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Abstract
Logical reasoning is needed in a wide range
of NLP tasks. Can a BERT model be trained
end-to-end to solve logical reasoning problems
presented in natural language? We attempt
to answer this question in a confined problem
space where there exists a set of parameters
that perfectly simulates logical reasoning. We
make observations that seem to contradict each
other: BERT attains near-perfect accuracy on
in-distribution test examples while failing to
generalize to other data distributions over the
exact same problem space. Our study provides
an explanation for this paradox: instead of
learning to emulate the correct reasoning func-
tion, BERT has, in fact, learned statistical fea-
tures that inherently exist in logical reasoning
problems. We also show that it is infeasible to
jointly remove statistical features from data, il-
lustrating the difficulty of learning to reason in
general. Our result naturally extends to other
neural models (e.g. T5) and unveils the funda-
mental difference between learning to reason
and learning to achieve high performance on
NLP benchmarks using statistical features.

1 Introduction

Logical reasoning is needed in a wide range
of NLP tasks, including natural language infer-
ence (NLI) (Williams et al., 2018; Bowman et al.,
2015), question answering (QA) (Rajpurkar et al.,
2016; Yang et al., 2018) and common-sense reason-
ing (Zellers et al., 2018; Talmor et al., 2019). The
ability to draw conclusions based on given facts and
rules is essential to solving these tasks.1 Though
NLP models, empowered by the Transformer neu-
ral architecture (Vaswani et al., 2017), can achieve
high performance on task-specific datasets, it is
unclear whether they are “reasoning” following the
rules of logic. A research question naturally arises:
can neural models be trained end-to-end to conduct
logical reasoning in natural language?

1A.k.a., deductive reasoning; in this paper, we do not con-
sider inductive reasoning, where rules need to be learned.

Facts:
Alice is fast.
Alice is normal.

Rules:
If Alice is fast and smart, then Alice is bad.
If Alice is normal, then Alice is smart.
If Alice is normal and happy, then Alice is sad.

Query 1: Alice is bad.                               [Answer: True]
Query 2: Alice is sad.                               [Answer: False]

Figure 1: A confined problem space (SimpleLogic)
consisting of exponentially many (≈ 10360) logical rea-
soning problems; dots and triangles denote examples
sampled from two different distributions over the same
problem space.

Following prior work, we attempt to answer this
question by training and testing a neural model (e.g.
BERT (Devlin et al., 2019)) on a confined prob-
lem space (see Fig. 1 and Sec. 2) consisting of logi-
cal reasoning problems written in English (Johnson
et al., 2017; Sinha et al., 2019). Yet, we observe
evidences that seemingly lead to a contradiction.

On the one hand, echoing the findings of prior
work (Clark et al., 2020; Talmor et al., 2020), we
observe evidences that seem to imply that neural
models can learn to reason (i.e. reliably emulate
the correct reasoning function): (E1) examples in
the problem space only test model’s reasoning abil-
ity: they have no language variance and require
no prior knowledge; (E2) we prove by construc-
tion that the BERT model has enough capacity to
represent the correct reasoning function (Sec 2.2);
(E3) the BERT model can be trained to achieve
near-perfect test accuracy on data distributions cov-
ering the whole problem space.

On the other hand, we observe a contradictory
phenomenon: the models attaining near-perfect
accuracy on one data distribution do not general-
ize to other distributions within the same problem
space (Sec. 3). Since the correct reasoning function



does not change across data distributions, it follows
that the model has not learned to reason.

The paradox lies in that if a neural model has
learned reasoning, it should not exhibit such a gen-
eralization failure; if the model has not learned
reasoning, it is baffling how it manages to achieve
near-perfect test accuracy on training distributions
that cover the entire problem space. Note that
what we observed is not a common case of out-of-
distribution (OOD) generalization failure: (1) our
problem space is confined and simple (see E1,
E2); (2) the correct reasoning function is invariant
across data distributions; on the contrary, discus-
sions about OOD generalization often involve open
problem spaces (Lin et al., 2019; Gontier et al.,
2020; Yin et al., 2020; Wald et al., 2021) and do-
main/concept mismatch between training and test-
ing distribution (Yin et al., 2021; Koh et al., 2021).

Upon further investigation, we provide an ex-
planation for this paradox: the model attaining
high accuracy only on in-distribution test exam-
ples has not learned to reason. In fact, the model
has learned to use statistical features in logical rea-
soning problems to make predictions rather than to
emulate the correct reasoning function.

Our first observation is that even the sim-
plest statistic of a reasoning problem can give
away significant information about the true la-
bel (Sec. 4.1): for example, by only looking at the
number of rules in a reasoning problem, we can
predict the correct label better than a random guess.
Unlike dataset biases/artifacts identified in typical
NLP datasets, which are often due to biases in the
dataset collection/annotation process (Gururangan
et al., 2018; Clark et al., 2019; He et al., 2019),
statistical features inherently exist in reasoning
problems and are not specific to certain data distri-
butions. We show that statistical features can hin-
der model generalization performance (Sec. 4.2);
moreover, we argue that there are potentially count-
less statistical features and demonstrate that it is
computationally expensive to jointly remove them
from training data (Sec. 4.3).

Our study implies the difficulty of learning to
reason from data: while a model always tends to
learn statistical features, it is difficult to construct
a logical reasoning dataset that exhibits no statisti-
cal features. Though we use BERT as the running
example throughout this paper, our argument as-
sumes little about model architecture and naturally
extends to other neural models. This intuition is

supported by experiments with T5 (Raffel et al.,
2020), which exhibits behaviors similar to BERT.

Our findings unveil the fundamental difference
between “learning to reason” and “learning to attain
high performance on NLP benchmarks.” Learning
statistical features is not always undesirable; in fact,
for most NLP tasks, one of the major goal for a
neural model is to learn statistical patterns: for ex-
ample, in sentiment analysis (Maas et al., 2011), a
model is expected to learn the strong correlation
between the occurrence of the word “happy” and
the positive sentiment. However, for logical rea-
soning, even though countless statistical features
inherently exist, models should not use them to
make predictions. Caution should be taken when
we seek to train neural models end-to-end to solve
logical reasoning tasks in NLP that involve prior
knowledge and are presented with language vari-
ance (Welleck et al., 2021; Yu et al., 2020), which
could potentially lead to even stronger statistical
features, as demonstrated by Elazar et al. (2021)
and McCoy et al. (2019).

Code/data will be publicized upon acceptance.

2 SimpleLogic: A Simple Problem Space
for Logical Reasoning

We define SimpleLogic, a class of logical reasoning
problems based on propositional logic, as a con-
trolled testbed for testing neural models’ ability to
conduct logical reasoning. SimpleLogic only con-
tains deductive reasoning examples. To simplify
the problem, we remove language variance by rep-
resenting the reasoning problems in a templated
language and limit their complexity (e.g., examples
have limited input lengths and reasoning depths).

Solving SimpleLogic does not require signif-
icant model capacity. We show that the BERT
model (Devlin et al., 2019) has more than enough
model capacity to solve SimpleLogic by construct-
ing a parameterization of BERT that can solve all
instances in SimpleLogic (Sec. 2.2).

2.1 Problem Space Definition

Before defining SimpleLogic, we introduce some
basics for propositional logic. In general, reason-
ing in propositional logic is NP-complete (Cook,
1971); hence, we only consider propositional rea-
soning with definite clauses. A definite clause is a
rule of the form A1 ∧A2 ∧ · · · ∧An → B, where
Ais and B are predicates that take values in “True”
or “False”; we refer to the left hand side of a rule



as its body and the right hand side as its head. In
particular, a definite clause is called a fact if its
body is empty (i.e. n = 0). A propositional theory
T is a set of rules and facts, and we say a predicate
Q can be proved from T if either (1) Q is given in
T as a fact or (2) A1 ∧ · · · ∧ An → Q is given in
T as a rule where Ais can be proved.

Each example in SimpleLogic is a proposi-
tional reasoning problem that only involves def-
inite clauses. In particular, each example is a tuple
(facts, rules, query, label) where (1) facts is a list
of predicates that are known to be True, (2) rules
is a list of rules represented as definite clauses, (3)
query is a single predicate, and (4) label is either
True or False, denoting whether the query predicate
can be proved from facts and rules. Figure 1 shows
such an example. Furthermore, we enforce simple
constraints to control the difficulty of the problems.
For each example in SimpleLogic, we require that:

• the number of predicates (#pred) that appear in
facts, rules and query ranges from 5 to 30, and
all predicates are sampled from a fixed vocabu-
lary containing 150 adjectives such as “happy”
and “complicated”; note that the predicates in
SimpleLogic have no semantics;

• 0 ≤ the number of rules (#rule) ≤ 4× #pred; the
body of each rule contains 1 to 3 predicates; i.e.
A1 ∧ . . . ∧An → B with n > 3 is not allowed;

• 1 ≤ the number of facts (#fact) ≤ #pred;
• the reasoning depth2 required to solve an exam-

ple ranges from 0 to 6.

We use a simple template to encode examples in
SimpleLogic as English input. For example, we use
“Alice is X.” to represent the fact that X is True; we
use “A and B, C.” to represent the ruleA∧B → C;
we use “Query: Alice is Q.” to represent the query
predicate Q. We concatenate facts, rules and query
as “[CLS] facts. rules [SEP] query [SEP]” and
supplement it to BERT to predict the correct label.

2.2 BERT Has Enough Capacity to Solve
SimpleLogic

In the following, we show that BERT has enough
capacity to solve all the examples in SimpleLogic.
In particular, we explicitly construct a parameter-
ization for BERT such that the fixed-parameter

2For a query with label True, its reasoning depth is given
by the depth of the shallowest proof tree; for a query with
label False, its reasoning depth is the maximum depth of the
shallowest failing branch in all possible proof trees.

Parsing Layer

Reasoning Layer 1

Reasoning Layer 2

Reasoning Layer 11

MLP

Query: nice? Proved Facts: smart.
Rules: smart. evil -> nice. smart & cautious -> sad. smart -> e!"#.

[CLS] Start Query: Alice is nice? Alice is smart. If evil, nice. 
If smart and cautious, sad.  If smart, e!"#. [SEP]

Query: nice? Proved Facts: smart. evil.
Rules: smart. evil -> nice. smart & cautious -> sad. smart -> e!"#.

Query: nice? Proved Facts: smart. evil. nice.
Rules: smart. evil -> nice. smart & cautious -> sad. smart -> e!"#.

Query: nice? Proved Facts: smart. evil. nice.
Rules: smart. evil -> nice. smart & cautious -> sad. smart -> e!"#.

Figure 2: A BERT-base model that simulates the
forward-chaining algorithm. The first layer parses text
input into the desired format. Each reasoning layer per-
forms one step of forward-chaining, adding some pred-
icates to the Proved Facts, and the rules being used are
underlined in green; e.g. Reasoning Layer 1 use the
rule “smart→ evil” to prove the predicate evil.

model solves all problem instances in SimlpleL-
ogic. Note that we only prove the existence of such
a parameterization, but do not discuss whether it
can be learned from data until Sec. 3.

Theorem 1. For BERT with n layers, there exists a
set of parameters such that the model can correctly
solve any reasoning problem in SimpleLogic that
requires ≤ n− 2 steps of reasoning.

Proof Sketch. To prove this theorem, we construct
a fixed set of parameters for BERT to simulate the
forward-chaining algorithm. As illustrated in Fig-
ure 2, our construction solves a logical reasoning
example in a layer-by-layer fashion. The 1st layer
of BERT parses the input sequence into the desired
format. Layer 2 to layer 10 are responsible for
simulating the forward chaining algorithm: each
layer performs one step of reasoning, updating the
True/False label for predicates. The last layer also
performs one step of reasoning, while implicitly
checking if the query predicate is proved and feed-
ing the result to an MLP. The parameters are the
same across all layers except for the Parsing Layer.
We refer readers to the Appendix for details.

We implemented the construction in PyTorch,
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(1) Randomly sample facts & rules.
Facts: B, C
Rules: A, B à D. B à E. B, C à F.

(1) Randomly assign labels to 
predicates.
True: B, C, E, F.  
False: A, D.

(2) Set B, C (randomly chosen 
among B, C, E, F) as facts and 
sample rules (randomly) 
consistent with the label 
assignments.

(2) Compute the correct 
labels for all predicates given 
the facts and rules.

Rule-Priority

Label-Priority

Figure 3: An illustration of a logical reasoning prob-
lem (right) in SimpleLogic being sampled by Rule-
Priority (RP) and Label-Priority (LP), respectively.
Predicates with label True are denoted by filled circles.

following the exact architecture of the BERT-base
model. As supported by the theorem, the “con-
structed BERT” solves all the problems in SimpleL-
ogic of reasoning depth ≤ 10 with 100% accuracy.

3 BERT Fails to Learn to Solve
SimpleLogic

Next, we study whether it is possible to train a neu-
ral model (e.g., BERT) to reason on SimpleLogic.
We follow Clark et al. (2020) to randomly sam-
ple examples from the problem space and train the
BERT model on a large amount of sampled data.

3.1 Sampling Examples from SimpleLogic
When sampling examples from a finite domain,
one naive approach is to uniformly sample from
the domain. However, uniform sampling is not
desirable: as described in Sec. 2.1, examples in
SimpleLogic have #pred ranging from 5 to 30 and
#rule ranging from 0 to 4 × #pred, as the number
of combinations with #pred = 30 and #rule = 120
is significantly larger than other settings, if follows
that over 99.99% of the examples generated by uni-
form sampling would have 30 predicates and 120
rules. This is a serious problem as we expect our
training set to contain examples of different #pred,
#fact and #rule. Hence, we instead consider the fol-
lowing two intuitive ways of sampling examples:

Rule-Priority (RP). In Rule-Priority, we first
randomly sample #pred, #fact and #rule uniformly

at random from [5, 30], [1, #pred] and [1, 4×#pred]
respectively, ensuring that all three aspects are cov-
ered by a non-trivial number of examples. Then,
we randomly sample some predicates, facts and
rules based on the given #pred, #rule and #fact.
The query is also randomly sampled, and its la-
bel is computed by forward-chaining based on the
given facts and rules.

Lable-Priority (LP). In Rule-Priority, we first
randomly generate rules and facts, which then de-
termines the label for each predicate. In Label-
Priority (LP), we consider generating examples in
the “reversed” order: we first randomly assign a
True/False label to each predicate and then ran-
domly sample some rules and facts that are consis-
tent with the pre-assigned labels.

Figure 3 shows an example that illustrates the
two sampling methods. Both LP and RP are gen-
eral, and they cover the whole problem space. We
refer readers to the Appendix for further details
about the sampling algorithms.

3.2 BERT Trained on Randomly Sampled
Data Cannot Generalize

Following the two sampling regimes described
above, we randomly sample two sets of examples
from SimpleLogic: for each reasoning depth from
0 to 6, we sample 40k examples from SimpleLogic
via algorithm RP and aggregate them as dataset RP,
which contains 280k examples in total; we then
split it as training/validation/test set. We use the
same procedure to generate dataset RP. We train a
BERT-base model (Devlin et al., 2019) on RP and
LP, respectively. See details in the appendix.

BERT performs well on the training distribu-
tions. The first and last rows of Table 5 show the
test accuracy when the test and train examples are
sampled by the same algorithm (e.g., for row 1, the
model is trained in the RP training set and tested
in the RP test set): the models achieve near-perfect
performance similar to the findings in prior work
(Clark et al., 2020). Both sampling algorithms are
general in the sense that every instance in Sim-
pleLogic has a positive probability to be sampled;
hence, the intuition is that the model has learned to
emulate the correct reasoning function.

BERT fails to generalize. However, at the same
time, we observe a rather counterintuitive finding:
the test accuracy drops significantly when the train
and test examples are sampled via different algo-



Train Test 0 1 2 3 4 5 6

RP RP 99.9 99.8 99.7 99.3 98.3 97.5 95.5
LP 99.8 99.8 99.3 96.0 90.4 75.0 57.3

LP RP 97.3 66.9 53.0 54.2 59.5 65.6 69.2
LP 100.0 100.0 99.9 99.9 99.7 99.7 99.0

Table 1: Test accuracy on LP/RP for the BERT model
trained on LP/RP; the accuracy is shown for test exam-
ples with reasoning depth from 0 to 6. BERT trained
on RP achieves almost perfect accuracy on its test
set; however the accuracy drops significantly when it’s
tested on LP (vice versa).

Test 0 1 2 3 4 5 6

RP&LP 99.9 99.9 99.8 99.4 98.8 98.1 95.6
LP∗ 98.1 97.2 92.5 80.3 65.8 55.6 55.2

Table 2: BERT trained on a mixture over RP and LP
fails on LP∗, a test set that slightly differs from LP.

rithms. Specifically, as shown in the second and
third rows of Table 5, the BERT model trained on
RP fails drastically on LP, and vice versa. Since the
correct reasoning function does not change across
different data distributions, this generalization fail-
ure indicates BERT is has not learned to conduct
logical reasoning. A subsequent question naturally
arises: can the model learn to reason if we train
the model on both RP and LP?

Training on both RP and LP is not enough.
We train BERT on the mixture of RP and LP, and
BERT again achieves nearly perfect test accuracy.
Can we now conclude that BERT has learned to
approximate the correct reasoning function? We
slightly tweak the sampling algorithm of LP by in-
creasing the expected number of alternative proof
trees to generate LP∗. Unfortunately, we observe
that the model performance again drops signifi-
cantly on LP∗ (Table 2); such a result resembles
what we observed in Table 5. In fact, we find no
evidence that consistently enriching the training dis-
tribution will bring a transformative change such
that the model can learn to reason.

Discussion. The experiments above reveal a pat-
tern of generalization failure: if we train the model
on one data distribution, it fails almost inevitably
on a different distribution. In other words, the
model seems to be emulating an incorrect “reason-
ing function” specific to its training distribution.

4 BERT Learns Statistical Features

To this point, we have shown that a BERT model
achieving high in-distribution accuracy does not
learn the correct reasoning function. In this section,
we seek to provide an explanation for this peculiar
generalization failure. Our analysis suggests that
even the simplest statistics of reasoning problems
can provide significant information about their la-
bels, which we denote as statistical features. Such
statistical features are inherent to the task of log-
ical reasoning rather than a problem with specific
datasets. When BERT is trained on data with sta-
tistical features, it tends to make predictions based
on such features rather than learning to emulate
the correct reasoning function; thus, BERT fails to
generalize to the whole problem space. However,
unlike the shallow shortcuts found in other typical
NLP tasks, such statistical features can be countless
and extremely complicated, and thus very difficult
to be removed from training data.

4.1 Statistical Features Inherently Exists

What is a statistical feature? If a certain statis-
tic of an example has a strong correlation with its
label, we call it a statistical feature.

As an illustrating example, we consider the num-
ber of rules in a reasoning problem (#rule). As
shown in Figure 4a, the #rule for reasoning prob-
lems in RP exhibit a strong correlation with their
labels: when #rule > 40, the number of positive
examples exceeds 50% by large margins; formally,
Pre∼RP(label(e) = 1 | #rule(e) = x) > 0.5 for
x > 40, which makes it possible for the model to
guess the label of an example with relatively high
accuracy by only using its #rule. Hence, we call
#rule a statistical feature for the dataset RP.

Statistical features are inherent to logical rea-
soning problems. Continuing with our example,
we show that #rule inherently exists as a statistical
feature for logical reasoning problems in general;
that is, it is not specific to the RP dataset. Consider
the following property about logical entailment:

Property (Monotonicity of entailment). Any facts
and rules can be freely added to the hypothesis of
any proven fact.

It follows that, intuitively, given a fixed set of
predicates and facts, any predicate is more likely
to be proved when more rules are given, that is,
Pr(label(e) = 1 | #rule(e) = x) should increase
roughly monotonically as x increases. Since this
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(a) RP: Pr(label = 1 | #rule) > 0.5 for #rule > 40.
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(b) RP_balance: Pr(label = 1 | #rule) ≈ 0.5 for #rule ≤ 80.

Figure 4: Pr(label = 1 | #rule) (the blue columns) and
Pr(#rule) (the green curves) for RP and RP_balance,
respectively. After removing #rule as a statistical fea-
ture (RP_balance), Pr(label = 1 | #rule) approaches
0.5 for #rule ≤ 80 while Pr(#rule) does not change.

intuition assumes nothing about data distributions,
it follows that such statistical patterns should nat-
urally exist in any dataset that is not adversarially
constructed. In addition to RP, we also verify that
both LP and the uniform distribution exhibit sim-
ilar statistical patterns, which we refer readers to
Appendix for further details.

Statistical features are countless. In addition to
#rule, numerous statistical features potentially ex-
ist. For example, as facts can be seen as special
form of rules, it follows from previous argument
that #fact is also positively correlated with labels.
Statistical features can be more complicated than
just #rule or #fact. For example, the average num-
ber of predicates in rules of a reasoning problem
can also leak information about its label. Note that
the right-hand side of a rule is only proved if all
predicates on its left-hand side are proved. Then, it
is immediate that rules of the form A,B,C → D
are less likely to be “activated” than rules of the
form A → D. Following this intuition, we can
define the following statistic: for an example e, let

branching_factor(e)

:=
#fact(e) +

∑
rule ∈e length of rule

#fact(e) + #rule(e)
.

0.0

0.5

1.0

1.1 1.8 2.5 3.2 3.7

Pr(label = 1 |branching_ factor)

branching_ factor
RP

Figure 5: For RP, Pr(label = 1 | branching_factor) de-
creases as branching_factor increases.

In this definition, we compute the average number
of predicates in the rules, where facts are treated
as rules with one predicate.3 Our intuition sug-
gests that the larger the branching_factor, the less
likely an example will be positive; we verify that
this intuition holds for RP, as shown in Figure 5.
Just like #rule, we observe that branching_factor
is also a statistical feature for LP and the uniform
distribution; see details in Appendix.

Now we have shown that though there are simple
statistical features like #rule, some (e.g. branch-
ing_factor) can be less intuitive to call to mind; in
light of this, it is not hard to imagine that some sta-
tistical features can be so complex that they cannot
even be manually constructed by humans. In partic-
ular, statistical features can also be compositional:
one can define a joint statistical feature by com-
bining multiple ones (e.g., branching_factor and
#rule), which further adds to the complexity. Thus,
it is infeasible to identify all statistical features.

4.2 Statistical Features Inhibit Model
Generalization

Having verified that statistical features inherently
exist for logical reasoning problems, in this section
we study how they affect the model behavior. We
show that (1) when statistical features are presented
in training distributions, BERT tends to utilize them
to make predictions; (2) after removing one statis-
tical feature from training data, the model general-
izes better. It follows that statistical features can
hinder the model from learning the correct reason-
ing function, explaining the generalization failure
we observed in Section 3.

Example: removing one statistical feature.
We use #rule as an example to illustrate how to re-
move statistical features from a training dataset D;

3Branching_factor: with more predicates on the left-hand
side of the rules, the proof tree has more branches.



in particular, there are three criteria that we need
to satisfy: (1) label is balanced for the feature; (2)
the marginal distribution of the feature remains un-
changed; (3) the dataset size remains unchanged.

Formally, our first goal is to sample D′ ⊂ D
such that, for all x:

Pre∼D′(label(e) = 1 | #rule(e) = x) = 0.5

Intuitively, this equation says that on D′, one can-
not do better than 50% by only looking at the #rule
of an example. Specifically, for all possible values
of x, if Pre∼D(label(e)=1 | #rule(e)=x) > 0.5, we
drop some positive examples with #rule = x from
D; otherwise, we drop some negative examples.

However, we would not meet the second crite-
rion by naively dropping the minimum number of
examples; consider the following statistics for RP:

#rule before drop after drop
#examples / positive % #examples / positive %

38 6860 / 49.9% 6822 / 50.0%
80 2322 / 92.7% 339 / 50.0%

As shown in the table, if we naively drop the mini-
mum number of examples from RP such that Equa-
tion 1 is satisfied, we will be left with only 339 ex-
amples with #rule = 80, where the number (6822)
of examples with #rule = 38 remains unchanged.
This could be a serious issue in terms of dataset
coverage: examples with some particular #rule will
dominate D′ and there will not be enough exam-
ples for other #rule. Recall that this is also the
reason we choose RP/LP over uniform sampling
to generate our datasets (Sec. 3.1). Hence, we also
need to make sure that as we remove statistical
features from D, their marginal distributions in D′
stay close to D:

Pre∼D′(#rule(e)) = Pre∼D(#rule(e)).

In this way, D′’s coverage of examples with differ-
ent #rule remains the same as D.

When both criteria (1) and (2) are satisfied,
the size of D′ will be much smaller than D and
the ratio k = |D|/|D′| can be estimated from
minx Pre∼D(label(e)=1 | #rule(e)=x). Hence, to
make sure that criterion (3) is met, that is the size of
D′ is the same as D, we need to pre-sample k ×D
and obtain D′ by down-sampling.

Following this approach, by down-sampling
from k × RP, we construct RP_balance, where
#rule is no longer a statistical feature. A rough
estimation shows that if we were to balance

Train Test 0 1 2 3 4 5 6

RP_b
RP 99.8 99.7 99.7 99.4 98.5 98.1 97.0

RP_b 99.4 99.6 99.2 98.7 97.8 96.1 94.4
LP 99.6 99.6 99.6 97.6 93.1 81.3 68.1

RP
RP 99.9 99.8 99.7 99.3 98.3 97.5 95.5

RP_b 99.0 99.3 98.5 97.5 96.7 93.5 88.3
LP 99.8 99.8 99.3 96.0 90.4 75.0 57.3

Table 3: The model trained on RP performs worse on
RP_balance (RP_b). This indicates that the model is
using #rule as a statistical feature to make predictions.

Pre∼RP(label(e) = 1|#rule(e) = x) for x up to 110,
the ratio k > 100, that is, we need to spend over
100x running time (200 hours on a 40-core CPU) to
pre-sample roughly 56 million examples; the com-
putational cost would be even more expensive if we
want to completely remove #rule as a statistical fea-
ture. Hence, we only balance this conditional prob-
ability for 0 ≤ x ≤ 80, which takes 10x running
time (20 hours on a 40-core CPU) to pre-sample
5.6 million examples. Not balancing the label for
x > 80 is acceptable as 90% of the examples in
RP have #rule ≤ 80. We train the BERT model on
RP_balance, and the results are reported in Table 6.

BERT uses statistical features to make predic-
tions. As shown in Table 6, BERT trained on
RP shows large performance drop when tested on
RP_balance, while BERT trained on RP_balance
shows even better performance on RP than RP-
trained BERT. Since RP_balance is down-sampled
from RP, the accuracy drop from RP to RP_balance
can only be explained by that BERT trained on RP
is using #rule to make predictions.

Removing statistical features helps generaliza-
tion. As shown in Table 6, compared to RP-
trained BERT, BERT trained on RP_balance
achieves higher accuracy when tested on LP; in
particular, for examples with reasoning depth 6,
the model trained on RP_balance attains an accu-
racy of 68.1%, approximately 10% higher than the
model trained on RP. This is a clear signal that
when #rule is removed as a statistical feature, the
model generalizes better, suggesting that statistical
features can hinder the generalization of the model.

Statistical features explain the paradox. Now
we have a good explanation for the paradox: on
the first hand, as we have discussed in Section 4.1,
statistical features can be arbitrarily complex and
powerful neural models can identify and use them
to achieve high in-distribution accuracy; on the



X Pr(label = 1 | X) k×
f = 15 0.908 5.5
f = 15, b ∈ [2.65,2.75] 0.975 20.0
f = 15, b ∈ [2.65,2.75], r = 58 0.991 55.6

Table 4: Jointly removing statistical features is difficult;
e.g. second row shows: we need to sample at least 20
× RP to balance Pr(label = 1 | f = 15, b ∈ [2.65, 2.75]).

other hand, since the correlations between statisti-
cal features and labels can change as the data distri-
bution changes, the model that relies on statistical
features to make predictions does not generalize to
out-of-distribution examples.

More importantly, as our argument assumes lit-
tle about model architectures/pre-training proce-
dures, most of our conclusions should also hold
for other neural models. This hypothesis is sup-
ported by experiments with T5 (Raffel et al., 2020),
which exhibits behaviors similar to BERT: (1) the
T5 model attaining near-perfect accuracy on the
training distribution fails catastrophically on the
other distributions; (2) the T5 model generalizes
better after #rule is removed from RP, suggesting
that it is using #rule to make predictions. See Ap-
pendix for more details.

4.3 On the Dilemma of Removing Statistical
Features

We show that though removing one statistical fea-
ture (e.g., #rule) from training data can benefit
model generalization, it is computationally infeasi-
ble to jointly remove multiple statistical features.

In the previous section, when we were trying to
remove the #rule from RP, we could only afford to
remove it for 90% of the examples. The general
idea is that if a statistical feature X has a very
strong correlation with the label on some datasetD,
i.e. Pre∼D(label(e) = 1 | X(e) = x) is very close
to 1 or 0, then we would need to sample a lot of
examples to have a balanced set.

The combination of multiple statistical features
can give stronger signal about the label than the
individual ones; thus it is even harder to jointly
remove them. For example, we consider removing
three statistical features from RP: #fact (f), branch-
ing_factor (b) and #rule (r). As shown in Table 4,
as we try to jointly remove more statistical features
X , Pr(label = 1|X) becomes more unbalanced;
in particular, as we progressively remove #fact,
branching_factor and #rule, the minimum times of
examples we need to sample grows roughly expo-

nentially: 5.5 → 20.0 → 55.6. Note that we are
only considering balancing one setting (#fact = 15,
braching_factor ∈ [2.65,2.75], #rule = 58); for
some other settings, the conditional probability can
be more unbalanced, requiring us to pre-sample
even more examples.

5 Related Work

Prior work contextualizes the problem of logi-
cal reasoning by proposing reasoning-dependent
datasets and studies solving the tasks with neural
models (Johnson et al., 2017; Sinha et al., 2019;
Yu et al., 2020; Liu et al., 2020; Tian et al., 2021).
However, most studies focus on solving a single
task, and the datasets are either designed for a spe-
cific domain (Johnson et al., 2017; Sinha et al.,
2019), or have confounding factors such as lan-
guage variance (Yu et al., 2020); they cannot be
used to strictly or comprehensively study the logi-
cal reasoning abilities of models.

Another line of research focuses on leverag-
ing deep neural models to solve logical problems.
For example, SAT solving (Selsam et al., 2019),
maxSAT (Wang et al., 2019), temporal logical prob-
lems (Hahn et al., 2021), DNF counting (Crouse
et al., 2019), learning embeddings for logical for-
mula (Crouse et al., 2019; Abdelaziz et al., 2020)
and mathematical problems (Saxton et al., 2019;
Lample and Charton, 2020). In this work, we focus
only on deductive reasoning, which is a general
and fundamental class of reasoning problems. Xu
et al. (2019) develops a theoretical framework to
characterize how well neural models can generalize
on different reasoning tasks. Beyond deep learning,
Darwiche and Marquis (2002) and Khardon and
Roth (1997) studies the tractability of reasoning
and learning to reason with propositional logic.

6 Conclusion

In this work, we study whether language models
can learn to conduct logical reasoning by end-to-
end training. We report and provide explanation
to a seemingly contradictory phenomenon: while
models can attain near-perfect test accuracy on
training distributions, they fail catastrophically on
other distributions; we demonstrate that they have
learned to exploit statistical features rather than to
emulate the correct reasoning function. Our study
suggests that training on datasets might not be suffi-
cient for model to learn certain complex behaviors
such as reasoning and planning.



Limitations

In Sec. 4.3 we discuss the difficulty of jointly re-
moving statistical features from data via sampling,
yet we do not study how to develop more efficient
algorithms to generate dataset that has no statisti-
cal features. We do not perform the analysis on
real-world NLP reasoning benchmarks as they of-
ten involve factors irrelevant to reasoning itself.
Yet real-world logical reasoning benchmarks (Patel
et al., 2021; Welleck et al., 2021; Yu et al., 2020)
are strictly more difficult than SimpleLogic as mod-
els also need to handle language variance and in-
corporate prior knowledge. If neural models can-
not learn to solve SimpleLogic, it is questionable
whether they can learn to solve the strictly more
complicated counterpart in the real-world.
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A Statistical Features in Different Data Distributions
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(a) Statistics for examples generated by Rule-Priority (RP).
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(b) Statistics for examples generated by Label-Priority (LP).
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(c) Statistics for examples generated by uniform sampling;
we only consider examples with #pred = 30 as a good-enough
approximation: over 99% of the examples generated by uniform
sampling have #pred = 30.

Figure 6: #rule is a statistical feature for RP, LP and the uniform distribution. Even though Pr(label = 1|#rule)
increases as #rule increases for all three distributions, it follows a slightly different pattern for each distribution;
that is to say, the correlation between #rule and the label changes as the underlying data distribution changes, which
explains the generalization failure we observed.
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(a) Statistics for examples generated by Rule-Priority (RP).
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(b) Statistics for examples generated by Label-Priority (LP).
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(c) Statistics for examples generated by uniform sampling; we
only consider examples with #pred = 30 and #rule = 120 as a
good-enough approximation: over 99% of the examples gener-
ated by uniform sampling have #pred = 30 and #rule = 120.

Figure 7: #fact is a statistical feature for RP, LP and the uniform distribution.
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(b) Statistics for examples generated by Label-Priority (LP).
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only consider examples with #pred = 30 and #rule = 120 as a
good-enough approximation: over 99% of the examples gener-
ated by uniform sampling have #pred = 30 and #rule = 120.

Figure 8: branching_factor is a statistical feature for RP, LP and the uniform distribution.

B Experiments with T5

Train Test 0 1 2 3 4 5 6

RP RP 100.0 100.0 99.9 99.8 99.3 99.3 98.8
LP 100.0 99.9 99.9 99.3 96.0 87.7 75.7

LP RP 100.0 99.6 83.5 56.6 55.5 59.4 65.7
LP 100.0 100.0 100.0 99.9 99.9 99.7 99.5

Table 5: Test accuracy on LP/RP for the T5 model trained on LP/RP; the accuracy is shown for test examples
with reasoning depth from 0 to 6. T5 trained on RP achieves almost perfect accuracy on its test set; however the
accuracy drops significantly when it’s tested on LP (vice versa), suggesting that T5 has not learned the correct
reasoning function.

Train Test 0 1 2 3 4 5 6

RP_b
RP 99.8 99.7 99.7 99.4 98.5 98.1 97.0

RP_b 100.0 100.0 99.9 99.8 99.6 99.3 98.9
LP 100.0 99.9 99.9 99.1 97.0 89.3 80.8

RP
RP 100.0 100.0 99.9 99.8 99.3 99.3 98.8

RP_b 100.0 99.9 99.8 99.5 99.0 98.5 97.6
LP 100.0 99.9 99.9 99.3 96.0 87.7 75.7

Table 6: The T5 model trained on RP_balance exhibits better generalization performance on LP, suggesting that
T5 is using #rule as a statistical feature to make predictions.



C Algorithms: Rule-Priority & Label-Priority

a Rule-Priority (RP)
1: pred_num ∼ U [5, 30]
2: preds← Sample(vocab, pred_num)
3: fact_num ∼ U [1, pred_num]
4: rule_num ∼ U [0, 4 ∗ pred_num]
5: rules← empty array
6: while size of rules < rule_num do
7: body_num ∼ U [1, 3]
8: body ← Sample(preds, body_num)
9: head← Sample(preds, 1)

10: if tail 6∈ body then
11: add body → head to rules
12: end if
13: end while
14: fact_num ∼ U [0, pred_num]
15: facts← Sample(preds, fact_num)
16: query ← Sample(preds, 1)
17: Compute label via forward-chaining.
18: return (facts, rules, query, label)

b Label-Priority (LP)
1: pred_num ∼ U [5, 30]
2: preds← Sample(vocab, pred_num)
3: rule_num ∼ U [0, 4 ∗ pred_num]
4: set l ∼ U [1, pred_num/2] and group preds
5: into l layers
6: for predicate p in layer 1 ≤ i ≤ l do
7: q ∼ U [0, 1]
8: assign label q to predicate p
9: if i > 1 then

10: k ∼ U [1, 3]
11: cand← nodes in layer i− 1
12: with label = q
13: body ← Sample(cand, k)
14: add body → p to rules
15: end if
16: end for
17: while size of rules < rule_num do
18: body_num ∼ U [1, 3]
19: body ← Sample(preds, body_num)
20: head← Sample(preds, 1)
21: add body → tail to rules unless tail has label 0

and
22: all predicates in body has label 1.
23: end while
24: facts← predicates in layer 1 with label = 1
25: query ← Sample(preds, 1)
26: label← pre-assigned label for query
27: return (facts, rules, query, label)

Figure 9: Two sampling algorithms Rule-Priority and Label-Priority. Sample(X, k) returns a random subset from
X of size k. U [X,Y ] denotes the uniform distribution over the integers between X and Y .

D Proof of Theorem 1

We prove theorem 1 by construction: in N-layer BERT model, we take the first layer as parsing layer,
the last layer as output layer and the rest layers as forward chaining reasoning layer. Basically, in the
parsing layer we preprocess the natural language input. In forward chaining reasoning layers, the model
iteratively broadcast the RHSs to all LHSs, and check the left hand side (LHS) of each rule and update the
status of the right hand side (RHS). Here we introduce the general idea of the construction, and we will
release the source code for the detailed parameters assignments.

D.1 Pre-processing Parameters Construction
Predicate Signature For each predicate P , we generate its signature SignP , which is a 60-dimensional
unit vector, satisfying that for two different predicates P1, P2, SignP1 · SignP2 < 0.5. We can randomly
generate those vectors and check until the constraints are satisfied. Empirically it takes no more than 200
trials.

Meaningful Vector In parsing layer, we process the natural language inputs as multiple “meaningful
vectors". The meaningful vectors are stored in form of LA||LB||LC ||R||0512, representing a rule LA ∧
LB ∧ LC → R. Each segment LA, LB, LC , R has 64 dimensions, representing a predicate or a always
True/False dummy predicate. For each predicate P , the first 63 dimensions, denoted as P sign, form the
signature of the predicate, and the last dimension is a Boolean variable, denoted as P v. The following
information is converted into meaningful vectors:

1. Rule LHS → RHS : if the LHS has less than 3 predicates, we make it up by adding always
True dummy predicate(s), and then encode it into meaningful vector, stored in the separating token



follows the rule. In addition, for each predicate P in LHS, we encode a dummy meaningful vector as
False→ P and store it in the encoding of P . This operation makes sure that every predicate in the
input sentence occurs at least once in RHS among all meaningful vectors. We will see the purpose
later.

2. Fact P : we represent it by a rule True→ P , and then encode it into meaningful vector and store it
in the embedding of the separating token follows the fact.

3. Query Q: we represent it by a rule Q→ Q, encode and store it in the [CLS] token at beginning.

Hence, in the embedding, some positions are encoded by meaningful vectors. For the rest positions, we
use zero vectors as their embeddings.

D.2 Forward Chaining Parameters Construction
Generally, to simulate the forward chaining algorithm, we use the attention process to globally broadcast
the true value in RHSs to LHSs, and use the MLP layers to do local inference for each rule from the LHS
to the RHS.

In attention process, for each meaningful vector, the predicates in LHS look to the RHS of others
(including itself). If a RHS has the same signature as the current predicate, the boolean value of the RHS
is added to the boolean value of the current predicate. Specifically, we construct three heads. We denote
Q

(k)
i to stand for the query vector of the i-th token of the k-th attention head. For a meaningful vector

written as LA||LB||LC ||R||0512,

Q
(1)
i = Lsign

A ||1
4
, Q

(2)
i = Lsign

B ||1
4
, Q

(1)
i = Lsign

C ||1
4

K
(1)
i = βR,K

(2)
i = βR,K

(3)
i = βR

V
(1)
i = 063||Rv, V

(2)
i = 063||Rv, V

(3)
i = 063||Rv.

Here β is a pre-defined constant. The attention weight to a different predicate is at most 3β
4 , while the

attention weight to the same predicate is at least β, and the predicate with positive boolean value has even
larger (5β4 ) attention weight. Thus, with a large enough constant β, we are able to make the attention
distribution peaky. Theoretically, when β > 300 ln 10, we can guarantee that the attention result

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

satisfies that the value is in the range of [0.8, 1.0] if the predicate on LHS is boardcasted by some RHS
with true value, otherwise it is in the range of [0, 0.2].

This attention results are added to the original vectors by the skipped connection. After that, we use the
two-layer MLP to do the local inference in each meaningful vector. Specifically, we set

10[ReLU(LvA + LvB + LvC − 2.3)

−ReLU(LvA + LvB + LvC − 2.4)]

as the updated Rv. Thus, Rv = 1 if and only if all the boolean values in LHS are true, otherwise Rv = 0.
We also set LvA, L

v
B, L

v
C as 0 for the next round of inference.

D.3 Output Layer Parameters Construction
In output layer, we take out the Boolean value of the RHS of the meaningful vector in [CLS] token.

E Training Details

When training BERT on RP or LP, we train for 20 epochs with a learning rate of 4× 10−5, a warm-up
ratio of 0.05, and a batch size of 64. Training takes approximately 2 days on 4 NVIDIA 1080Ti / 2080Ti
GPUs with 12Gb GPU memory. When training T5-base, we use the same learning rate and batch size and
train for the same number of epochs.



F Examples from SimpleLogic

Rules: If messy and hypocritical and lonely, then shiny. If tame, then friendly. If plain and shiny and homely, then nervous. If
tender, then hypocritical. If dull and impatient and plain, then tame. If spotless, then perfect. If elegant and tender, then homely.
If lonely and inquisitive and plain, then homely. If proud, then quaint. If outrageous and homely and impatient, then messy. If
quaint, then outrageous. If elegant and glamorous and ugly, then homely. If perfect and sincere and mean, then ambitious. If
spotless and quaint and tame, then messy. If tame and sincere and homely, then elegant. If ambitious, then elegant. If shiny and
proud, then combative. If quaint and elegant and nervous, then impatient. If glamorous, then outrageous. If proud, then friendly.
If combative and nervous, then outrageous. If outrageous and quaint, then careless. If lonely and plain, then inquisitive. If lonely
and ugly and combative, then tame. If friendly, then dull. If lonely, then tame. If tender and plain and lonely, then elegant. If
glamorous, then hypocritical. If tame and helpless and impatient, then friendly. If careless and messy, then nervous. If combative
and shiny, then inquisitive. If plain and outrageous and ugly, then glamorous. If careless and quaint and spotless, then combative.
If homely, then helpless. If ambitious, then proud. If messy and ugly, then inquisitive. If perfect, then proud. If helpless and
perfect, then elegant. If perfect, then lonely. If lonely and hypocritical, then perfect. If perfect, then friendly. If tender and messy
and ambitious, then quaint. If proud, then mean. If outrageous, then perfect. If nervous, then inquisitive. If hypocritical and
homely and nervous, then tender. If friendly and dull and outrageous, then ambitious. If glamorous, then proud. If impatient and
nervous, then spotless. If mean and quaint and lonely, then spotless. If glamorous, then careless. If dull and mean, then elegant.
If homely, then proud. If inquisitive and plain, then ugly. If tender, then homely. If proud and quaint and lonely, then outrageous.
If glamorous and perfect and dull, then messy. If helpless and tame and tender, then proud. If friendly and mean, then helpless.
If inquisitive, then spotless. If shiny, then tame. If perfect and quaint, then careless. If careless and nervous and combative, then
homely. If outrageous and inquisitive and elegant, then hypocritical. If tender and quaint and perfect, then careless. If mean and
friendly and ambitious, then combative.
Facts: Alice shiny. Alice tender. Alice lonely.
Query: Alice is dull ?
Label: True
Proof Depth: 3
From: RP

Rules: If witty, then diplomatic. If careless and condemned and attractive, then blushing. If dishonest and inquisitive and average,
then shy. If average, then stormy. If popular, then blushing. If talented, then hurt. If popular and attractive, then thoughtless. If
blushing and shy and stormy, then inquisitive. If adorable, then popular. If cooperative and wrong and stormy, then thoughtless.
If popular, then sensible. If cooperative, then wrong. If shy and cooperative, then witty. If polite and shy and thoughtless, then
talented. If polite, then condemned. If polite and wrong, then inquisitive. If dishonest and inquisitive, then talented. If blushing
and dishonest, then careless. If inquisitive and dishonest, then troubled. If blushing and stormy, then shy. If diplomatic and
talented, then careless. If wrong and beautiful, then popular. If ugly and shy and beautiful, then stormy. If shy and inquisitive
and attractive, then diplomatic. If witty and beautiful and frightened, then adorable. If diplomatic and cooperative, then sensible.
If thoughtless and inquisitive, then diplomatic. If careless and dishonest and troubled, then cooperative. If hurt and witty and
troubled, then dishonest. If scared and diplomatic and troubled, then average. If ugly and wrong and careless, then average. If
dishonest and scared, then polite. If talented, then dishonest. If condemned, then wrong. If wrong and troubled and blushing,
then scared. If attractive and condemned, then frightened. If hurt and condemned and shy, then witty. If cooperative, then
attractive. If careless, then polite. If adorable and wrong and careless, then diplomatic. Facts: Alice sensible Alice condemned
Alice thoughtless Alice polite Alice scared Alice average
Query: Alice is shy ?
Label: False
Proof Depth: 3
From: RP



Rules: If comfortable, then tense. If nervous, then blushing. If nervous and difficult, then beautiful. If disgusted, then clean. If
talkative and aggressive, then light. If versatile and supportive, then beautiful. If aggressive, then different. If glamorous and
supportive and pleasant, then inexpensive. If light and outrageous and modern, then pleasant. If blushing, then tense. If beautiful,
then clean. If perfect and inexpensive, then comfortable. If modern and different, then supportive. If tense, then glamorous. If
talkative and aggressive and perfect, then blushing. If versatile, then outrageous. If tense, then perfect. If modern and perfect
and inexpensive, then difficult. If versatile and aggressive, then reserved. If comfortable and versatile, then modern. If pleasant
and versatile, then reserved. If clean and tense and difficult, then outrageous. If glamorous and modern, then courageous. If
elegant and clean, then perfect. If pleasant, then tense. If versatile and blushing and elegant, then light. If reserved, then clean. If
clean and talkative and difficult, then reserved. If light, then courageous. If blushing, then light. If different and beautiful, then
modern. If disgusted and talkative, then perfect. If elegant and reserved and talkative, then aggressive. If elegant and courageous,
then outrageous. If modern and difficult, then disgusted. If supportive and beautiful, then light. If blushing, then glamorous. If
comfortable and modern and glamorous, then blushing. If disgusted and inexpensive and talkative, then difficult. If different
and clean and disgusted, then modern. If clean and talkative and light, then supportive. If modern and nervous, then difficult.
If talkative and aggressive, then modern. If tense and beautiful, then supportive. If modern and inexpensive and glamorous,
then comfortable. If difficult and beautiful and modern, then supportive. If nervous and elegant and aggressive, then modern. If
tense, then light. If comfortable and inexpensive and disgusted, then tense. If inexpensive and elegant, then nervous. If nervous,
then elegant. If glamorous and pleasant, then elegant. If elegant and outrageous, then pleasant. If aggressive and disgusted
and comfortable, then light. If talkative and reserved, then clean. If aggressive and modern and inexpensive, then supportive.
If reserved and versatile and glamorous, then modern. If comfortable and pleasant and beautiful, then outrageous. If nervous
and different and elegant, then modern. If difficult and perfect and outrageous, then tense. If comfortable and blushing and
glamorous, then clean. If disgusted, then inexpensive. If inexpensive and tense, then blushing. If elegant, then aggressive. If
inexpensive and versatile, then pleasant. If supportive and tense and beautiful, then disgusted. If glamorous and beautiful, then
talkative. If tense and reserved, then beautiful. If different, then pleasant. If glamorous and supportive, then clean.
Facts: Alice versatile. Alice beautiful. Alice light. Alice glamorous. Alice outrageous. Alice difficult.
Query: Alice is comfortable ?
Label: True
Proof Depth: 6
From: RP

Rules: If attentive and loving and beautiful, then helpful. If bad-tempered and nervous, then dull. If unpleasant and elated and
proud, then gifted. If easy and ugly and unpleasant, then frantic. If courageous and dull and nervous, then loving. If gifted, then
nervous. If unpleasant, then bad-tempered. If easy and excited, then unpleasant. If impartial and gifted, then helpful. If shy and
elated and courageous, then excited. If stubborn, then straightforward. If thoughtless, then excited. If beautiful and stubborn
and straightforward, then bossy. If anxious and ugly and courageous, then elated. If thoughtless and loving and impartial, then
courageous. If beautiful and stubborn and loving, then dull. If impartial and shy, then frantic. If thoughtless and excited, then
condemned. If helpful and beautiful and shy, then bossy. If ambitious and frantic, then straightforward. If condemned, then
easy. If nervous, then loving. If attentive and helpful and beautiful, then condemned. If easy, then nervous. If impartial and
frantic and bad-tempered, then attentive. If condemned and stubborn, then elated. If anxious and ugly, then excited. If stupid,
then nervous. If thoughtless and stupid and courageous, then condemned. If straightforward and shy and loving, then stupid.
If courageous and anxious and gifted, then elated. If unpleasant and beautiful and condemned, then stubborn. If frantic, then
straightforward. If attentive, then bad-tempered. If unpleasant, then bossy. If bossy and courageous, then straightforward. If
nervous and condemned, then courageous. If ambitious and elated and bad-tempered, then ugly. If beautiful, then loving. If
ambitious and frantic, then easy. If helpful and unpleasant and excited, then beautiful. If courageous, then shy. If loving and
bad-tempered, then proud. If anxious, then bad-tempered. If elated and anxious and bad-tempered, then courageous. If ambitious,
then bossy. If ambitious and helpful, then excited. If shy and easy and stupid, then helpful. If helpful and unpleasant and
thoughtless, then shy. If elated and gifted and easy, then anxious. If helpful and ambitious and condemned, then easy. If stubborn
and proud, then bad-tempered. If stubborn and thoughtless and attentive, then unpleasant. If stupid and elated, then bossy. If
stubborn and attentive and impartial, then straightforward. If attentive, then thoughtless. If loving and ambitious, then dull. If
unpleasant and thoughtless and courageous, then straightforward. If bad-tempered and stubborn, then easy. If bad-tempered,
then excited. If impartial, then proud. If impartial, then unpleasant. If bossy and proud and attentive, then condemned. If helpful
and nervous and bad-tempered, then easy. If beautiful, then excited. If attentive and straightforward, then proud. If shy and
impartial, then unpleasant. If thoughtless, then easy. If easy and beautiful and proud, then bossy. If bossy and condemned and
proud, then dull. If thoughtless and attentive and anxious, then helpful. If dull, then proud. If ugly and gifted and ambitious, then
beautiful. If proud, then frantic. If thoughtless and stupid and shy, then impartial. If condemned and excited, then stubborn. If
straightforward and impartial, then frantic.
Facts: Alice gifted. Alice ambitious. Alice stupid.
Query: Alice is anxious ?
Label: False
Proof Depth: 6
From: RP



Rules: If blushing and disgusted, then fancy. If impatient, then long. If frantic, then long. If blushing and frail, then gifted.
If frail and long and fancy, then disgusted. If frantic and helpless, then gifted. If broad-minded and frantic, then blushing. If
helpless, then broad-minded. If frantic and disgusted and frail, then blushing. If helpless, then impatient. If blushing, then
disgusted. If long and gifted and blushing, then frantic. If frantic, then blushing. If fancy, then impatient. If gifted, then fancy. If
frail, then helpless. If blushing and frail, then helpless. If blushing, then gifted. If broad-minded and impatient, then long. If
broad-minded and disgusted, then fancy. If impatient and disgusted and long, then broad-minded. If broad-minded, then helpless.
If disgusted and gifted, then blushing. If gifted and frantic, then fancy. If frail, then broad-minded. If fancy, then broad-minded.
If broad-minded, then helpless. If blushing and disgusted, then fancy. If frantic and blushing and gifted, then frail. If frantic, then
disgusted. If disgusted, then fancy. If fancy and helpless, then frantic. If frail and disgusted and helpless, then broad-minded. If
frantic, then gifted. If long and fancy, then frantic. If blushing, then gifted. If impatient and helpless and gifted, then frantic. If
frail and gifted and impatient, then broad-minded. If helpless, then broad-minded.
Facts: Alice frail.
Query: Alice is disgusted ?
Label: False
Proof Depth: 3
From: LP

Rules: If different and disobedient, then witty. If agreeable, then weary. If aggressive, then elated. If ugly, then serious. If
aggressive and enchanting and frail, then rational. If rude and serious and pessimistic, then ugly. If talented and aggressive and
busy, then disobedient. If aggressive and weary and victorious, then serious. If weary and witty and talented, then different. If
straightforward, then victorious. If rational and aggressive and disobedient, then tidy. If wrong and serious, then agreeable. If
rude, then talented. If rational and tense and rude, then aggressive. If wrong, then stormy. If tense, then wrong. If elated and
talented, then enchanting. If rude and weary, then ugly. If tidy, then elated. If tidy and talented, then calm. If long and weary, then
wrong. If serious, then weary. If tense and rational and agreeable, then victorious. If agreeable and different, then enchanting. If
weary and straightforward, then agreeable. If wandering, then stormy. If rude, then stormy. If shiny, then rational. If rational
and serious, then straightforward. If wrong, then wandering. If agreeable and aggressive and rude, then shiny. If victorious,
then serious. If ugly and rude, then tidy. If different, then wandering. If agreeable and weary and long, then wandering. If
witty and frail and aggressive, then different. If enchanting, then exuberant. If busy and aggressive, then pessimistic. If talented
and ugly, then exuberant. If rude, then victorious. If elated and calm, then shiny. If frail, then long. If straightforward and
ugly and victorious, then calm. If exuberant and tidy, then victorious. If wrong and talented, then aggressive. If shiny and
pessimistic and busy, then tense. If agreeable and tidy, then rude. If witty and wandering, then busy. If exuberant and ugly and
frail, then pessimistic. If busy and long and calm, then frail. If stormy and calm, then straightforward. If shiny and wrong and
frail, then wandering. If long and agreeable, then stormy. If long and tidy, then talented. If exuberant, then different. If rude, then
disobedient. If tense and long, then witty. If witty, then pessimistic. If agreeable and tidy and weary, then wrong. If talented and
busy, then straightforward. If long and aggressive, then exuberant. If shiny and tidy and witty, then rude. If exuberant, then
disobedient. If straightforward and weary, then aggressive. If aggressive, then different. If frail, then tense. If calm and elated,
then victorious. If long and tense, then enchanting. If calm and ugly, then aggressive.
Facts: Alice frail.
Query: Alice is stormy ?
Label: True
Proof Depth: 3
From: LP

Rules: If frantic and helpful, then victorious. If inquisitive and zealous, then bad-tempered. If busy and vivacious, then
condemned. If embarrassed, then rude. If thoughtful and rude and helpful, then zealous. If agreeable, then curious. If witty
and perfect and thoughtful, then shiny. If impartial and tense, then fine. If frantic and thoughtful and busy, then embarrassed.
If agreeable, then pessimistic. If busy and long and embarrassed, then thoughtful. If long and intellectual and fancy, then
enchanting. If perfect and victorious and hurt, then zealous. If inquisitive and hurt, then vivacious. If disgusted and tense, then
intellectual. If fine, then busy. If fancy and bad-tempered, then fine. If thoughtful, then long. If victorious and condemned,
then hurt. If tense, then fine. If frantic, then enchanting. If victorious, then impartial. If agreeable, then enchanting. If hurt and
zealous and inquisitive, then fancy. If curious, then frantic. If helpful and zealous, then intellectual. If busy and curious, then
agreeable. If curious, then helpful. If curious and victorious, then pessimistic. If witty and shiny and busy, then perfect. If rude
and condemned and victorious, then zealous. If witty and embarrassed, then frantic. If perfect and victorious and enchanting,
then fancy. If zealous and witty, then rude. If hurt and curious and condemned, then embarrassed. If victorious and busy and
disgusted, then intellectual. If fancy and shiny, then enchanting. If hurt and victorious and agreeable, then curious. If thoughtful
and helpful, then disgusted. If fancy and intellectual, then shiny. If frantic and impartial, then embarrassed. If impartial, then
thoughtful. If pessimistic, then curious. If condemned, then thoughtful. If enchanting, then witty. If zealous and inquisitive
and agreeable, then condemned. If fancy and inquisitive, then bad-tempered. If enchanting and fancy and rude, then curious. If
vivacious and condemned, then zealous. If perfect, then impartial. If helpful and embarrassed and frantic, then condemned. If
helpful, then perfect. If curious, then embarrassed. If condemned, then enchanting. If fine and intellectual, then shiny. If hurt
and agreeable, then victorious. If victorious and condemned and rude, then inquisitive. If fancy, then victorious. If impartial
and frantic and curious, then hurt. If fancy and long, then vivacious. If hurt and vivacious, then tense. If witty and vivacious
and helpful, then embarrassed. If curious, then hurt. If fancy and rude, then zealous. If impartial and shiny and rude, then
tense. If pessimistic, then embarrassed. If disgusted and busy and rude, then long. If witty and embarrassed and victorious, then
pessimistic. If curious and agreeable, then vivacious. If embarrassed and hurt, then victorious. If intellectual, then witty.
Facts: Alice tense. Alice disgusted.
Query: Alice is hurt ?
Label: False
Proof Depth: 6
From: LP



Rules: If tense and tame, then rude. If disgusted, then stormy. If modern and dishonest, then tense. If light, then inquisitive. If
disgusted, then light. If elegant, then average. If bright, then ugliest. If versatile and average and tense, then stormy. If tense
and disobedient, then powerful. If ugliest, then careless. If nervous and ugliest, then outstanding. If versatile, then tense. If
lonely and helpless, then modern. If popular, then powerful. If worrisome and ugly and ugliest, then elegant. If worrisome and
helpless and popular, then alert. If attractive, then disgusted. If modern and dishonest, then disobedient. If careless and bright,
then elegant. If disgusted, then helpless. If attractive and ugliest, then stormy. If careless and alert, then stormy. If careless,
then attractive. If cruel and versatile and ugly, then dishonest. If disobedient and elegant and ugly, then nervous. If popular,
then ugly. If bright and lonely, then elegant. If alert, then rude. If versatile, then alert. If versatile and helpless, then stormy. If
popular and lonely, then rude. If ugly, then stormy. If alert and bright, then worrisome. If ugly, then bright. If ugly and lonely,
then helpless. If tense and disgusted, then alert. If outstanding, then inquisitive. If disobedient, then elegant. If careless and
alert and ugly, then dishonest. If rude and lonely and powerful, then average. If ugly and versatile and helpless, then worrisome.
If worrisome, then popular. If powerful and dishonest and ugly, then versatile. If disgusted, then average. If cruel, then light.
If outstanding and bright and cruel, then stormy. If powerful, then tense. If disobedient and tense, then lonely. If tame, then
cruel. If inquisitive and lonely, then outstanding. If lonely, then outstanding. If ugly, then alert. If nervous and careless, then
worrisome. If disobedient, then powerful. If helpless, then careless. If popular and average, then versatile. If helpless, then
ugliest. If light, then rude. If ugly and stormy and disgusted, then nervous. If average and ugly and attractive, then nervous. If
worrisome and stormy and careless, then bright. If ugly and popular and attractive, then helpless. If dishonest and rude and
helpless, then popular. If tense and bright and disgusted, then ugliest. If careless and ugliest, then stormy. If nervous and tense
and quaint, then cruel. If versatile, then helpless. If alert, then attractive. If ugliest, then nervous. If popular, then inquisitive. If
helpless, then disgusted. If tame, then quaint. If inquisitive, then dishonest. If careless and nervous, then versatile. If alert, then
attractive. If lonely and helpless, then elegant. If quaint, then outstanding. If modern and versatile, then stormy. If quaint and
ugliest and popular, then dishonest. If bright and stormy, then attractive. If inquisitive and rude, then modern. If popular, then
powerful. If elegant, then average. If helpless and average and lonely, then cruel. If bright, then ugliest. If average and helpless,
then nervous. If tame and popular, then powerful. If rude and disobedient, then elegant. If ugly and disgusted, then nervous. If
worrisome, then rude. If ugliest, then cruel. If versatile and ugly and careless, then cruel. If outstanding, then elegant. If quaint
and attractive, then careless. If nervous, then powerful. If ugliest, then rude. If elegant and outstanding, then rude. If disobedient
and dishonest, then modern. If worrisome and ugliest, then versatile. If alert, then helpless. If modern and tame and outstanding,
then disobedient. If modern and popular, then disobedient. If light, then rude.
Facts: Alice tame.
Query: Alice is powerful ?
Label: True
Proof Depth: 6
From: LP


