterns:
for example, in sentiment analysis [Maas et al., 2011], a
model is expected to learn the strong correlation between
the occurrence of the word “happy” and the positive senti-
ment. However, for logical reasoning, even though count-
less statistical features inherently exist, models should not
use them to make predictions. Caution should be taken when
we seek to train neural models end-to-end to solve logical
reasoning tasks in NLP that involve prior knowledge and
are presented with language variance [Welleck et al., 2021;
Yu et al., 2020], which could potentially lead to even stronger
statistical features, as demonstrated by [Elazar et al., 2021]
and [McCoy et al., 2019].

2 SimpleLogic: A Simple Problem Space for
Logical Reasoning

We define SimpleLogic, a class of logical reasoning prob-
lems based on propositional logic, as a controlled testbed
for testing neural models’ ability to conduct logical reason-
ing. SimpleLogic only contains deductive reasoning exam-
ples. To simplify the problem, we remove language variance
by representing the reasoning problems in a templated lan-
guage and limit their complexity (e.g., examples have limited
input lengths and reasoning depths).

Solving SimpleLogic does not require significant model
capacity. We show that the BERT model [Devlin et al., 2019]
has more than enough model capacity to solve SimpleLogic
by constructing a parameterization of BERT that can solve all
instances in SimpleLogic (Sec. 2.2).

2.1 Problem Space Definition
Before defining SimpleLogic, we introduce some basics for
propositional logic. In general, reasoning in propositional
logic is NP-complete [Cook, 1971]; hence, we only con-
sider propositional reasoning with definite clauses. A definite
clause is a rule of the form A1 ∧A2 ∧ · · · ∧An → B, where
Ais and B are atoms that take values in “True” or “False”; we
refer to the left hand side of a rule as its body and the right
hand side as its head. A definite clause is called a fact if its
body is empty (i.e. n = 0). A propositional theory T is a set
of rules and facts, and we say a atom Q can be proved from T
if either (1) Q is given in T as a fact or (2) A1∧· · ·∧An → Q
is given in T as a rule where Ais can be proved.

Each example in SimpleLogic is a propositional reason-
ing problem that only involves definite clauses. In particular,
each example is a tuple (facts, rules, query, label) where (1)
facts is a list of atoms that are known to be True, (2) rules
is a list of rules represented as definite clauses, (3) query is
a single atom, and (4) label is either True or False, denoting
whether the query atom can be proved from facts and rules.
Figure 1 shows such an example. Furthermore, we enforce
simple constraints to control the difficulty of the problems.
For each example in SimpleLogic, we require that:
• the number of atoms (#atom) that appear in facts, rules

and query ranges from 5 to 30, and all atoms are sampled
from a fixed vocabulary containing 150 adjectives such as
“happy” and “complicated”; note that the atoms in Simple-
Logic have no semantics;

• 0 ≤ the number of rules (#rule) ≤ 4× #atom; the body of
each rule contains 1 to 3 atoms; i.e. A1 ∧ . . . ∧ An → B
with n > 3 is not allowed;

• 1 ≤ the number of facts (#fact) ≤ #atom;
• the reasoning depth2 required to solve an example ranges

from 0 to 6.
We use a simple template to encode examples in SimpleLogic
as English input. For example, we use “Alice is X.” to repre-
sent the fact that X is True; we use “A and B, C.” to represent

2For a query with label True, its reasoning depth is given by
the depth of the shallowest proof tree; for a query with label False,
its reasoning depth is the maximum depth of the shallowest failing
branch in all possible proof trees.
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Query: nice? Proved Facts: smart.
Rules: smart. evil -> nice. smart & cautious -> sad. smart -> e!"#.

[CLS] Start Query: Alice is nice? Alice is smart. If evil, nice. 
If smart and cautious, sad.  If smart, e!"#. [SEP]

Query: nice? Proved Facts: smart. evil.
Rules: smart. evil -> nice. smart & cautious -> sad. smart -> e!"#.

Query: nice? Proved Facts: smart. evil. nice.
Rules: smart. evil -> nice. smart & cautious -> sad. smart -> e!"#.

Query: nice? Proved Facts: smart. evil. nice.
Rules: smart. evil -> nice. smart & cautious -> sad. smart -> e!"#.

Figure 2: A BERT-base model that simulates the forward-chaining
algorithm. The first layer parses text input into the desired format.
Each reasoning layer performs one step of forward-chaining, adding
some atoms to the Proved Facts, and the rules being used are under-
lined in green; e.g. Reasoning Layer 1 use the rule “smart → evil”
to prove the atom evil.

the rule A∧B → C; we use “Query: Alice is Q.” to represent
the query atom Q. We concatenate facts, rules and query as
“[CLS] facts. rules [SEP] query [SEP]” and supplement it to
BERT to predict the correct label.

2.2 BERT Has Enough Capacity to Solve
SimpleLogic

In the following, we show that BERT has enough capacity
to solve all the examples in SimpleLogic. In particular, we
explicitly construct a parameterization for BERT such that
the fixed-parameter model solves all problem instances in
SimlpleLogic. Note that we only prove the existence of such a
parameterization, but do not discuss whether it can be learned
from data until Sec. 3.
Theorem 1. For a BERT model with n layers, there exists
a set of parameters such that the model correctly solves any
reasoning problem in SimpleLogic that requires ≤ n−2 steps
of reasoning.

Proof Sketch. To prove this theorem, we construct a fixed set
of parameters for BERT to simulate the forward-chaining al-
gorithm. As illustrated in Figure 2, our construction solves
a logical reasoning example in a layer-by-layer fashion. The
1st layer of BERT parses the input sequence into the desired
format. Layer 2 to layer 10 are responsible for simulating the

forward chaining algorithm: each layer performs one step of
reasoning, updating the True/False label for atoms. The last
layer also performs one step of reasoning, while implicitly
checking if the query atom is proved and feeding the result to
an MLP. The parameters are the same across all layers except
for the Parsing Layer. See appendix for details.

We implemented the construction in PyTorch, following
the architecture of the BERT-base model. As supported by the
theorem, the “constructed BERT” solves all the problems in
SimpleLogic of reasoning depth ≤ 10 with 100% accuracy3.

3 BERT Fails to Learn to Solve SimpleLogic
Next, we study whether it is possible to train a neural
model (e.g., BERT) to reason on SimpleLogic. We fol-
low [Clark et al., 2020] to randomly sample examples from
the problem space and train the BERT model on a large
amount of sampled data.

3.1 Sampling Examples from SimpleLogic
When sampling examples from a finite domain, one naive ap-
proach is to uniformly sample from the domain. However,
uniform sampling is not desirable: as described in Sec. 2.1,
examples in SimpleLogic have #atom ranging from 5 to 30
and #rule ranging from 0 to 4 × #atom, as the number of
combinations with #atom = 30 and #rule = 120 is signifi-
cantly larger than other settings, if follows that over 99.99%
of the examples generated by uniform sampling would have
30 atoms and 120 rules. This is a serious problem as we ex-
pect our training set to contain examples of different #atom,
#fact and #rule. Hence, we instead consider the following
two intuitive ways of sampling examples:

Rule-Priority (RP). In Rule-Priority, we first randomly
sample #atom, #fact and #rule uniformly at random from
[5, 30], [1, #atom] and [1, 4 × #atom] respectively, ensuring
that all three aspects are covered by a non-trivial number of
examples. Then, we randomly sample some atoms, facts and
rules based on the given #atom, #rule and #fact. The query is
also randomly sampled, and its label is computed by forward-
chaining based on the given facts and rules.

Label-Priority (LP). In RP, we first randomly generate
rules and facts, which then determines the label for each
atom. In Label-Priority (LP), we consider generating ex-
amples in the “reversed” order: we first randomly assign a
True/False label to each atom and then randomly sample rules
and facts that are consistent with pre-assigned labels.

Figure 3 shows an example that illustrates the two sampling
methods. Both LP and RP are general, and they cover the
whole problem space. We refer readers to the Appendix for
further details about the sampling algorithms.

3.2 BERT Trained on Randomly Sampled Data
Cannot Generalize

Following the two sampling regimes described above, we
randomly sample two sets of examples from SimpleLogic:
for each reasoning depth from 0 to 6, we sample 40k ex-
amples from SimpleLogic via algorithm RP and aggregate

3https://github.com/joshuacnf/paradox-learning2reason
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(1) Randomly sample facts & rules.
Facts: B, C
Rules: A, B à D. B à E. B, C à F.

(1) Randomly assign labels to 
predicates.
True: B, C, E, F.  
False: A, D.

(2) Set B, C (randomly chosen 
among B, C, E, F) as facts and 
sample rules (randomly) 
consistent with the label 
assignments.

(2) Compute the correct 
labels for all predicates given 
the facts and rules.

Rule-Priority

Label-Priority

Figure 3: An illustration of a logical reasoning problem (right)
in SimpleLogic being sampled by Rule-Priority (RP) and Label-
Priority (LP), respectively. Atoms with label True are denoted by
filled circles.

them as dataset RP, which contains 280k examples in total;
we then split it as training/validation/test set. We use the
same procedure to generate dataset RP. We train a BERT-base
model [Devlin et al., 2019] on RP and LP, respectively. See
training details in appendix4.

BERT Performs Well on Training Distributions
The first and last rows of Table 1 show the test accuracy when
the test and train examples are sampled by the same algorithm
(e.g., for row 1, the model is trained in the RP training set
and tested in the RP test set): the models achieve near-perfect
performance similar to the findings in prior work [Clark et al.,
2020]. Both sampling algorithms are general in the sense that
every instance in SimpleLogic has a positive probability to be
sampled; hence, the intuition is that the model has learned to
emulate the correct reasoning function.

BERT Fails to Generalize
However, at the same time, we observe a rather counterintu-
itive finding: the test accuracy drops significantly when the
train and test examples are sampled via different algorithms.
Specifically, as shown in the second and third rows of Ta-
ble 1, the BERT model trained on RP fails drastically on LP,
and vice versa. Since the correct reasoning function does not
change across different data distributions, this generalization
failure indicates that BERT has not learned to conduct logical
reasoning. A subsequent question naturally arises: can the
model learn to reason if we train it on both RP and LP?

Training on Both RP and LP is Not Enough
We train BERT on the mixture of RP and LP, and BERT again
achieves nearly perfect test accuracy. Can we now conclude

4https://arxiv.org/abs/2205.11502

Train Test 0 1 2 3 4 5 6

RP RP 99.9 99.8 99.7 99.3 98.3 97.5 95.5
LP 99.8 99.8 99.3 96.0 90.4 75.0 57.3

LP RP 97.3 66.9 53.0 54.2 59.5 65.6 69.2
LP 100.0 100.0 99.9 99.9 99.7 99.7 99.0

Table 1: Test accuracy on LP/RP for the BERT model trained on
LP/RP; the accuracy is shown for test examples with reasoning depth
from 0 to 6. BERT trained on RP achieves almost perfect accuracy
on its test set; however the accuracy drops significantly when it’s
tested on LP (vice versa).

Test 0 1 2 3 4 5 6

RP&LP 99.9 99.9 99.8 99.4 98.8 98.1 95.6
LP∗ 98.1 97.2 92.5 80.3 65.8 55.6 55.2

Table 2: BERT trained on a mixture over RP and LP fails on LP∗, a
test set that slightly differs from LP.

that BERT has learned to approximate the correct reasoning
function? We slightly tweak the sampling algorithm of LP by
increasing the expected number of alternative proof trees to
generate LP∗. Unfortunately, we observe that the model per-
formance again drops significantly on LP∗ (Table 2); such a
result resembles what we observed in Table 1. In fact, we find
no evidence that consistently enriching the training distribu-
tion will bring a transformative change such that the model
can learn to reason.

Discussion
The experiments above reveal a pattern of generalization fail-
ure: if we train the model on one data distribution, it fails al-
most inevitably on a different distribution. In other words, the
model seems to be emulating an incorrect “reasoning func-
tion” specific to its training distribution.

4 BERT Learns Statistical Features
To this point, we have shown that a BERT model achieving
high in-distribution accuracy does not learn the correct rea-
soning function. In this section, we seek to provide an ex-
planation for this peculiar generalization failure. Our anal-
ysis suggests that even the simplest statistics of reasoning
problems can provide significant information about their la-
bels, which we denote as statistical features. Such statistical
features are inherent to the task of logical reasoning rather
than a problem with specific datasets. When BERT is trained
on data with statistical features, it tends to make predictions
based on such features rather than learning to emulate the cor-
rect reasoning function; thus, BERT fails to generalize to the
whole problem space. However, unlike the shallow shortcuts
found in other typical NLP tasks, such statistical features can
be countless and extremely complicated, and thus very diffi-
cult to be removed from training data.

4.1 Statistical Features Inherently Exists
What is a statistical feature? If a certain statistic of exam-
ples has strong correlation with their labels, we call it a sta-
tistical feature. As an illustrating example, we consider the
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(a) RP: Pr(label = 1 | #rule) > 0.5 for #rule > 40.
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(b) RP balance: Pr(label = 1 | #rule) ≈ 0.5 for #rule ≤ 80.

Figure 4: Pr(label = 1|#rule) (the blue columns) and Pr(#rule) (the
green curves) for RP and RP balance, respectively. After removing
#rule as a statistical feature (RP balance), Pr(label = 1 | #rule)
approaches 0.5 for #rule ≤ 80 while Pr(#rule) does not change.

number of rules in a reasoning problem (#rule). As shown
in Figure 4a, the #rule for reasoning problems in RP exhibit
a strong correlation with their labels: when #rule > 40, the
number of positive examples exceeds 50% by large margins;
formally, Pre∼RP(label(e) = 1 | #rule(e) = x) > 0.5 for
x > 40, which makes it possible for the model to guess the
label of an example with relatively high accuracy by only us-
ing its #rule. Hence, we call #rule a statistical feature for the
dataset RP.

Statistical Features are Inherent to Logical Reasoning
Continuing with our example, we show that #rule inherently
exists as a statistical feature for logical reasoning problems in
general; that is, it is not specific to the RP dataset. Consider
the following property about logical entailment:
Property (Monotonicity of entailment). Let P be a logical
formula and H a theory (i.e., a set of logical formulas) such
that H entails P ; then for any theory H ′ such that H ⊂ H ′,
P is also entailed by H ′.

It follows that, intuitively, given a fixed set of atoms and
facts, any atom is more likely to be proved when more rules
are given, that is, Pr(label(e) = 1 | #rule(e) = x) should in-
crease roughly monotonically as x increases. Since this intu-
ition assumes nothing about data distributions, it follows that
such statistical patterns should naturally exist in any dataset
that is not adversarially constructed. In addition to RP, we
also verify that both LP and the uniform distribution exhibit
similar statistical patterns, which we refer readers to Ap-
pendix for further details.
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Pr(label = 1 |branching_ factor)
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Figure 5: For RP, Pr(label = 1 | branching factor) decreases as
branching factor increases.

Statistical Features are Countless
In addition to #rule, numerous statistical features potentially
exist. For example, as facts can be seen as special form of
rules, it follows from previous argument that #fact is also pos-
itively correlated with labels. Statistical features can be more
complicated than just #rule or #fact. For example, the av-
erage number of atoms in rules of a reasoning problem can
also leak information about its label. Note that the right-
hand side of a rule is only proved if all atoms on its left-hand
side are proved. Then, it is immediate that rules of the form
A,B,C → D are less likely to be “activated” than rules of
the form A → D. Following this intuition, we can define the
following statistic: for problem instance e, let

branching factor(e)

:=
#fact(e) +

∑
rule ∈e length of rule

#fact(e) + #rule(e)
.

In this definition, we compute the average number of atoms in
the rules, where facts are treated as rules with one atom.5 Our
intuition suggests that the larger the branching factor, the less
likely an example will be positive; we verify that this intuition
holds for RP, as shown in Figure 5. Just like #rule, we observe
that branching factor is also a statistical feature for both LP
and the uniform distribution; see details in appendix.

Now we have shown that though there are simple statisti-
cal features like #rule, some (e.g. branching factor) can be
less intuitive to call to mind; in light of this, it is not hard to
imagine that some statistical features can be so complex that
they cannot even be manually constructed by humans. In par-
ticular, statistical features can also be compositional: one can
define a joint statistical feature by combining multiple ones
(e.g., branching factor and #rule), which further adds to the
complexity. Thus, it is infeasible to identify all of them.

4.2 Statistical Features Inhibit Model
Generalization

Having verified that statistical features inherently exist for
logical reasoning problems, in this section we study how they
affect the model behavior. We show that (1) when statistical
features are presented in training distributions, BERT tends

5Branching factor: with more atoms on the left-hand side of the
rules, the proof tree has more branches.



to utilize them to make predictions; (2) after removing one
statistical feature from training data, the model generalizes
better. It follows that statistical features can hinder the model
from learning the correct reasoning function, explaining the
generalization failure we observed in Section 3.

Example: Removing One Statistical Feature
We use #rule as an example to illustrate how to remove sta-
tistical features from a training dataset D; in particular, there
are three criteria that we need to satisfy: (1) label is balanced
for the feature; (2) the marginal distribution of the feature re-
mains unchanged; (3) the dataset size remains unchanged.

Formally, our first goal is to sample D′ ⊂ D such that, for
all x:

Pre∼D′(label(e) = 1 | #rule(e) = x) = 0.5

Intuitively, this equation says that on D′, one cannot do
better than 50% by only looking at the #rule of an ex-
ample. Specifically, for all possible values of x, if
Pre∼D(label(e)=1 | #rule(e)=x) > 0.5, we drop some pos-
itive examples with #rule = x from D; otherwise, we drop
some negative examples.

However, we would not meet the second criterion by
naively dropping the minimum number of examples; consider
the following statistics for RP:

#rule before drop after drop
#examples / positive % #examples / positive %

38 6860 / 49.9% 6822 / 50.0%
80 2322 / 92.7% 339 / 50.0%

As shown in the table, if we naively drop the minimum num-
ber of examples from RP such that Equation 1 is satisfied, we
will be left with only 339 examples with #rule = 80, where
the number (6822) of examples with #rule = 38 remains un-
changed. This could be a serious issue in terms of dataset
coverage: examples with some particular #rule will dominate
D′ and there will not be enough examples for other #rule. Re-
call that this is also the reason we choose RP/LP over uniform
sampling to generate our datasets (Sec. 3.1). Hence, we also
need to make sure that as we remove statistical features from
D, their marginal distributions in D′ stay close to D:

Pre∼D′(#rule(e)) = Pre∼D(#rule(e)).

In this way, D′’s coverage of examples with different #rule
remains the same as D.

When both criteria (1) and (2) are satisfied, the size of D′

will be much smaller than D and the ratio k = |D|/|D′|
can be estimated from minx Pre∼D(label(e)=1 |#rule(e)=x).
Hence, to make sure that criterion (3) is met, that is the size
of D′ is the same as D, we need to pre-sample k × D and
obtain D′ by down-sampling.

Following this approach, by down-sampling from k × RP,
we construct RP balance, where #rule is no longer a statisti-
cal feature. A rough estimation shows that if we were to bal-
ance Pre∼RP(label(e) = 1 | #rule(e) = x) for x up to 110, the
ratio k > 100, that is, we need to spend over 100x running
time (200 hours on a 40-core CPU) to pre-sample roughly
56 million examples; the computational cost would be even

Train Test 0 1 2 3 4 5 6

RP b RP b 99.4 99.6 99.2 98.7 97.8 96.1 94.4
LP 99.6 99.6 99.6 97.6 93.1 81.3 68.1

RP RP 99.9 99.8 99.7 99.3 98.3 97.5 95.5
LP 99.8 99.8 99.3 96.0 90.4 75.0 57.3

Table 3: The BERT model trained on RP performs worse on
RP balance (RP b), indicating that the model uses #rule as a sta-
tistical feature to make predictions.

more expensive if we want to completely remove #rule as a
statistical feature. Hence, we only balance this conditional
probability for 0 ≤ x ≤ 80, which takes 10x running time
(20 hours on a 40-core CPU) to pre-sample 5.6 million exam-
ples. Not balancing the label for x > 80 is acceptable as 90%
of the examples in RP have #rule ≤ 80. We train the BERT
model on RP balance, and the results are reported in Table 3.

BERT Uses Statistical Features

As shown in Table 3, BERT trained on RP shows large perfor-
mance drop when tested on RP balance, while BERT trained
on RP balance shows even better performance on RP than
RP-trained BERT. Since RP balance is down-sampled from
RP, the accuracy drop from RP to RP balance is explained by
that BERT trained on RP is using #rule to make predictions.

Removing Statistical Features Helps Generalization

As shown in Table 3, compared to RP-trained BERT, BERT
trained on RP balance achieves higher accuracy when tested
on LP; in particular, for examples with reasoning depth 6, the
model trained on RP balance attains an accuracy of 68.1%,
approximately 10% higher than the model trained on RP. This
is a clear signal that when #rule is removed as a statistical fea-
ture, the model generalizes better, suggesting that statistical
features can hinder the generalization of the model.

Statistical Features Explain the Paradox

Now we have a good explanation for the paradox: on the first
hand, as we have discussed in Section 4.1, statistical features
can be arbitrarily complex, thus powerful neural models can
learn to use them to achieve high in-distribution accuracy; on
the other hand, since the correlations between statistical fea-
tures and labels can change as the data distribution changes,
the model that relies on statistical features to make predic-
tions does not generalize to out-of-distribution examples.

More importantly, as our argument assumes little about
model architectures/pre-training procedures, most of our con-
clusions should also hold for other neural models. This hy-
pothesis is supported by experiments with T5 [Raffel et al.,
2020], which exhibits behaviors similar to BERT: (1) the T5
model attaining near-perfect accuracy on the training distri-
bution fails catastrophically on the other distributions; (2) the
T5 model generalizes better after #rule is removed from RP,
suggesting that it is using #rule to make predictions. See ap-
pendix for more details.



X Pr(label = 1 | X) k×
f = 15 0.908 5.5
f = 15, b ∈ [2.65,2.75] 0.975 20.0
f = 15, b ∈ [2.65,2.75], r = 58 0.991 55.6

Table 4: Jointly removing statistical features is difficult; e.g. sec-
ond row shows: we need to sample at least 20 × RP to balance
Pr(label = 1|f = 15, b ∈ [2.65, 2.75]).

4.3 On the Dilemma of Removing Statistical
Features

We show that though removing one statistical feature (e.g.,
#rule) from training data can benefit model generalization, it
is computationally infeasible to jointly remove multiple sta-
tistical features.

In the previous section, when we were trying to remove the
#rule from RP, we could only afford to remove it for 90% of
the examples. The general idea is that if a statistical feature
X has a very strong correlation with the label on some dataset
D, i.e. Pre∼D(label(e) = 1 | X(e) = x) is very close to 1 or
0, then we would need to sample a lot of examples to have a
balanced set.

The combination of multiple statistical features can give
stronger signal about the label than the individual ones;
thus it is even harder to jointly remove them. For exam-
ple, we consider removing three statistical features from RP:
#fact (f), branching factor (b) and #rule (r). As shown in Ta-
ble 4, as we try to jointly remove more statistical features X ,
Pr(label = 1|X) becomes more unbalanced; in particular, as
we progressively remove #fact, branching factor and #rule,
the minimum times of examples we need to sample grows
roughly exponentially: 5.5 → 20.0 → 55.6. Note that we
are only considering balancing one setting (#fact = 15, brach-
ing factor ∈ [2.65,2.75], #rule = 58); for some other settings,
the conditional probability can be more unbalanced, requiring
us to pre-sample even more examples.

5 Related Work
Prior work contextualizes the problem of logical reason-
ing by proposing reasoning-dependent datasets and studies
solving the tasks with neural models [Johnson et al., 2017;
Sinha et al., 2019; Yu et al., 2020; Liu et al., 2020; Tian et
al., 2021]. However, most studies focus on solving a single
task, and the datasets are either designed for a specific do-
main [Johnson et al., 2017; Sinha et al., 2019], or have con-
founding factors such as language variance [Yu et al., 2020];
they cannot be used to strictly or comprehensively study the
logical reasoning abilities of models.

Another line of research focuses on leveraging deep neu-
ral models to solve logical problems. For example, SAT
solving [Selsam et al., 2019], maxSAT [Wang et al., 2019],
temporal logical problems [Hahn et al., 2021], DNF count-
ing [Crouse et al., 2019], learning embeddings for logical for-
mula [Abdelaziz et al., 2020; Crouse et al., 2019] and math-
ematical problems [Saxton et al., 2019; Lample and Charton,
2020]. In this work, we focus only on deductive reasoning,

which is a general and fundamental class of reasoning prob-
lems. [Xu et al., 2019] develops a theoretical framework to
characterize how well neural models can generalize on dif-
ferent reasoning tasks. Prior to the study of reasoning in the
context of deep learning, [Darwiche and Marquis, 2002] and
[Khardon and Roth, 1997] studies the tractability of reason-
ing and learning to reason with propositional logic.

6 Conclusion
In this work, we study whether language models can learn to
conduct logical reasoning by end-to-end training. We report
and provide explanation to a seemingly contradictory phe-
nomenon: while models can attain near-perfect test accuracy
on training distributions, they fail catastrophically on other
distributions; we demonstrate that they have learned to ex-
ploit statistical features rather than to emulate the correct rea-
soning function. Our study suggests that training on datasets
might not be sufficient for model to learn certain complex be-
haviors such as reasoning and planning.
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