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Abstract
Despite the success of autoregressive large lan-
guage models in text generation, it remains a ma-
jor challenge to generate text that satisfies com-
plex constraints: sampling from the conditional
distribution Pr(text |α) is intractable for even the
simplest lexical constraints α. To overcome this
challenge, we propose to use tractable probabilis-
tic models (TPMs) to impose lexical constraints
in autoregressive text generation models, which
we refer to as GeLaTo (Generating Language
with Tractable Constraints). To demonstrate the
effectiveness of this framework, we use distilled
hidden Markov models, where we can efficiently
compute Pr(text |α), to guide autoregressive gen-
eration from GPT2. GeLaTo achieves state-of-the-
art performance on challenging benchmarks for
constrained text generation (e.g., CommonGen),
beating various strong baselines by a large margin.
Our work not only opens up new avenues for con-
trolling large language models but also motivates
the development of more expressive TPMs.

1. Introduction
Large pre-trained language models (LMs) (Radford et al.,
2019; Lewis et al., 2020) have achieved remarkable perfor-
mance on a wide range of challenging language generation
tasks such as machine translation (Bahdanau et al., 2015;
Luong et al., 2015), summarization (Liu et al., 2015; Xu &
Durrett, 2019) and open-domain creative generation (Yao
et al., 2019; Tian & Peng, 2022). Nevertheless, many prac-
tical language generation applications require fine-grained
control of LMs to follow complex lexical constraints (e.g.,
given a source document, generate a summary that contains
certain keywords). The common paradigm for controlling
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Figure 1. Given some lexical constraint α that we want our pre-
trained language models to follow in generation, the conditional
distribution Pr(xt+1 | x1:t, α) is often intractable. We propose
to control and guide the autoregressive generation process of pre-
trained LMs via tractable probabilistic models, which do support
efficient computation of Pr(xt+1 | x1:t, α).

pre-trained LMs is to either finetune them on task-specific
datasets or to condition them on certain prompts. However,
finetuning and prompting are by nature approximate solu-
tions and do not guarantee that the desired constraints are
satisfied (Meng et al., 2022; Zhang et al., 2022). The major
difficulty of constrained language generation lies in the au-
toregressive nature of LMs: they only model the next token
distribution given some prefix PrLM(xt+1 | x1:t), while the
conditional distribution PrLM(x1:n | α) given a constraint
α as simple as, e.g., a keyword appearing at the end of a
sentence, is often intractable (Roth, 1996).

Aside from language models based on neural architectures,
one line of research in machine learning focuses on the de-
velopment of tractable probabilistic models (TPMs) (Poon
& Domingos, 2011; Kulesza & Taskar, 2012; Choi et al.,
2020b; Zhang et al., 2021). TPMs model joint probability
distributions and allow for efficient conditioning on vari-
ous families of logical constraints (Kisa et al., 2014; Choi
et al., 2015; Bekker et al., 2015). In this paper, we propose
GeLaTo (Generating Language with Tractable Constraints),
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where we use TPMs to impose lexical constraints in autore-
gressive text generation. Given a pre-trained autoregressive
LM PrLM, e.g., GPT3 (Brown et al., 2020), our goal is to
generate text effectively following the conditional distribu-
tion PrLM(x1:n | α) for arbitrary lexical constraints α. As
illustrated in Figure 1, our proposed framework consists of
two major components: (1) we train a TPM PrTPM via max-
imum likelihood estimation (MLE) on samples drawn from
PrLM, which is equivalent to minimizing the KL-divergence
between PrTPM and PrLM; then (2) at generation time, we
compute PrTPM(xt+1 | x1:t, α) efficiently and combine it
with PrLM(xt+1 | x1:t) to approximate PrLM(xt+1 | x1:t, α)
for reliable control. Note that we assume nothing about the
lexical constraint α as we train PrTPM, which means that
the TPM does not need to be re-trained for different types
of constraints: given a trained TPM that approximates PrLM
well enough, we can use it to impose any lexical constraints
α, as long as PrTPM(. | α) can be efficiently computed.

Throughout this paper, we use hidden Markov mod-
els (HMMs) (Rabiner & Juang, 1986) as an example TPM
to demonstrate the effectiveness of GeLaTo. Specifically,
(1) we show that, when trained as probabilistic circuits (Choi
et al., 2020b; Liu et al., 2023), HMMs can approximate
the GPT2-large model finetuned on downstream tasks well
enough and (2) we propose a dynamic programming al-
gorithm that efficiently computes conditional probabilities
PrHMM(· | α), for αs that encode constraints as conjunctive
normal forms (CNFs):

(I(w1,1)∨· · ·∨I(w1,d1
))∧· · ·∧(I(wm,1)∨· · ·∨I(wm,dm

));

here each wi,j is a string of tokens, and I(wi,j) is an indi-
cator variable denoting whether or not wij appears in the
generated text. Intuitively, constraint α requires that a set of
m keywords must appear somewhere in the generated text,
in any of their inflections, where each inflection is encoded
as a string of one or more tokens. We evaluate the perfor-
mance of GeLaTo on challenging constrained text genera-
tion datasets: CommonGen (Lin et al., 2020), News (Zhang
et al., 2020), and Yelp!Review (Cho et al., 2019). GeLaTo
not only achieves state-of-the-art generation quality but also
guarantees that the constraints are satisfied 100%; for both
unsupervised and supervised settings, GeLaTo beats strong
baselines belonging to different families of constrained gen-
eration approaches by a large margin.

Our study demonstrates the potential of TPMs in controlling
large language models and motivates the development of
more expressive TPMs.

2. Guiding Autoregressive Generation with
Tractable Probabilistic Models

In this section, we present the general GeLaTo framework
for guiding autoregressive generation with tractable proba-

bilistic models. Throughout this paper, we use uppercase
letters Xt for random variables and lowercase letters xt for
their assignment.

Let PrLM(x1:n) be the distribution of an autoregressive
LM (e.g., GPT) over n tokens and α a lexical constraint
defined over X1:n; our goal is to generate from the follow-
ing conditional distribution:

PrLM(x1:n | α) =
∏

t
PrLM(xt+1 | x1:t, α)

Though PrLM(xt+1 | x1:t, α) is intractable, we can assume
that PrTPM(xt+1 | x1:t, α) can be efficiently computed.

The first step of GeLaTo is to train our TPM model such
that PrTPM approximates PrLM as well as possible. We train
the TPM model via maximum likelihood estimation (MLE)
on data drawn from PrLM, that is, we maximize

Ex1:n∼PrLM log PrTPM(x1:n),

which effectively minimizes their KL-divergence:

DKL(PrLM ∥ PrTPM)

=Ex1:n∼PrLM log PrLM(x1:n)−Ex1:n∼PrLM log PrTPM(x1:n)

With the recent development of scaling up TPMs (Chiu &
Rush, 2020; Dang et al., 2022a; Liu et al., 2023), we show
in Section 4 that it is possible to train TPMs as good enough
approximations of LMs.

Now given some TPM as a good enough approximation
for the LM that we want to generate from, we combine
both models for constrained generation, where the TPM is
responsible for providing guidance on incorporating lexical
constraints and LM responsible for generating fluent texts.
To derive our formulation, in addition to lexical constraint
α, we assume that there exists some “quality” constraint
β such that PrTPM( | β) is even closer to PrLM; intuitively
we interpret β as some constraint characterizing the high-
quality (fluent & grammatical) sentences that are likely to
be sampled from our base LM PrLM. Hence, in order to
generate a high-quality sentence satisfying some lexical
constraint α, we generate from

PrTPM(x1:n | α, β) =
∏

t
PrTPM(xt+1 | x1:t, α, β);

in particular, in addition to the assumption that PrTPM(· | β)
is a good enough approximation for PrLM, we also assume
the key independence assumption: α and β are condition-
ally independent given x1:t+1. By applying Bayes rule, it
follows from our assumptions that:

PrTPM(xt+1 | x1:t, α, β)
∝ PrTPM(α | x1:t+1, β) · PrTPM(xt+1 | x1:t, β)
∝ PrTPM(α | x1:t+1) · PrLM(xt+1 | x1:t).
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Now we examine whether our key independence assumption
holds for the unsupervised and supervised settings.

Unsupervised setting. In the unsupervised setting, we as-
sume that the base pre-trained LM is not finetuned given
task-specific supervision; that is, PrLM is not finetuned to
generate texts satisfying α provided as input, but is possibly
finetuned or prompted for the purpose of domain adapta-
tion. In this setting, there is no easy way for the “quality”
constraint β to obtain any information about the lexical
constraint α and our key independence assumption should
roughly hold. In other words, satisfying the lexical con-
straint α should not help or hinder the fluency of the gen-
erated sentence according to the pre-trained LM, it merely
biases what the sentence talks about. Hence for the unsu-
pervised setting, we generate autoregressively following the
next-token distribution defined as:

p(xt+1|x1:t, α) ∝ PrTPM(α|x1:t+1)·PrLM(xt+1|x1:t). (1)

This formulation is also adopted in FUDGE (Yang & Klein,
2021) and NADO (Meng et al., 2022), which train auxiliary
models to approximate PrLM(α |x1:t+1); the key difference
is that such auxiliary models take α as input during training
while our TPM training is unconditional.

Supervised setting. In this setting, we assume that
the language model PrLM is finetuned in a sequence-to-
sequence (seq2seq) manner; that is, during training, α is
explicitly supplied to the LM together with some gold sen-
tences: e.g., for keyword-type constraints, the LM is fine-
tuned over texts of the form “weather winter cold = the
weather is cold in winter,” where the prompt “weather win-
ter cold = ” encodes the constraint that all words before

“=” should be used. In this case, our key independence as-
sumption no longer holds because PrLM is already trained to
satisfy the lexical constraint α, which is provided as part of
the prefix x1:t+1. Hence for the supervised setting, we adopt
an alternative formulation by viewing PrTPM(xt+1 | x1:t, α)
and PrLM(xt+1 | x1:t) as classifiers trained for the same
task yet with different biases; by Satopää et al. (2014), if
we assume that each model predicts the true logits up to
additive Gaussian noise, then the most likely logits can be
found by taking a geometric mean of the models. Hence,
in the supervised setting, we generate autoregressively fol-
lowing the next-token distribution defined as their weighted
geometric mean (Hinton, 2002; Grover & Ermon, 2018):

p(xt+1 | x1:t, α)
∝ PrTPM(xt+1 | x1:t, α)w ·PrLM(xt+1 | x1:t)1−w; (2)

here w ∈ (0, 1) is a hyper-parameter to be tuned.

To summarize, GeLaTo consists of two major steps: (1) dis-
tillation: we train a TPM on samples drawn from the pre-
trained LM via MLE to effectively minimize the KL diver-

gence between PrLM and PrTPM; (2) probabilistic reason-
ing: for each step of autoregressive generation, we compute
PrTPM(· | α) and generate from the conditional next-token
distribution p(xt+1 | x1:t, α) defined above. In addition
to better generation quality, which we demonstrate in Sec-
tion 4, GeLaTo has two major advantages compared to its
counterparts for constrained generation:

• The sentences generated following p(xt+1 |x1:t, α) are
guaranteed to satisfy the lexical constraint α; in autore-
gressive generation, as we generate the next token xt+1,
it follows from the definition that for choices of xt+1

such that α cannot be satisfied, PrTPM(xt+1, x1:t, α)
is 0, thus p(xt+1 | x1:t, α) is also 0.

• The TPM training is independent of the lexical con-
straint α, which is only enforced at inference time; it
immediately follows that we do not need to re-train
the TPM model no matter how α changes; on the other
hand, constrained decoding approaches that train auxil-
iary neural models, e.g., FUDGE and NADO, need to
re-train their model for different types of constraints.

Throughout the rest of this paper, we use hidden Markov
models (HMMs) as example TPMs to demonstrate the
practicality and effectiveness of GeLaTo. In the following
section, we propose an efficient algorithm for computing
PrTPM(α | x1:t+1) and PrTPM(xt+1 | x1:t, α).

3. Efficient Probabilistic Reasoning with
Hidden Markov Models

To impose lexical constraint α in autoregressive genera-
tion via TPM, for any given prefix x1:t, we need to com-
pute PrTPM(x1:t, α) (omit subscript for rest of the section);
specifically, as described in Section 2, we need to compute
Pr(α | x1:t+1) = Pr(x1:t+1, α)/Pr(x1:t+1) for the unsu-
pervised setting and Pr(xt+1 | x1:t, α) ∝ Pr(x1:t+1, α) for
the supervised setting. In this section, we describe a dy-
namic programming algorithm that computes Pr(x1:t, α)
for hidden Markov models (HMMs), where α is some lexi-
cal constraint encoded in a conjunctive normal form (CNF):

(I(w1,1)∨· · ·∨I(w1,d1))∧· · ·∧(I(wm,1)∨· · ·∨I(wm,dm));

here each wi,j is a string of tokens, which we denote as
“keystrings” for short, and I(wij) is the indicator variable
that represents whether wij appears in the generated text.1

We refer to (I(wi,1) ∨ · · · ∨ I(wi,di
)) as a clause.

For simplicity, we use the short-hand αl:r to denote the event
that α is satisfied on the sub-sequence Xl:r. In practice, we

1To be precise, denoting the kth token of wij as
(wij)k, I(wi,j) is in fact a disjunction over conjunctions:
∨1≤t≤n−|wij |+1

(
∧0≤k<|wij |Xt+k = (wij)k

)
, representing that

wij can be in any position of the generated text.
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Pr(x1:t−1, Xt ≠"eating", Xt ≠"working", α′ t:n)
= Pr(x1:t−1, α′ t:n) − Pr(x1:t−1, Xt ="eating", α′ t:n) − Pr(x1:t−1, Xt ="working", α′ t:n)
= ∑j

Pr(x1:t−1, Zt = j) ⋅ (Pr(α′ t:n |Zt = j) − Pr(Xt ="eating", α′ t:n |Zt = j) − Pr(Xt ="working", α′ t:n |Zt = j))

 α = (I(like eating) ∨ I(soccer)) ∧ I(like working)

Z1

Recurrence

“eating”

“working”

else

Pr(x1:t−1, Xt ="eating", α′ t:n) = ∑j
Pr(x1:t−1, Zt = j) ⋅ Pr(Xt ="eating", α′ t:n |Zt = j) I(like working)

I(like eating) ∨ I(soccer)
(I(like eating) ∨ I(soccer))

∧ I(like working)

“like”“Kids” … ?

Pr(x1:t−1,  α1:n),
Lexical Constraint

Pr(x1:t−1,  Zt = j) Pr(Xt = ?, α′ t:n |Zt = j)
X1 Xt−1

Zt

Xt

Zn

Xn

… …

Pr(x1:t−1, Xt ="working", α′ t:n) = ∑j
Pr(x1:t−1, Zt = j) ⋅ Pr(Xt ="working", α′ t:n |Zt = j)

Xt α′ 

Zt−1

Pr(x1:t−1,  α1:n) = (1) + (2) + (3)

(1)
(2)
(3)

where x1:t−1 = "Kids ... like" and α1:n means α is satisfied on X1:n

Figure 2. A toy example illustrating our dynamic programming algorithm. Here, given the the first t−1 tokens “Kids ... like” that have
been generated, the figure illustrates how to compute Pr(X1:t−1=“Kids ... like”, α1:n). We consider three possible cases for the next
token Xt: “eating”, “working” or neither, and for each case we can reduce the constraint α1:n to the “easier” constraint α′

t:n for some α′.
Then by conditioning on Zt = j (hidden states), we can break down Pr(x1:t−1, Xt =?, α′

t:n) into two terms: Pr(x1:t−1, Zt = j) and
Pr(Xt =?, α′

t:n |Zt = j), which are underlined and boxed in the figure, respectively; in particular the underlined terms can be computed
by the forward algorithm for HMMs and the boxed terms can be computed recursively by the dynamic programming algorithm.

treat HMMs as language models over sequences of tokens
of maximum length n and the lexical constraint we enforce
is denoted as α1:n; in the following discussions, we write
Pr(x1:t, α1:n) instead of Pr(x1:t, α).

3.1. Hidden Markov Models

A hidden Markov model (HMM) represents a joint prob-
ability distribution over n observed variables X1:n and n
latent variables Z1:n. Specifically, for language modeling,
Xt represents the token at position t and Zt represents the
corresponding latent state; Zt takes values in {1, 2, . . . , h},
where h is the number of latent states. Given observed to-
ken sequence x1:n and latent state sequence z1:n, the joint
probability Pr(x1:n, z1:n) is defined as:

Pr(x1 | z1) Pr(z1)
∏

2≤t≤n
Pr(xt | zt) Pr(zt | zt−1);

in particular, the parameters of HMM are given by the ini-
tial probability Pr(z1), emission matrix Pr(xt | zt) and the
transition matrix Pr(zt+1 | zt), which stay the same across
different positions t. HMMs can also be represented as
Bayesian networks (Pearl, 1985); see Figure 2 for an exam-
ple. To perform probabilistic inference on HMMs efficiently,
we leverage the following Markov property:

Pr(xt:n | zt, x1:t−1) = Pr(xt:n | zt). (3)

For example, we can compute the probability of any prefix
Pr(x1:t) =

∑
zt
Pr(x1:t, zt), which can be efficiently com-

puted by the following recurrence relation, which is referred
to as the forward algorithm (Rabiner & Juang, 1986):

Pr(x1:t, zt)

=
∑

1≤zt−1≤h

Pr(xt | zt) Pr(zt | zt−1) Pr(x1:t−1, zt−1).

Modeling Variable-length Texts with HMMs. HMMs
model distributions over a fixed number of random vari-
ables X1:n. To model texts with variable lengths, we first
determine a maximum sequence length n and pad training
texts of length< nwith the special EOS (“endoftext”) token
to the maximum length. We also construct our HMM in a
special way such that an EOS token can only be followed by
EOS tokens; that is, sequences that do not satisify this con-
straint have 0 probability. Hence, PrHMM(x1:n) effectively
defines a distribution over all texts with length ≤ n.

3.2. An Efficient Dynamic Programming Algorithm

We first illustrate the dynamic programming algorithm with
a toy example. As shown in Figure 2, assume that we have
generated the first t − 1 tokens “Kids ... like” and we are
given the constraint:

α = I(like ⊕ working) ∧ (I(like ⊕ eating) ∨ I(soccer)) ;
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Algorithm 1 Constrained Sampling with GeLaTo
Input: constraint α, maximum text length n, HMM q1,
autoregressive LM q2, # of HMM latent states h.
for l from n to 1 do

for x in suffixes of keystrings in α, zl from 1 to h do
for ψ in subsets of clauses of α do

compute q1(xl:r, ψl:n | zl) by the recurrence rela-
tion and store values in cache.

end for
end for

end for
initialize x1:0 = empty string
for t from 1 to n do

for xt in vocabulary do
compute q1(α | x1:t−1, xt) by Case 1.
p(xt | x1:t−1, α)=q1(α | x1:t−1, xt)q2(xt | x1:t−1)

end for
sample xt ∼ p(· | x1:t−1, α)
update x1:t := x1:t−1 ⊕ xt

end for
return x1:n

here we assume “like”, “working”, “eating” and “soc-
cer” are single tokens and ⊕ denotes string concatenation.
To compute Pr(x1:t−1, α1:n), we marginalize out xt in
Pr(x1:t−1, xt, α1:n); in particular, we sum over three pos-
sible cases for the next token xt: “eating”, “working” or
neither, and for each case we reduce Pr(x1:t−1, xt, α1:n) to
Pr(x1:t−1, xt, α

′
t:n) for some α′; here α′ is some CNF for-

mula obtained by removing from the original α the clauses
that are already satisfied. Then, we leverage the Markov
property of HMMs (see Equation 3) to break down the joint
probability Pr(x1:t−1, xt, α

′
t:n) into sub-problems.

Before we describe how to compute Pr(x1:t, α1:n), we es-
tablish a recurrence relation for computing terms of the form
Pr(xl:r, ψl:n | zl), where xl:r is either the empty string or a
suffix for some keystring in α, ψ is a CNF consisting of a
subset of clauses in α and zl is a latent state for Zl.

Assumptions & Notations. For simplicity, we make
the following non-overlapping assumption: for the set of
keystrings appearing in α, denoted as {wij}, the prefix of
wij cannot be a suffix for wpq for all ij ̸= pq. We also
define the following set of strings:

S(x, α) := {s : ∃x′ a suffix of x s.t. x′ ⊕ s lies in α},

which contains all strings that can be appended to x to form
some keystrings in α. For the example in Figure 2, for x =
“Kids ... like”, S(x, α) is given by {“eating”, “working”}.
We write si:j as a shorthand for Xi:j = s.

Recurrence Relation. Pr(xl:r, ψl:n | zl) follows the follow-
ing recurrence relation:

Case 1. xl:r ̸= ∅; then,

Pr(xl:r, αl:n | zl)

=
∑
zr+1

Pr(xl:r, zr+1 | zl)
(

Pr(αr+1:n | zr+1)

+
∑

s∈S(xl:r,α)

Pr(sr+1:r+|s|, (α \ xl:r ⊕ s)r+1:n | zr+1)

−
∑

s∈S(xl:r,α)

Pr(sr+1:r+|s|, αr+1:n | zr+1)

)
;

here ⊕ denotes string concatenation and α \ xl:r ⊕ s repre-
sents the CNF obtained by removing the clauses with any
keywords appearing in xl:r ⊕ s.

Case 2. xl:r = ∅; we reduce the problem to Case 1 by
enumerating xl over the vocabulary:

Pr(αl:n | zl) =
∑

xl∈vocabulary

Pr(xl, αl:n | zl) ;

The recurrence relation presented above gives us a dynamic
programming algorithm for computing terms of the form
Pr(xl:r, ψl:n | zl); see appendix for derivations. Note that
the boxed terms are the sub-problems and the underlined
terms are either HMM parameters or can be pre-computed
via the forward algorithm and then cached for later use.

Finally, as discussed at the beginning of this section, we
guide autoregressive generation from language models at
step t by computing Pr(x1:t−1, xt, α1:n), where x1:t−1 de-
notes the first t− 1 tokens that have been generated:

Pr(x1:t, α1:n) =
∑

z1
Pr(z1) Pr(x1:t, α1:n | z1);

here Pr(z1) is the initial probability of the HMM and
Pr(x1:t, α1:n | z1) can be computed by the formula in
Case 1 (setting l = 1), given that all boxed terms are pre-
computed by the dynamic programming algorithm.

As an example, Algorithm 1 summarizes how to perform
constrained generation with GeLaTo by sampling from the
autoregressive distribution p(xt | x1:t−1, α), as defined in
Section 2 (unsupervised setting). We can easily adapt Algo-
rithm 1 for other decoding procedures like beam search.

For a rough analysis of the time complexity of Algorithm 1,
we treat both the number of latent states h and the vocabu-
lary size as constants; in practice, we can avoid enumerating
all tokens in the vocabulary and all latent states of HMM via
GPU parallelization (see appendix & code for details). It
follows that the time complexity of GeLaTo is O(2|α|nm),
where |α| is the number of clauses in α, n is the maximum
sequence length and m is the number of different suffixes
for all keystrings in α. We show that GeLaTo scales well in
practice in Section 4.3.
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4. Experiments
In this section, we demonstrate the effectiveness of GeLaTo2

on challenging benchmarks for constrained generation:
CommonGen (Lin et al., 2020), Yelp!Review (Cho et al.,
2019) and News (Zhang et al., 2020); in particular, we focus
on CommonGen for detailed analysis. For both unsuper-
vised and supervised settings, GeLaTo achieves state-of-the-
art performance in terms of various automatic evaluation
metrics including BLEU score while guaranteeing 100%
constraint satisfaction.

4.1. Dataset & Baselines

CommonGen (Lin et al., 2020) is a benchmark for con-
strained generation with lexical constraints: the input of
each example consists of three to five concepts (keywords)
and the goal is to generate a natural sentence using all con-
cepts; in particular, the given keywords can appear in any
order or in any form of inflections in the generated sentences.
For example, given “car snow drive” as concepts, both “a
man drives a car on a snow covered road” and “the car
drove through the snow” are considered acceptable. We
also evaluate GeLaTo on the Yelp!Review (Cho et al., 2019)
and the News (Zhang et al., 2020) datasets. Compared to
CommonGen, both Yelp!Review and News share similar
formats, except that they require all keywords to be gener-
ated in the forms as given (i.e. no inflections allowed) and
to follow specific orders.

We compare GeLaTo against constrained generation ap-
proaches belonging to different families:

InsNet (Lu et al., 2022a) is a class of insertion-based lan-
guage models (Susanto et al., 2020) that generate text by
repeatedly inserting new tokens into the sequence. InsNet
guarantees that the keywords appear in the generated sen-
tence by initializing the token sequence as the keywords,
arranged in some order.

NeuroLogic (A*esque) Decoding (Lu et al., 2021; 2022b)
are search-based decoding algorithms; they are inference-
time algorithms like beam search and do not use any auxil-
iary models. Leveraging look-ahead heuristics, NeuroLogic
A*esque decoding not only optimizes the probability of the
generated sentence but also steers the generation towards
satisfying the lexical constraints.

NADO (Meng et al., 2022) trains an auxiliary neural model
approximating the conditional distribution Pr(α|x1:t, xt+1)
to guide constrained generation of the base model. As men-
tioned in Section 2, NADO needs to re-train the auxiliary
model for different types of α (e.g., ten keywords) while
GeLaTo does not need re-training.

2https://github.com/UCLA-StarAI/GeLaTo

4.2. Approach

Following the experiment setup of Lu et al. (2021) and Meng
et al. (2022), we evaluate GeLaTo under both unsupervised
and supervised settings, as described in Section 2.

finetuning GPT2-large All baselines, except for InsNet,
perform generation with GPT2-large (Radford et al., 2019)
as the base model. Following prior works (Meng et al.,
2022), we use finetuned GPT2-large as base models:

1. Unsupervised Setting: we perform domain adapta-
tion (DA) by finetuning GPT2-large on all gold (refer-
ence) sentences of the training split of CommonGen
without supplementing the keywords. We finetune the
model for 1 epoch with learning rate = 1e-6.

2. Supervised Setting: following the template proposed
in Lin et al. (2020), we finetune the GPT2-large model
in a sequence-to-sequence (seq2seq) manner; in partic-
ular we finetune the model on sequences of the form

“car snow drive = a car drove through snow” for 3
epochs with learning rate = 1e-6.

Training HMMs. We use HMMs as an example TPM to
enforce lexical constraint in autoregressive generation from
GPT2-large. Following Section 4, we sample sequences of
length 32 from the finetuned GPT2-large models and train
HMMs with 4096 hidden states to approximate the base
model distributions; we train HMMs with the expectation-
maximization (EM) algorithm for 40 epochs, and we re-
sample 0.2 million examples for each epoch. The HMM
models are trained as probabilistic circuits with the Juice.jl
framework (Dang et al., 2021) and the training procedure
leverages the latent variable distillation technique proposed
in Liu et al. (2023); we refer readers to the original papers
for more details.

Constraint Formulation. For CommonGen, as described
in Section 4.1, the goal is to generate a sentence using
the given concepts (keywords) and we encode this lexical
constraint as a CNF. For example, given the concepts “catch
frisbee snow”, the lexical constraint can be represented as:

[I(catch) ∨ I(caught) ∨ . . . ]
∧[I(fr ⊕ is ⊕ bee) ∨ I(fr ⊕ is ⊕ bees) ∨ . . . ]
∧[I(snow) ∨ I(snow ⊕ ing) ∨ I(snow ⊕ ed) ∨ . . . ];

here each clause encodes the constraint that a keyword has
to appear, in any form of its inflections; each literal I(w) in-
dicates the occurrence of a string of tokensw (i.e. keystring),
which represents the tokenization of a specific inflection of
a keyword and ⊕ denotes the concatenation of individual
tokens. For the keywords, we use LemmInflect3 to gen-
erate their inflections. We also enforce the constraint that

3https://github.com/bjascob/LemmInflect
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Method Generation Quality Constraint Satisfaction
ROUGE-L BLEU-4 CIDEr SPICE Coverage Success Rate

Unsupervised dev test dev test dev test dev test dev test dev test
InsNet (Lu et al., 2022a) - - 18.7 - - - - - 100.0 - 100.0 -
NeuroLogic (Lu et al., 2021) - 41.9 - 24.7 - 14.4 - 27.5 - 96.7 - -
A*esque (Lu et al., 2022b) - 44.3 - 28.6 - 15.6 - 29.6 - 97.1 - -
NADO (Meng et al., 2022) - - 26.2 - - - - - 96.1 - - -
GeLaTo 44.3 43.8 30.3 29.0 15.6 15.5 30.2 30.3 100.0 100.0 100.0 100.0
Supervised dev test dev test dev test dev test dev test dev test
NeuroLogic (Lu et al., 2021) - 42.8 - 26.7 - 14.7 - 30.5 - 97.7 - 93.9†

A*esque (Lu et al., 2022b) - 43.6 - 28.2 - 15.2 - 30.8 - 97.8 - 97.9†

NADO (Meng et al., 2022) 44.4† - 30.8 - 16.1† - 32.0† - 97.1 - 88.8† -
GeLaTo 46.2 45.9 34.0 34.1 17.2 17.5 32.2 33.5 100.0 100.0 100.0 100.0

Table 1. Performance comparison of different generation methods for unsupervised and supervised settings on the CommonGen dataset,
measured by generation quality and constraint satisfaction. For hyper-parameter tuning, we conduct cross-validation on a small subset of
the training set and report evaluation results for both validation (dev) and test set. All methods except for InsNet uses GPT2-large as their
base model. Numbers with † are reproduced by ourselves.

each keystring, whenever it appears in the generated text, is
followed by either a space, a comma or an ⟨eos⟩ token.

Decoding. p(xt+1 | x1:t, α) defined in Section 2 (see Eq. 1
and 2) induces the conditional distribution p(x1:n | α) =∏

t p(xt+1 | x1:t, α). We adopt beam search to greedily
search for x1:n that maximizes p(x1:n | α); we experiment
with different beam sizes: 16, 32, 64 and 128. Finally, we
re-rank all beams generated by beam search by their log-
likelihood given by the domain-adapted GPT2-large model
and select the top beam.

Metrics. We evaluate the quality of generation via human
evaluation and some commonly used automatic metrics in-
cluding ROUGE (Lin & Hovy, 2003), BLEU (Papineni et al.,
2002), CIDEr (Vedantam et al., 2015), and SPICE (Ander-
son et al., 2016). In addition to generation quality, we also
measure the constraint satisfaction performance via cover-
age, the average percentage of concepts presented in the
generated sentences and success rate, the percentage of
generated sentences that perfectly satisfy the constraints.

4.3. Results and Analysis

Main evaluation results are presented in Table 1. GeLaTo
outperforms all baselines in both unsupervised and super-
vised settings by a large margin, achieving not only signifi-
cantly higher BLEU and ROUGE scores but also 100% con-
straint satisfaction. The unsupervised setting is more chal-
lenging given that the base model is never trained with task-
specific supervision; despite this, GeLaTo achieves 30.3
BLEU score in the unsupervised setting, while NADO (the
best performing baseline) obtains 30.8 BLEU score in the
supervised setting. To provide more insight into GeLaTo,
we also conduct the following ablation studies.

Generation Quality vs. Approximation Performance.
As discussed in Section 2, GeLaTo assumes that distilled

HMMs are good enough approximations for base models;
our hypothesis is that the better the HMM approximates the
base model, the better the generation quality. With GeLaTo,
we generate from different HMM checkpoints from the dis-
tillation procedure, and report the average log-likelihoods
and BLEU scores (without re-ranking the beams). As shown
in Figure 3, as the training proceeds, both log-likelihood
and BLEU score improves, exhibiting a clear positive cor-
relation. This finding motivates the development of better
tractable probabilistic models for language modeling.

20

21.4
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24.2

25.6

27

epochs

0 5 10 15 20 25 30 35
-92

-88

-84

-80

-76

-72

BLEU-4 Log-likelihood

Figure 3. HMM log-likelihoods on data sampled from GPT-2
large (triangles) and the corresponding BLEU scores (circles) w.r.t.
# of training epochs. As the HMM model approximates GPT2-
large better, the generation quality also improves.

Robustness of Hyperparameter w. As described in Sec-
tion 2, for the supervised setting, the formulation of GeLaTo
involves a hyperparameter 0≤w≤1 that decides how much
the TPM or the base model contributes to generation. For
our experiments, w is set to 0.3 based on cross-validation re-
sults on the training set. Figure 4 shows the BLEU score (af-
ter re-ranking) on the validation set of CommonGen given
different values of w. The performance of GeLaTo is very
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Figure 4. BLEU score on CommonGen (dev) for different values
of w. GeLaTo achieves SoTA performance for 0.1≤w≤0.8.

robust with respect to different choices of w, achieving
SoTA BLEU scores for 0.1≤w≤0.8.

Effect of Beam Size. GeLaTo uses beam search for gener-
ation and we study how its performance is affected by the
choice of beam size. Figure 5 shows that for both unsuper-
vised and supervised settings, the performance of GeLaTo
improves monotonically as the beam size increases.

Run-time Comparison. We conduct an empirical evalua-
tion of the run-time (in seconds) of GeLaTo on Common-
Gen, in comparison to NeuroLogic A*esque and vanilla
GPT2-large; all methods are evaluated on a single NVIDIA
A100 GPU with 40 GB memory; the run-time is measured
on 100 randomly sampled examples for each # of concepts.

GeLaTo achieves its best performance with beam-size=128;
yet we also report the run-time for beam-size=16, where it
achieves performance better than all baselines. For the un-
supervised setting, GeLaTo is much faster than NeuroLogic
A*esque, which suffers from an unconstrained search space.
For the supervised setting, GeLaTo is slower than A*esque
but the run-time for beam-size = 16 is still comparable.

# of concepts 3 4 5
Unsupervised
A*esque 472.9 542.5 613.9
GeLaTo (16) 13.5 ± 4.4 21.9 ± 5.37 39.3 ± 6.3
GeLaTo (128) 69.8 ± 32.3 97.9 ± 39.5 143.0 ± 44.4
Supervised
A*esque 8.5 9.6 11.4
GPT2 (16) 5.8 ± 1.1 13.0 ± 1.6 29.3 ± 3.2
GPT2 (128) 9.4 ± 1.8 21.1 ± 11.9 33.7 ± 3.5
GeLaTo (16) 11.1 ± 2.8 22.0 ± 5.0 41.6 ± 5.6
GeLaTo (128) 49.8 ± 20.8 88.7 ± 30.5 127.6 ± 30.4

Table 2. Time of generating one example (seconds) on Common-
Gen (dev). Results for NeuroLogic A*esque, finetuned GPT2-large
and GeLaTo are reported; beam-sizes are shown in parentheses.

Human Evaluation. We conduct human evaluation for sen-
tences generated on CommonGen (dev), following the setup
of prior works (Lu et al., 2022b; Meng et al., 2022). Specif-

B
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23
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32

Beam Size
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31.131.0
30.6

29.9

27.1
26.4

25.8
25.1

Figure 5. BLEU score (y-axis) obtained by GeLaTo on Common-
Gen (dev), with various beam-sizes (x-axis), for both unsuper-
vised (circles) and supervised (triangles) settings.

ically, we mix sentences generated by different methods,
and each sentence is presented to one human annotator to
be evaluated on four aspects: concepts, plausibility, quality,
and overall rating. The results are shown in Table 3. To
test statistical significance, we conduct the Wilcoxon signed
rank two-sided test with p-value < 0.05 and GeLaTo per-
forms best in all metrics compared to prior SoTA. We refer
readers to Appendix B for details of human evaluation.

Method Concepts Plausibility Quality Overall

GPT2 2.47 2.52 2.65 2.28
NADO 2.71 2.54 2.73 2.54
GeLaTo 2.73 2.52 2.70 2.60

Table 3. Human evaluation results on CommonGen for finetuned
GPT2-Large, NADO and GeLaTo, all under the supervised setting.

Method \Dataset Yelp!Review News

InsNet 5.8 5.0
NADO 6.0 4.5
GeLaTo 6.6 5.4

Table 4. BLEU-4 scores for Yelp!Review and News datasets; for
InsNet and NADO we present the best results of all settings while
the results of GeLaTo are obtained under the unsupervised setting.

Fixing Order of Keywords. Following prior works (Meng
et al., 2022; Lu et al., 2022a), we evaluate GeLaTo on
Yelp!Review and News datasets. They are more challenging
in that they require keywords to appear in specific orders;
besides, the average sequence lengths for both datasets are
approximately 64 tokens, twice of that of CommonGen.
With a minor modification to Algorithm 1, GeLaTo is easily
adapted to generate text with ordered keywords. For both
datasets, the training examples do not provide keywords
thus there is no immediate way to finetune the base mod-
els in a supervised way. Yet, as shown in Table 4.3, the
unsupervised GeLaTo alone achieves SoTA BLEU scores.
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5. Related Works
5.1. Tractable Probabilistic Models

Tractable probabilistic models support efficient probabilistic
inference (e.g., marginal probability), thus they have been
widely used in inference-demanding tasks, including enforc-
ing algorithmic fairness (Choi et al., 2020a; 2021), and mak-
ing predictions under missing data (Khosravi et al., 2019;
Correia et al., 2020; Li et al., 2021; Dang et al., 2022b).

Probabilistic circuits (PCs) is a unified framework for a
large family of tractable probabilistic models including hid-
den Markov models (Rabiner & Juang, 1986), bounded
tree-width graphical models (Meila & Jordan, 2000) and
sum-product networks (SPNs) (Poon & Domingos, 2011).
Recent progress in learning probabilistic circuits for gen-
erative modeling (Dang et al., 2022c; Liu et al., 2023) and
their efficient implementation (Molina et al., 2019; Peharz
et al., 2020; Dang et al., 2021) have been pushing the limits
of PC’s expressive power.

5.2. Enforcing Constraints in Neural Networks

The capacity of deep generative models is continuously in-
creasing, while their probabilistic and logic querying ability
is restricted. A variety of methods have been developed.
Boyd et al. (2022) introduce a general inference typology
on autoregressive sequence models that can develop query
estimation methods based on beam search and importance
sampling. Ahmed et al. (2022) use PCs as a replacement for
the SoftMax layer in neural networks such that their outputs
are guaranteed to satisfy the constraint.

5.3. Controllable Autoregressive Language Generation

One line of research on constrained text generation focuses
on modifying the decoding algorithm to inject constraints
into the beam search process, such as constrained beam
search (Post & Vilar, 2018), NeuroLogic Decoding (Lu et al.,
2021) and A*esque NeuroLogic Decoding (Lu et al., 2022b).
Though they can be easily applied to various language mod-
els without training, these search-based methods can be
inefficient as they suffer from large search spaces. Recent
works like NADO (Meng et al., 2022) and FUDGE (Yang
& Klein, 2021) train auxiliary neural models to provide
token-level guidance for autoregressive generation. Another
family of approaches that enforce keyword-type constraints
are insertion-based language models (Lu et al., 2022a; Su-
santo et al., 2020), where the initial sequences only consist
of the desired keywords and the transition phrases are re-
peatedly inserted to complete the sentences.

6. Conclusion
In this paper, we propose GeLaTo, where we use tractable
probabilistic models (TPMs) to impose complex lexical con-
straints (denoted α) in autoregressive language generation
from large language models. Specifically, we provide token-
level guidance to autoregressive generation by computing
PrTPM(xt+1 | x1:t, α). With hidden Markov model as a run-
ning example, we (1) present an efficient dynamic program-
ming algorithm for conditioning HMMs on complex lexical
constraints and (2) demonstrate the effectiveness of GeLaTo
on various constrained generation benchmarks; GeLaTo
achieves state-of-the-art generation quality (i.e. BLEU-4
scores) while guaranteeing 100% constraint satisfaction.
This work opens up new avenues for constrained language
generation and motivates for the development of more ex-
pressive tractable probabilistic models.
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A. Recurrence Relation Analysis
We establish the recurrence relation for computing Pr(xl:r, αl:n | zl); there are two possible cases:

Case 1. xl:r ̸= ∅; in this case, we can append s ∈ S(xl:r, α) to xl:r to reduce the number of clauses in α; abusing notation,
we write si:j as a shorthand for Xi:j = s:

Pr(αl:n | zr+1, xl:r, zl)

=Pr(Xr+1:r+|s| ̸= s ∀s ∈ S(xl:r, α), αl:n | zr+1, xl:r, zl) +
∑

s∈S(xl:r,α)

Pr(sr+1:r+|s|, αl:n | zr+1, xl:r, zl)

=Pr(Xr+1:r+|s| ̸= s ∀s ∈ S(x, α), αr+1:n | zr+1) +
∑

s∈S(xl:r,α)

Pr(sr+1:r+|s|, (α \ xl:r ⊕ s)r+1:n | zr+1);

here ⊕ denotes string concatenation and α\xl:r⊕s represents the CNF obtained by removing the clauses with any keywords
appearing in xl:r ⊕ s. In particular, the second step in the derivation above follows from the non-overlapping assumption
and the independence property of HMMs; then, by expanding the second term, we have:

Pr(αl:n | zr+1, xl:r, zl)

= Pr(αr+1:n | zr+1)

+
∑

s∈S(xl:r,α)

Pr(sr+1:r+|s|, (α \ xl:r ⊕ s)r+1:n | zr+1) −
∑

s∈S(xl:r,α)

Pr(sr+1:r+|s|, αr+1:n | zr+1) ;

finally, by summing over all hidden states zr+1:

Pr(xl:r, αl:n | zl) =
∑
zr+1

Pr(xl:r, zr+1 | zl) Pr(αl:n | zr+1, xl:r, zl)

Case 2. When x = ∅, we can reduce the computation of Pr(αl:n | zl) to Case 1. by summing over all possible tokens at
position l:

Pr(αl:n | zl)=
∑

xl∈vocabulary

Pr(xl, αl:n | zl)=
∑

S(xl,α)̸=∅

Pr(xl, αl:n | zl) +
∑

S(xl,α)=∅

Pr(xl, αl:n | zl)

In practice, the vocabulary size is usually large (e.g., 50k), and most tokens lie in {xl : S(xl, α) = ∅}. To avoid repetitive
computation, we re-write

∑
S(xl,α)=∅ Pr(xl, αl:n | zl):∑

S(xl,α)=∅
Pr(xl, αl:n | zl)

=
∑

S(xl,α)=∅

∑
zl+1

Pr(xl, αl:n, zl+1 | zl)

=

(∑
S(xl,α)=∅

Pr(xl | zl)
)
·
(∑

zl+1

Pr(zl+1 | zl) Pr(αl+1:n | zl+1)

)
where

∑
zl+1

Pr(zl+1 | zl) Pr(αl+1:n | zl+1) does not depend on xl and the summation
∑

S(xl,α)=∅ Pr(xl | zl) can be
efficiently computed with CUDA parallelization without enumerating over all tokens.
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B. Human Evaluation Setup
The following screenshot shows the human evaluation setup for CommonGen. We consider Yes as 3 points, Somewhat as 2
points and No as 1 point.

Read the given concepts and sentence below and indicate how much you agree with the statements. (Yes, Somewhat, No)

Concepts: ${concepts}

Sentence: ${sentence}

(1) Sentence Quality: Is the sentence well-formedwell-formed?

 Yes: The sentence is well-formed and fluent. 
 Somewhat: The sentence is understandable but a bit awkward. 
 No: The sentence is neither well-formed or fluent. 

(2) Plausibility: Does the sentence describe a plausible scenario?

 Yes: The sentence describes a realistic or plausible scenario. 
 Somewhat: The sentence describes an acceptable scenario but a bit awkward. 
 No: The sentence describes a nonsensical scenario. 

(3) Concepts: Does the sentence include the given concepts meaningfully?

Example: if "run" is a given concept, sentence should include word "ran", "running" or other variant forms of "run". Synonyms like
"jog" are not allowed.

 Yes: The sentence meaningfully includes all of the concepts. 
 Somewhat: The sentence meaningfully includes some, but not all of the concepts. Or, the sentence includes all concepts but

some of them are not meaningful or properly incorporated. 
 No: The sentence does not include concepts in a meaningful way. 

(4) Overall: Considering your answers to 1), 2) and 3), does the sentence meaningfully combine all of the concepts into a well-
formed and plausible scenario?

 Yes: The sentence is reasonably well-formed/understandable, and meaningfully combines all the concepts into a plausible
scenario. 

 Somewhat: The sentence looks okay in terms of above questions. 
 No: The sentence is not well-formed/understandable, or fails to properly combine all the concepts into a plausible scenario. 

Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit" in order to preview the data and format of the submitted
results.

Submit
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