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Abstract

Weightedmodel integration (WMI) is a framework to perform advanced probabilistic
inference in hybrid domains, i.e., on distributions over mixed continuous-discrete
random variables and in the presence of complex logical and arithmetic constraints.
In this work, we advance theWMI framework on both the theoretical and algorithmic
side. First, we trace the boundaries of tractability for WMI inference in terms of two
key properties of a WMI problem’s dependency structure: sparsity and diameter.
We prove that exact inference is only efficient if that structure is tree-shaped with
logarithmic diameter. While this result deepens our theoretical understanding of
WMI it hinders the practical applicability of exact WMI solvers to large problems.
To overcome this, we propose the first approximate WMI solver that does not resort
to sampling, but performs exact inference on an approximate model. Our solution
iteratively performs message passing in a relaxed problem structure to recover lost
dependencies. As our experiments show, it scales to problems that are out of the
reach of exact WMI solvers while delivering accurate approximations.

1 Introduction

Consider an autonomous agent operating under uncertainty in a real-world scenario, for instance a
self-driving vehicle. It has to model both continuous variables like the speed and position of other
cars and discrete ones like the color of traffic lights and the number of pedestrians. Moreover, in
order to make decisions, it needs to perform advanced probabilistic reasoning. For example, it has to
reason about physical constraints while computing the probability of a grounded scene described via
complex algebraic constraints, such as the geometry of vehicles and the roads ahead.
Performing probabilistic inference in these constrained and hybrid (mixed continuous-discrete)
scenarios goes beyond the limited inference capabilities of intractable probabilistic models such
as variational autoencoders [28] and generative adversarial networks [25]. This is also the case
for classical probabilistic graphical models for hybrid domains [27, 32] and more recent tractable
alternatives [33, 38, 40] which struggle to either perform inference over complex algebraic constraints
or make too simplistic representational or distributional assumptions.
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On the other hand, Weighted Model Integration (WMI) [8, 34] is a modeling and inference framework
that supports general hybrid probabilistic reasoning over algebraic constraints, by design. Indeed, in
the WMI framework, mixed complex continuous-discrete interactions can be easily expressed in the
language of Satisfiability Modulo Theories (SMT) [7] and answering probabilistic queries involving
algebraic constraints can be naturally cast as integration of certain weight functions over the regions
that satisfy those constraints.
In this paper we advance the WMI framework on two fronts. First, we deepen the theoretical
understanding of the complexity of WMI inference on real-world problems by proving hardness
results. Second, we deliver an efficient and accurate approximateWMI solver as a practical algorithmic
solution to deploy WMI inference at a larger scale.
Specifically, we study the dependency structure of WMI problems as specified by the primal graph of
their SMT formula [22]. We prove that performing exact inference is #P-hard if the primal graph
has a treewidth larger than one or a diameter that is linear in the number of variables. Second, to
overcome these negative results, we introduce ReCoIn , a practical algorithmic solution that extends
the relax-compensate-and-recover framework [14, 16, 17] for approximate discrete inference to hybrid
inference scenarios with algebraic constraints. As our experiments suggest ReCoIn candidates as the
best alternative, in terms of scalability and accuracy of the delivered approximations, in the current
panorama of general-purpose WMI solvers.
The rest of the paper is organized as follows. In Section 2 we introduce the notation and background
needed to later prove our theoretical results in Section 3 and to introduce ReCoIn in Section 4. Before
evaluating ReCoIn in Section 6 we discuss related work in Section 5.

2 Background

Notation. Uppercase letters denote random variables (X, B) and lowercase letters denote their
assignments (x, b). We use bold for sets of variables (X,B), and their joint assignments (x, b). We
use capital Greek letters for logical formulas (Γ,∆). Literals are atomic formulas or their negation,
and are denoted using either ` or lowercase Greek letters (γ, δ). We let x |= ∆ denote the satisfaction
of a formula ∆ by an assignment x. Its corresponding indicator function is nx |= ∆o.

Satisfiability Modulo Theories . To represent complex relationships between discrete and continu-
ous variables, we harness the language of Satisfiability Modulo Theories (SMT) [7] which generalizes
Boolean propositional logic [6]. Specifically, we use SMT over linear real arithmetic (LRA) which
has been used as an expressive modeling language for probabilistic programming [13], model checking
[23] and robotics [20]. As is common, we adopt quantifier-free SMT(LRA) formulas and we assume
them to be in conjunctive normal form (CNF), that is, a conjunction of clauses. For brevity, we will
refer to them as simply SMT formulas. To characterize the dependency structure of an SMT formula
we make us of its primal graph representation.
Definition 2.1. (Primal Graph) Let ∆ be an SMT formula. Then its primal graph G∆ = (V, E) is the
undirected graph whose vertex setV is the set of variables in formula ∆, and whose edge set E has
edge X − Y iff variable X and variable Y appear together in one clause Γ ∈ ∆.
Example 2.2 (SMT formula and its primal graph). Consider the SMT formula ∆ on the left over
continuous variables X,Y, Z and boolean variable B, its primal graph G∆ is shown on the right.

∆ =

{
(0 ≤ X ≤ 2) ∧ (1 ≤ Y ≤ 2) ∧ (0 ≤ Z ≤ 2)
(X ≥ 1) ∨ B
(X + Y ≤ 3) ∧ (X + Z ≥ 2) ∧ (Y + Z ≤ 3) B X Y

Z

Weighted Model Integration (WMI). Weighted Model Integration (WMI) [8, 34] is a framework
for probabilistic modeling and inference over mixed continuous-discrete distributions in presence of
algebraic constraints defined as SMT formulas. These representations are captured by WMI models.
Definition 2.3. (WMI model) Let X be a set of continuous random variables assuming values in R,
and B a set of Boolean random variables assuming values in B = {true, false}. A WMI model is a
pair (∆,w), where ∆ is an SMT formula over X and B, and w : (x,b) 7→ R+ is a positive function,
called the weight function.
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We consider classes of WMI problems whose weight function comes from a parametric function
family, denoted Ω. Moreover, we adopt the common assumption of weight functions w to be
defined as products of per-literal weights [8, 11, 41]. That is, w is definable via a set of functions
W = {w`(x)}`∈L , where L are the literals in ∆. and where each w` is defined over variables in
literal `. Then, the weight of assignment (x, b) is: w(x, b) =

∏
`∈L w`(x, b)

nx,b |=`o. Hence, we will
represent WMI models as pairs (∆,W).
Definition 2.4. (WMI task) Let (∆,W) be a WMI model over real variables X and Boolean variables
B. The WMI task for (∆,W) is to compute

WMI(∆,W; X,B) ,
∑

b∈B|B|

∫
(x,b) |=∆

∏
`∈L

w`(x, b)
nx,b |=`o dx. (1)

That is, the task is to sum over all possible Boolean assignments b ∈ B |B | while integrating over the
weighted assignments of X that satisfy the formula: (x, b) |= ∆.

When all weights w`(x) are constants and all variables continuous (B = ∅) we retrieve the model
integration (MI) task [41], whereas when all variables are Boolean (i.e., X = ∅) WMI equals the
well-knownweightedmodel counting (WMC) task [11]. In the general case, solvingWMI(∆,W; X,B)
equals to computing the partition function of the unnormalized probability distribution induced by
weightsW on formula ∆ and restricted to the regions where ∆ is SAT.
As such, computing the probability of an event represented as an SMT formula Φ involving algebraic
constraints w.r.t. the distribution induced byW on ∆ can be done by computing the WMI of the
conjunction of formula ∆ and formula Φ, normalized by the partition function:

Pr∆(Φ) =WMI(∆ ∧ Φ,W; X,B) /WMI(∆,W; X,B).
Example 2.5 (Advanced probabilistic inference with WMI). Consider the SMT formula ∆ in
Example 2.2 with per-literal weightsW = {w`1 (B) := 2; w`2 (x) := x2; w`3 (y, z) := 2yz} where
`1 := B, `2 := x ≥ 1, `3 := y + z ≤ 3 and all the weights associated to other literals are constantly 1.
Then the WMI of formula ∆ evaluates to:

WMI(∆,W; X, B) =
∫ 2

1
dx

∫ −x+3

1
dy

∫ −y+3

−x+2
x2 · (2 + 1) · (x + y) · 2yz dz =

11173
480

.

Moreover, for the two formulas Φc = (B = true) and Φ1 = 0 ≤ z ≤ 1, then
Pr∆(Φ1 |Φc) =WMI(∆ ∧ Φc ∧ Φ1,W; X, B) /WMI(∆ ∧ Φc,W; X, B) = 18936 / 78211 ≈ 0.242.

From here on, w.l.o.g. we will assume WMI problems to be defined on continuous variables only.
We leverage the polytime reduction introduced in Zeng and Van den Broeck [41] to map a WMI
problem (∆,W) over continuous and Boolean variables X and B to a new WMI problem (∆′,W ′)

over continuous variables X′ only. This is done by properly introducing auxiliary variables in X′ to
account for B. The resulting primal graph G∆′ is isomorphic to G∆. For instance, we can replace B in
Example 2.5 by a real variable TB having values in [−1, 1] without changing the WMI task nor the
treewidth or the diameter of the primal graph (cf. Appendix A).

3 On the hardness of WMI

While the general formulation of WMI we have provided in the previous section is elegant and
appealing for advanced probabilistic reasoning, it is, however, not practical in general. In fact, it
requires solving an arbitrarily complex integral, which is a #P-hard problem [5].
To fill this gap, recent works have started looking for classes of tractable WMI problems, i.e., problems
for which a solution can be computed exactly in polytime [41, 42]. These classes of problems can be
characterized by two parameters: the treewidth and the diameter of the primal graph of the SMT
formulas considered, where the latter is generally expressed as a function of the number of variables
in the problem. Note that this is strikingly different from classical discrete probabilistic graphical
models, where most of the complexity results are stated in terms of the treewidth alone [31, 36].
Definition 3.1. (WMI(Ω, δ, t) Problem Class) Let WMI(Ω, δ, t) be the class of WMI problems over
models of the form (∆,W) on real domains, having primal graph G∆ with diameter of Θ(δ(n)) and
treewidth t, where n is the number of variables in the formula ∆; and having per-literal weightsW in
a function family Ω.
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The largest tractable WMI class known so far has been introduced in Zeng et al. [42] as
WMI(Ω, log(n), 1), i.e., the class of problems over n real variables whose primal graph is tree-
shaped (treewidth 1) and has diameter of length logarithmic in n, and whose weight functions belong
to a function family Ω satisfying some conditions called tractable weight conditions (TWCs).
Definition 3.2. (TWCs) Given a parametric weight function family Ω, it satisfies the TWCs iff

i) it is closed under product, i.e., ∀ f , g ∈ Ω, f · g ∈ Ω;
ii) it is closed under definite integration, i.e., ∀ f ∈ Ω, F(u(x)) − F(l(x)) ∈ Ω where F is the

antiderivative of f , and l(x), u(x) are SMT(LRA) integration bounds for any x ∈ X;
iii) the symbolic antiderivative of any f ∈ Ω can be tractably computed by symbolic integration.

Examples of weight functions in family Ω include the largely adopted family of (piecewise)
polynomials [8], the family of exponentiated linear functions and the family of their products. In the
following analysis, we will restrict our attention to weight function families satisfying the TWCs.
In Zeng et al. [42] the tractability of problem classWMI(Ω, log(n), 1) is demonstrated by construction,
where they introduce a message passing scheme, namedMP-WMI, that runs in polytime on tree-shaped
and diameter-bounded primal graphs. That is, some sufficient conditions for tractable WMI classes are
provided. Here we provide a finer charting of the “tractable islands” of WMI problems by questioning
the necessity of the above conditions while looking for larger tractable classes. We prove that unless
P = NP, larger classes are not tractable. We begin by proving that increasing the diameter of a
tree-shaped problem structure makes it hard.
Theorem 3.3. Let WMI(Ω, n, 1) be the class of WMI problems whose weight function family Ω
satisfies the TWCs. Then inference in WMI(Ω, n, 1) is #P-hard.

Sketch of proof. We build a polytime reduction from a #P-complete variant of the subset sum
problem [24, 12, 26] to a WMI problem with constant weights and whose primal graph G∆ is a chain
with diameter exactly n. A complete proof is in Appendix B. �

Next, we turn our attention to another class of WMI problems, the class WMI(Ω, log(n), 2), having
logarithmic diameter but treewidth 2. This class is also supposed to be “easy” in the sense that it extends
the tractable class WMI(Ω, log(n), 1) by slightly increasing the treewidth by one. Unfortunately,
inference in WMI(Ω, log(n), 2) is also hard.
Theorem 3.4. LetWMI(Ω, log(n), 2) be the class of WMI problems whose parametric weight function
family Ω satisfies the TWCs. Then inference in WMI(Ω, log(n), 2) is #P-hard.

Sketch of proof. Analogously to Theorem 3.3, we prove it by constructing a polytime reduction from
a #P-complete variant of the subset sum problem to a MI problem whose primal graph has treewidth
two but diameter being at most log(n). A complete proof is provided in Appendix B. �

Note that our result differs from the one presented in [42] for the hardness of the class 2WMI(Ω),
containing WMI problems with SMT formulas being conjunctions of clauses comprising at most
two variables. In fact,WMI(Ω, log(n), 2) is contained in 2WMI(Ω). As such, we trace the tractablity
boundaries of WMI inference with higher precision, as the next corollary states. Its proof follows
from Theorems 3.3 and 3.4 and from the sufficiency as demonstrated in Zeng et al. [42].
Corollary 3.5. Let WMI(Ω, log(n), t) be the class of WMI problems whose parametric weight
function family Ω satisfies the TWCs. Then WMI(Ω, log(n), t) is a tractable WMI class for inference
if-and-only-if treewidth t = 1.

These complexity results set the standard for the solver complexity: every exact WMI solver that aims
to be efficient, needs to operate in the regime of Corollary 3.5. However, real-world problems do not
always conform to the structural desiderata for primal graphs stated in it. This implies that efficient
approximations might not only be useful in these scenarios, but needed. In the next section we fill
this gap, by introducing our approximate WMI solver that navigates the tractable islands in WMI
problems by performing efficient inference on a relaxed version of intractable WMI problems.
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4 ReCoIn: Relax, compensate and then integrate

Our algorithm to approximate WMI inference comprises three phases: i) RElaxing an intractable
WMI model into a simpler one amenable to exact inference by removing dependencies from it; then
ii) introduce certain literals and weights to COmpensate for the dependency structure lost in this way
and iii) optimize them by solving a series of exact INtegration problems. We name it ReCoIn. With
ReCoIn we can navigate a spectrum of approximations — with the original primal graph G∆ on one
end, and a fully disconnected version on the other — by removing more and more edges. As such,
ReCoIn can be viewed as extending the relax-compensate-recover (RCR) framework [14, 16, 17] for
approximate inference on discrete probabilistic models to continuous representations and in presence
of algebraic constraints.

4.1 Relaxation: introducing and then “breaking” equivalence constraints

The aim of the relaxation step is to obtain a new SMT formula ∆rel such that its associated primal
graph G∆rel , serves as the simplification of the original G∆ by removing a given set of edges. We will
show that the removal of any edge can be formulated as the removal of an equivalence edge [17].
This process consists of two steps. First, we create an augmented formula ∆aug by introducing
new variables to ∆ and enforcing them to act as copies of certain original variables by explicitly
adding equivalence constraints. Second, we deliver the relaxed G∆rel by removing these equivalence
constraints.

Augmentation. The detailed process of distilling a new augmented model (∆aug,Waug) from
(∆,W), given a subset of edges Ed ⊆ E in G∆ to remove, is listed in Algorithm 2 in Appendix C.
At its core, there are routines for copying one variable and adding the corresponding equivalence
constraints and compensating literals. For each edge Xi − Xj ∈ Ed to be removed, one of its variables
is arbitrarily selected, say Xi . Then a variable Xc

i , as a copy of the chosen Xi , is introduced in ∆aug as
well as one equivalence constraint between the two as the literal ˆ̀ : (Xc

i = Xi) with associated weight
function δ(Xi, Xc

i ) where δ is the Dirac delta function. Then we properly rename all occurrences of Xi

by Xc
i in the literals appearing in the clauses of ∆aug that also contain Xj and introduce copied literals

for the univariate clauses over Xi only. These steps cause the primal graph G∆aug to now contain the
dependency Xi − Xc

i − Xj but not Xi − Xj .

Note that the augmented WMI model (∆aug,Waug) now contains more variables than the original
one. Specifically, for each variable Xi ∈ G∆ we might have introduced Ci different copies in G∆aug ,
denoted as X1

i , . . . , XCi

i , if we removed Ci edges over Xi . We will denote the original Xi as X0
i for

notation consistency. Even if the dimensionality of the augmented WMI problem is increased by
augmentation, the next propositions are guaranteeing that we are not altering the partition function
and the marginal distributions of Pr∆, and that introducing equivalence constraints does not alter the
induced distribution.
Proposition 4.1. Let ∆ be an SMT formula with primal graph G∆ and per-literal weight functions
W, and let ∆aug andWaug be the output of Algorithm 2 when applied to ∆ and G∆ given a certain
subset of edges in G∆. Then it holds that WMI(∆,W) =WMI(∆aug,Waug). Moreover, for any Xi in
G∆ and univariate literal ` over Xi , it holds that Pr∆(`) = Pr∆aug (`).

Removing equivalence constraints. Given an augmented model (∆aug,Waug), we remove equiv-
alence constraints introduced at the augmentation step to obtain the relaxed model (∆rel,Wrel). As a
result, each original variable in G∆rel will be detached from its copies, thus ignoring the dependencies
encoded by the edges Ed that were marked to be removed. Algorithm 3 details this procedure. Note
that relaxation “breaks” the augmented formula ∆aug into a relaxed part ∆rel and a “remaining part”
∆rem, which contains the equivalence constraints just removed.
Example 4.2. Consider the WMI model (∆,W) of Example 2.2. Its augmented formula∆aug obtained
by applying Algorithm 2 for edges Ed = {X − Z} to be removed (orange), and its relaxed formula
∆rel and remaining formula ∆rem obtained by Algorithm 3 have their primal graphs shown on the left,
center and right below respectively. The detailed WMI models for each are shown in Appendix A.

Which edges to relax? After relaxing enough constraints, we can obtain a WMI problem amenable
to exact inference, for example, one whose primal graph G∆rel has treewidth one and logarithmic
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Z1 Z0

B X Y

Z1 Z0

Z1 Z0

diameter. Running an exact WMI solver on such a problem would already deliver a cheap way
to perform approximate inference. However, the quality of such an approximation can be greatly
improved if we compensate for the relaxed constraints. We will discuss this in the next section.
A question remains: how to select the set of edges Ed to relax? Note that the more edges we remove
from ∆, the easier it is to perform inference on ∆rel given fewer dependencies, but the lower the
approximation quality, and the harder to compensate for them all, since it would differ from the
augmented model more, and meanwhile from the original model as Proposition 4.1 indicates. For
example, removing all edges in G∆ will yield a fully disconnected G∆rel where performing exact
inference on each component is going to be embarrassingly parallelizable. This would correpond
to perform a loopy version of the MP-WMI algorithm. Analogous to its discrete counterpart, loopy
belief propagation, it would be susceptible to poor converge rates [31, 14]. Therefore we propose
a simple strategy for selecting the edges to be removed, which is to retrieve a spanning tree of the
original primal graph. In Section 6 we demonstrate its practical effectiveness on a range of inference
problems of increasing complexity. Devising and evaluating alternative relaxing strategies is an
interesting topic for future work.

4.2 Compensation

The aim of the compensation phase is to recover the relaxed equivalence constraints and hence, make
the distribution Pr∆rel better approximate Pr∆aug and thus better approximate Pr∆ as Proposition 4.1
suggests. In order to do so, we introduce new literals, named compensating literals, to the variables
and their copies in the relaxed formula ∆rel and equip them with parameterized weights, named
compensating weights, and further we optimize them in order to synchronize the variable marginals
among a copied variable and its copies.

For each variable Xi = X0
i and its Ci copies X1

i , . . . , XCi

i in formula ∆rel, we generate K different
univariate literals of the form `c

i,k
: (X (c)i ≤ σi,k · τi,k) for k = 1, . . . ,K and c = 0, 1, . . . ,Ci where

each σi,k and τi,k are respectively drawn at uniform from {+1,−1} and the support of Xi as encoded in
∆rel
i . Note that the σi,k, τi,k are shared across all the copies. Algorithm 4 in Appendix C summarizes

this procedure. Each compensating literal `c
i,k

is therefore responsible for a portion of the support of
the marginal distribution of Xc

i , and also for the (unnormalized) marginal density of Xc
i by equipping

it with a parameterized weight w`c
i,k
.

To retain tractable inference, the parametric function family chosen for each w`c
i,k

should satisfy the
TWCs as discussed in section 3. Striving for simplicity, we employ constant weights of the form
w`c

i,k
:= exp(θc

i,k
). Therefore, our induced marginal density takes the form of a piecewise constant

approximation. As such, by increasing the number of compensating literals K one could obtain a finer
approximation, however at the price of introducing more parameters to optimize for. We empirically
investigate the effect of increasing K in our experiments in section 6.

4.3 Iterative integration

Instead of matching marginal density functions we settle for the weaker condition of matching the
marginal probabilities of the newly introduced compensating literals. This in turn can be stated by
the following set of equivalence constraints for each variable Xi:

Pr∆rem
(∧Ci

c=0
`ck,i

)
= Pr∆rel

(
`0
k,i

)
= Pr∆rel

(
`1
k,i

)
= · · · = Pr∆rel

(
`Ci

k,i

)
, for k = 1, · · · ,K . (2)

where the first term Pr∆rem
( ∧Ci

j=0 `c
k,i

)
is the probability of the compensating literals in the remaining

WMI model (∆rem,Wrem) and Pr∆rel
(
`c
k,i

)
are the probabilities of compensating literals in the relaxed

formula ∆rel. Intuitively, for a single equivalence constraint that has been relaxed, there exists a set of
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Algorithm 1 ReCoIn (∆,W,K)
Input: a WMI model (∆,W), K number of compensating literals
Output: (∆rel,Wrel): a relaxed and compensated WMI model
1: Ed ← initStrategy(∆,W) . Select edges to remove
2: ∆aug,Waug,L ← augmentModel(∆,W, Ed)
3: (∆rel,Wrel), (∆rem,Wrem) ← relaxModel(∆aug,Waug,L)
4: ∆rel,Wrel ← addingCompensations(∆rel,Wrel,L,K)
5: while not converged do
6: for Xi ∈ copiedNodes(∆rel) do
7: for k = 1, . . . ,K do
8: rk ←WMI(∆rem,Wrem) /WMI(∆rem ∧

∧Ci

c=0 `c
k,i
,Wrem) − 1

9: for c = 0, 1, . . . ,Ci do
10: θ

c,(t+1)
k,i

← log(rkαk,σ(c)) − log(1 − αk,σ(c)) −
∑

c′,c θ
c,(t)
k,i

11: Return (∆rel,Wrel)

parameters θ for the compensating weights that exactly match the probabilities in Equation 2 and
hence guarantee exact marginal recovery [14]. The next theorem better formalizes it.
Theorem 4.3. Suppose that a relaxed model (∆rel,Wrel) and a remaining model (∆rem,Wrem) are
obtained by relaxing a single equivalence constraint (Xi = Xc

i ) from an augmented model ∆aug, and
that the primal graph of ∆rel is split into two disconnected components by the relaxation. Let (`i,k, `ci,k)
for k = 1, . . . ,K be the K pairs of compensating literals introduced, and θk,i, θck,i , for k = 1, . . . ,K , be
the parameters attached to the compensating weights. Then Equation 2 holds when the compensating
weight parameters satisfy the following equalities.

θk,i = log
rkαk,c

1 − αk,c
− θck,i, θck,i = log

rkαk
1 − αk

− θk,i for k = 1, . . . ,K (3)

where

rk =
WMI(∆rem ∧

¬`k,i
∧
¬`c

k,i
,Wrem)

WMI(∆rem ∧
`k,i

∧
`c
k,i
,Wrem)

, αk = Pr∆rel (`i,k), αk,c = Pr∆rel(`ci,k), for k = 1, . . . ,K .

(4)

Theorem 4.3 suggests an iterative optimization scheme to find the fixed point solutions for all
the compensating parameters introduced to compensate multiple relaxed equivalence constraints.
Specifically, starting from a random initialization of the parameters of the compensating weights,3 at
each iteration t + 1, we can update each parameter θc,(t+1)

k,i
as

θ
c,(t+1)
k,i

← log(rkαk,π(c)) − log(1 − αk,π(c)) −
∑

c′,c
θ
c′,(t)
k,i

, (5)

where π is a permutation over the copies and each αk,π(c) is computed as the probability of `π(c)
k,i

according to the relaxed model.
Therefore, at each iteration t, we need to solve 2K integration problems for computing the rk terms
and Ci · K integrations for Pr∆rel (`

π(c)
k,i
) for each pair of variable and its copies. While in principle

we could use any exact WMI solver to solve these problems, we adopt MP-WMI [42] because it is
the fastest solver yet for tree-shaped and bounded diameter problems, and even more importantly, it
allows to amortize inference across queries. That is, we can compute all the Ci · K literal probabilities
in a single message-passing step with it.

From this perspective, ReCoIn generates a sequence of induced distributions Pr(1)
∆rel, . . . ,Pr(2)

∆rel,Pr(t)
∆rel ,

that should converge to a fixed-point distribution. In practice to check for convergence, one can
monitor the quality of the literal probability approximations and stop when a threshold ε is met before

3Following Choi and Darwiche [16], we initialize all parameters to 1.
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Figure 1: Average integrated absolute errors (left) and times in seconds (right) for 5 problems of
increasing size (n, x-axis) for ReCoIn and competitors. Number of compensating literals (2-4) or
samples used are in parentheses. Mean values per problem size are connected by a line.

a certain number of iterations are done. We choose the threshold to be the maximum L-∞ norm of
compensation literal probability differences. To ease convergence, we apply dampening, that is, we
smooth each parameter update at iteration t+1 by a factor λ > 0: θc,(t+1)

k,i
← (1−λ)·θc,(t+1)

k,i
+λ ·θ

c,(t+1)
k,i

.

This completes the steps in our ReCoIn solver. Algorithm 1 recaps them.

5 Related Work

The RCR framework has been particularized for approximating marginals [14, 16, 18], partition
functions [17], and for maximization [15] or lifted inference scenarios [37], but always for discrete
variables. ReCoIn is the first extension to hybrid domains with SMT(LRA) algebraic constraints.
Among the exact WMI solvers, the majority ignores the problem structure to be as general-purpose as
possible [8, 34, 35, 29]. However, by doing so they are unable to scale beyond tens of variables in
practice. Conversely, recent efficient alternatives such as SMI [41] and MP-WMI [42] can greatly
scale but only on WMI problems amenable to tractable inference (cf. Section 3). We leverage the
strengths of the latter to efficiently solve iterative integration problems in ReCoIn.
So far, most approximate WMI solvers rely on sampling, and as such inherit all the classical issues
of Monte Carlo approaches like poor scalability and convergence [19]. Among these, SAMPO [43]
employs Gibbs sampling but does not support generic polynomial weights. A very recent alternative
is a fully polynomial randomized approximation scheme [1]. However, it can only operate on DNF
SMT formulas, and it is not applicable to our CNF representation as a conversion into DNF can blow
up the problem size. Other MCMC variants [3, 2, 4] operating with algebraic constraints, while
more effective, cannot be readily used for WMI inference problems. The only alternative to sampling
schemes is the hashing-based WMI algorithm [9] which is known to perform poorly on non-trivial
problems due the hardness of calibrating the tilt [10].
In the next section we compare against the fastest baseline available, the rejection sampler implemented
in the pywmi library [30] and a more advanced variant of rejection sampling that greatly increases the
acceptance rate of the rejection sampler by compiling an SMT formula into an XSDD structure [44].

6 Experiments

We aim to answer the following questions: (Q1) how fast and scalable is ReCoIn?, (Q2) how accurate
are its approximations?, (Q3) what is the effect of increasing the number of compensating literals K?
We generate WMI problems whose primal graphs are random Watts-Strogatz graphs [39] with
increasing size n = 1, . . . , 11, with two additional neighbor connections and probability of rewiring
0.5, to which we attach randomly generated clauses of length 2 and piecewise constant densities. For
each setting we generate 5 independent problems.
We run ReCoIn for up to 20 iterations, employing a dampening coefficient λ = 0.5 in two settings
that differ by the number of compensating literals K = 2, 4. We compare it against the fastest
sampling scheme available, the rejection sampler (REJ) implemented in [30] and the hybrid solver
XSDD(Sampling) [44] that employs sophisticated knowledge-compilation [21] techniques [29] to
guide sampling. For both REJ and XSDD we employ 100 thousand samples per query.
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To compare the quality of approximations for a problem, we compute for a model M the mean
integral absolute error (IAE) as 1

|X |
∑ |X |

i=1
∑B

j=1 |PrG(Xi ∈ bj) − PrM(Xi ∈ bj)| where we partition the
support for each marginal i = 1, . . . , n into B equal-widths bins bj for j = 1, . . . , B and compare the
probability PrM according to model M against the ground truth PrG, which we compute using PA [34].
We employ PA as it is so far the most reliable general-purpose exact WMI solver [42]. Note that as
such REJ and XSDD are bounded to solve |X| · B independent WMI problems, while ReCoIn can
naturally amortize |X| · B queries after a single run of optimization (cf. Section 4.3). We impose a
timeout of 1 hour.
Figure 1 reports the IAEs and running times (in seconds) for all problems, settings and competitors.
Concerning Q1 and Q2, ReCoIn is the best performer overall. The naive sampling strategy in REJ,
while being the fastest as expected, cannot exploit the structure in the problem and clearly suffers
from the curse of dimensionality. Conversely, XSDD can deliver accurate approximations thanks
to compiling the problem structure, but on highly loopy graphs compilation cannot scale beyond
n = 5. On the other hand, ReCoIn gracefully scales to larger problem sizes and multiple queries, and
delivers very low IAE scores that are close to the best by XSDD on small problem sizes. Note that
while ReCoIn can solve much larger problems within our timeout, we could not retrieve a ground
truth for them with PA in reasonable time (more than 24 hours per problem).
Concerning Q3, more compensating literals (K = 4) are achieving marginally lower IAEs at the
expense of linearly increasing running times. Exploring the time-accuracy trade-off by increasing K
or employing different relaxation strategies is an interesting avenue to investigate in the future. All in
all, this empirical evidence candidates ReCoIn as one of the best general-purpose approximate WMI
solvers in the current landscape of WMI solvers.

7 Conclusions

In this work we advanced the WMI framework by tracing the theoretical requirements for tractable
WMI inference with the highest precision so far. We introduced ReCoIn as the first solver that by
exploiting our tractability insights can reliably scale approximate inference on general WMI problems.
We believe these two contributions can help strengthen our theoretical understanding on the challenges
and guarantees around approximate hybrid probabilistic inference and at the same time propel the
construction of more efficient and scalable WMI solvers.
aut,si te nummi delectant, desine quaeso
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Broader Impact

Our contributions in this work can be filed under the label of basic research in probabilistic inference.
As a work of basic research it might have a very broad impact. Therefore it is hard to imagine specific
negative outcomes at this stage. Concerning benefits, on the other hand, our complexity results will
help the community working on probabilistic inference on hybrid domain at large as they lay the
foundation for more theoretical research. On the other hand, our general-purpose approximate WMI
inference scheme could be particularized by other researchers to fit specific application scenarios. It
is hard to foresee or restrict the range of these possible applications. We note that WMI and SMT
technologies have been previously used in probabilistic programming and program verification, two
very vast fields on their own. Lastly, we are focusing on and advancing inference per se, therefore
there is no specific learning phase, or data involved. Our solver is going to perform inference over the
distribution induced over an arbitrary SMT theory given as input, if such a theory encodes bias in
some form, this bias will clearly be reflected in the probabilistic queries the users are going to ask.
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A Examples

A.1 Reduction to WMI models on continuous variables only

In this section, we show one example of the polytime reduction from a WMI model with continuos
and discrete ones into one over continuous variables only, as introduced in [41].
Example A.1 (Reduction From WMI to WMIR). Consider the WMI model (∆,W) where ∆ is the
SMT formula over continuous variables X,Y, Z and Boolean variable B as introduced in Example 2.2
with the per-literal weightsW as introduced in Example 2.5. Then the WMI model (∆′,W ′) over
continuous variables only X,Y, Z,TB, where TB is a freshly introduced continuous variable, obtained
by the reduction of Zeng and Van den Broeck [41] is shown below.

∆
′ =

{ 0 ≤ X ≤ 2 ∧ 1 ≤ Y ≤ 2 ∧ 0 ≤ Z ≤ 2
X ≥ 1 ∨ (−1 ≤ TB ≤ 1)
X + Y ≤ 3 ∧ X + Z ≥ 2 ∧ Y + Z ≤ 3 TB X Y

Z

whereW ′ = {w`1 (TB) := 2; w`2 (x) := x2; w`3 (y, z) := 2yz; w`4 (x, y) := x + y} where `1 := 0 ≤
TB ≤ 1, `2 := x ≥ 1, `3 := y + z ≤ 3, `4 := x + y ≤ 3 and all the weights associated to other literals
are constantly 1 except ¬`2 which is 0.

Note that the primal graph G∆′ (above, right) is isomorphic to the primal graph G∆ and that the
weighted model integral of model (∆′,W ′) is left unchanged:

WMI(∆′,W ′; X,Y, Z,TB) =

∫ 0

−1
dtB

∫ 2

1
dx

∫ −x+3

1
dy

∫ −y+3

−x+2
x2 · 1 · (x + y) · 2yz dz+

+

∫ 1

0
dtB

∫ 2

1
dx

∫ −x+3

1
dy

∫ −y+3

−x+2
x2 · 2 · (x + y) · 2yz dz =

11173
480

=WMI(∆,W; X,Y, Z, B).

then we will denote the integrands as u1(x, y, z) = x2 ·1 · (x+ y) ·2yz, u2(x, y, z) = x2 ·2 · (x+ y) ·2yz .

A.2 ReCoIn steps: from augmentation to relaxation

Here we complete Example 4.2 by providing the weight functions associated to the WMI models
ReCoIn operates on.
Example A.2 (Augmentation). Consider the WMI model (∆′,W ′) over continuous variables
X,Y, Z,TB as introduced in Example A.1. Given the edges to remove Ed = {X − Z}, the aug-
mented WMI model (∆aug,Waug) over variables X,Y, Z = Z0, Z1,TB as obtained from Algorithm 2
is represented below.

∆
aug =



0 ≤ X ≤ 2 ∧ 1 ≤ Y ≤ 2
0 ≤ Z0 ≤ 2 ∧ 0 ≤ Z1 ≤ 2
−1 ≤ TB ≤ 1
X ≥ 1 ∨ TB > 0
X + Y ≤ 3 ∧ X + Z1 ≥ 2 ∧ Y + Z0 ≤ 3
Z0 = Z1

TB X Y

Z1 Z0

andWaug = {w`1 (TB) := 2; w`2 (x) := x2; w`3 (y, z
0) := 2yz0; w`4 (x, y) := x + y; w`5 (z

0, z1) :=
δ(z0, z1)} where `1 := 0 ≤ TB, `2 := x ≥ 1, `3 := y + z0 ≤ 3, `4 := x + y ≤ 3, `5 := Z0 = Z1 and all
the weights associated to other literals are constantly 1 except ¬`2 which is 0.

Note that the weighted model integral of model (∆aug,Waug) is unchanged as below:

WMI(∆aug,Waug; X,Y, Z0, Z1,TB) =

=

∫ 0

−1
dtB

∫ 2

1
dx

∫ −x+3

1
dy

∫ −y+3

0

∫ 1

−x+2
x2 · (2 + 1) · (x + y) · 2yz0δ(z0 − z1)dz1dz0

=

∫ 2

1
dx

∫ −x+3

1
dy

∫ −y+3

−x+2
x2 · (2 + 1) · (x + y) · 2yz0 dz0
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=
11173

480
=WMI(∆′,W ′; X,Y, Z,TB) =WMI(∆,W; X,Y, Z, B).

Further we will show in Proof B.3 that generally the WMI of the augmented model remains unchanged.
Example A.3 (Relaxation). Consider the augmented WMI model (∆aug,Waug) over continuous
variables X,Y, Z0, Z1,TB as introduced in Example A.2. Given the equivalence constraint to remove
{Z0 = Z1}, the relaxed WMI model (∆rel,Wrel) and its remaining part (∆rem,Wrem) as obtained
from Algorithm 3 are represented below.

∆
rel =


0 ≤ X ≤ 2 ∧ 1 ≤ Y ≤ 2 ∧ 0 ≤ Z0 ≤ 2 ∧ 0 ≤ Z1 ≤ 2
X ≥ 1 ∨ (−1 ≤ TB ≤ 1)
X + Y ≤ 3 ∧ X + Z1 ≥ 2 ∧ Y + Z0 ≤ 3

TB X Y

Z1 Z0

∆
rem =

{
0 ≤ Z0 ≤ 2 ∧ 0 ≤ Z1 ≤ 2
Z0 = Z1 Z0Z1

and Wrel = {w`1 (TB) := 2; w`2 (x) := x2; w`3 (y, z
0) := 2yz0; w`4 (x, y) := x + y}, Wrem =

{w`5 (z
0, z1) := δ(z0, z1)}, and all the weights associated to other literals are constantly 1 except ¬`2

which is 0.

B Proofs

B.1 THEOREM 3.3

Proof. We prove our complexity result by reducing a #P-complete variant of the subset sum
problem [24] to an MI problem over an SMT(LRA) formula ∆with tree primal graph whose diameter
is n. This problem is a counting version of subset sum problem saying that given a set of positive
integers S = {s1, s2, · · · , sn}, and a positive integer L, the goal is to count the number of subsets
S′ ⊆ S such that the sum of all the integers in the subset S′ equals to L. Notice that our proof can be
applied to rational numbers as well and we assume binary representations for numbers.
First, we reduce the counting subset sum problem in polynomial time to a model integration problem
by constructing the following SMT(LRA) formula ∆ on real variables X whose primal graph is
shown in Figure 2:

X1 X2 X3 Xn−1 Xn

s2 s3 sn

s1

Figure 2: Primal graph G∆ used for the #P-hardness reduction in Theorem 3.3. We construct the
corresponding formula ∆ such that G∆ has maximum diameter (it is a chain). We graphically augment
graph G∆ by introducing blue nodes to indicate that integers si in set S are contained in clauses
between two variables.

∆ =



s1 −
1

2n
< x1 < s1 +

1
2n︸                         ︷︷                         ︸

`(1,0)

∨−
1

2n
< x1 <

1
2n︸              ︷︷              ︸

`(1,1)

xi−1 + si −
1

2n
< xi < xi−1 + si +

1
2n︸                                           ︷︷                                           ︸

`(i,0)

∨ xi−1 −
1

2n
< xi < xi−1 +

1
2n︸                              ︷︷                              ︸

`(i,1)

, i = 2, · · · n

For brevity, we denote the first and the second literal in the i-th clause by `(i, 0) and `(i, 1) respectively
as shown above. Also We choose two constants l = L − 1

2 and u = L + 1
2 .

In the following, we prove that nnMI(∆ ∧ (l < Xn < u)) equals to the number of subset S′ ⊆ S whose
element sum equals to L, which indicates that WMI problem whose tree primal graph has diameter
Θ(n) is #P-hard.
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Let ak = (a1, a2, · · · , ak) be some assignment to Boolean variables (A1, A2, · · · , Ak) with ai ∈ {0, 1},
i ∈ [k]. Given an assignment ak , we define subset sums to be S(ak) ,

∑k
i=1 aisi , and formulas

∆ak ,
∧k

i=1 `(i, ai).

Claim B.1. The model integration for formula ∆ak with an given assignment ak ∈ {0, 1}k is
MI(∆ak ) = ( 1

n )
k . Moreover, for each variable Xi in ∆ak , its satisfying assignments consist of the

interval [
∑i

j=1 aj sj − i
2n,

∑i
j=1 aj sj + i

2n ]. Specifically, the satisfying assignments for variable Xn in
formula ∆an can be denoted by the interval [S(an) − 1

2, S(a
n) + 1

2 ].

Proof. (Claim B.1) First we prove that MI(∆ak ) = ( 1
n )

k . For brevity, denote aisi by ŝi . By definition
of model integration and the fact that the integral is absolutely convergent (since we are integrating a
constant function, i.e., one, over finite volume regions), we have the following equation.

MI(∆ak ) =

∫
(x1, · · · ,xk ) |=∆ak

1 dx1 · · · dxk =
∫ ŝ1+

1
2n

ŝ1−
1

2n

dx1 · · ·

∫ xk−2+ŝk−1+
1

2n

xk−2+ŝk−1−
1

2n

dxk−1

∫ xk−1+ŝk+
1

2n

xk−1+ŝk−
1

2n

1 dxk

Observe that for the most inner integration over variable xk , the integration result is 1
n . By doing this

iteratively, we have that MI(∆ak ) = ( 1
n )

k .

Next we prove that satisfying assignments for variable Xi in formula ∆ak is the interval [
∑i

j=1 aj sj −
i

2n,
∑i

j=1 aj sj + i
2n ] by mathematical induction. For i = 1, since X1 is in interval [a1s1−

1
2n, a1s1+

1
2n ],

the statement holds in this case. Suppose that the statement holds for i = m, i.e. variable Xm has
its satisfying assignments in interval [

∑m
j=1 aj sj − m

2n,
∑m

j=1 aj sj + m
2n ]. Since variable Xm+1 has its

satisfying assignments in interval [Xm + am+1sm+1 −
1

2n, Xm + am+1sm+1 +
1

2n ], then its satisfying
assignments consist interval [

∑m+1
j=1 aj sj − m+1

2n ,
∑m+1

j=1 aj sj + m+1
2n ], that is, the statement also holds

for i = m + 1. Thus the claim holds. �

The above claim shows how to compute the model integration of formula ∆ak . We will show in the
next claim how to compute the model integration of formula ∆an conjoined with a query l < Xn < u.

Claim B.2. For each assignment an ∈ {0, 1}n, the model integration of formula ∆an ∧ (l < Xn < u)
falls into one of the following cases:

i) If S(an) < L or S(an) > L, it holds that MI(∆an ∧ (l < Xn < u)) = 0.
ii) If S(an) = L, it holds that MI(∆an ∧ (l < Xn < u)) = ( 1

n )
n.

Proof. (Claim B.2) From the previous Claim B.1, it is shown that variable Xn has its satisfying
assignments in interval [S(an) − 1

2, S(a
n) + 1

2 ] in formula ∆an for each an ∈ {0, 1}n. If S(an) < L,
given that S(an) is a sum of positive integers, then it holds that S(an) + 1

2 ≤ (L − 1) + 1
2 = L − 1

2 = l
and therefore, MI(∆an ∧ (l < Xn < u)) = 0; similarly, if S(an) > L, then it holds that S(an) − 1

2 ≥ u
and therefore, MI(∆an ∧ (l < Xn < u)) = 0. If S(an) = L, by Claim B.1 we have that the satisfying
assignment interval is inside the interval [l, u] and thus it holds that MI(∆an ∧ (l < Xn < u)) =
MI(∆an ) = ( 1

n )
n. �

In the next claim, we show how to compute the model integration of formula ∆ as well as for formula
∆ conjoined with query l < Xn < u based on the already proven Claim B.1 and Claim B.2.

Claim B.3. The following two equations hold:

i) MI(∆) =
∑

an MI(∆an ).
ii) MI(∆ ∧ (l < Xn < u)) =

∑
an MI(∆an ∧ (l < Xn < u)).

Proof. (Claim B.3) Observe that for each clause in ∆, literals are mutually exclusive since each si is a
positive integer. Then we have that formulas ∆an are mutually exclusive and meanwhile ∆ =

∨
an ∆an .

Thus it holds that MI(∆) =
∑

an MI(∆an ). Similarly, we have formulas (∆an ∧ (l < Xn < u))’s are
mutually exclusive and meanwhile ∆ ∧ (l < Xn < u) =

∨
an ∆an ∧ (l < Xn < u). Thus the second

equation holds. �
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∑
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Figure 3: Primal graph used for #P-hardness reduction in Theorem 7. We also put blue nodes to
indicate that integer si’s in set S are contained in some clauses and that model integration over some
cliques is the sum of some si’s.

From the above claims, we can conclude that MI(∆ ∧ (l < Xn < u)) = t( 1
n )

n where t is the number of
assignments an s.t. S(an) = L. Notice that for each an ∈ {0, 1}n, there is a one-to-one correspondance
to a subset S′ ⊆ S by defining an as ai = 1 if and only if si ∈ S′; and S(an) equals to L if and only if
the sum of elements in S′is L. Therefore nnMI(∆ ∧ (l < Xn < u)) equals to the number of subset
S′ ⊆ S whose element sum equals to L. This finishes the proof for the statement that inference in
WMI(Ω, n, 1) is #P-hard.

�

B.2 THEOREM 3.4

Proof. Again we prove our complexity result by reducing the #P-complete variant of the subset sum
problem [24] to an MI problem over an SMT(LRA) formula ∆ with primal graph whose diameter is
Θ(log n) and treewidth two. In the #P-complete subset sum problem, we are given a set of positive
integers S = {s1, s2, · · · , sn}, and a positive integer L. Notice that our proof can be applied to rational
numbers as well and we assume binary representations for numbers. The goal is to count the number
of subsets S′ ⊆ S such that the sum of all the integers in S′ equals L.
First, we reduce this problem in polynomial time to a model integration problem with the following
SMT(LRA) formula ∆ where variables are real and u and l are two constants. Its primal graph is
shown in Figure 3. Consider n = 2k , n, k ∈ N.

∆ =
∧
i∈[n]

(−
1

4n
< Xk+1,i <

1
4n
∨ −

1
4n
+ si < Xk+1,i <

1
4n
+ si)

∧
∆t

where ∆t =
∧

j∈[k],i∈[2 j ]

−
1

4n
+ Xj+1,2i−1 + Xj+1,2i < Xj,i <

1
4n
+ Xj+1,2i−1 + Xj+1,2i

For brevity, we denote all the variables by X and denote the literal − 1
4n < Xk+1,i <

1
4n by `(i, 0) and

literal − 1
4n + si < Xk+1,i <

1
4n + si by `(i, 1) respectively. Also We choose two constants l = L − 1

2
and u = L + 1

2 . In the following, we prove that (2n)2n−1MI(∆ ∧ (l < X1,1 < u)) equals to the number
of subset S′ ⊆ S whose element sum equals to L, which indicates that model integration problem
with primal graph whose diameter is Θ(log n) and treewidth two is #P-hard.
Let an = (a1, a2, · · · , an) ∈ {0, 1}n be some assignment to Boolean variables (A1, A2, · · · , An). Given
an assignment an, define the sum as S(an) ,

∑n
i=1 aisi , and formula as ∆an ,

∧n
i=1 `(i, ai) ∧ ∆t .

15



Claim B.4. The model integration for formula ∆an with given an ∈ {0, 1}n is MI(∆an ) = ( 1
2n )

2n−1.
Moreover, for each variable Xj,i in formula ∆an , its satisfying assignments consist of the interval
[
∑

l alsl − 2k− j+2−1
4n ,

∑
l alsl + 2k− j+2−1

4n ] where l ∈ {l | Xk+1,l is a descendant of Xj,i}. Specifically, the
satisfying assignments for the root variable X1,1 can be denoted the interval [S(an) − 2n−1

4n , S(an) +
2n−1

4n ] ⊂ [S(a
n) − 1

2, S(a
n) + 1

2 ].

Proof. (Claim B.4) First we prove that MI(∆an ) = ( 1
2n )

2n−1. For brevity, denote aisi by ŝi . By
definition of model integration and the fact that the integral is absolutely convergent (since we are
integrating a constant function, i.e., one, over finite volume regions), we have the following equations

MI(∆an ) =

∫
x |=∆an

1 dX

=

∫ 1
4n +ŝn

− 1
4n +ŝn

dxk+1,n · · ·

∫ 1
4n +ŝ1

− 1
4n +ŝ1

dxk+1,1

∫ 1
4n +xk+1,n−1+xk+1,n

− 1
4n +xk+1,n−1+xk+1,n

dxk,2k−1 · · ·

∫ 1
4n +x2,1+x2,2

− 1
4n +x2,1+x2,2

1 dx1,1 .

Observe that for the most inner integration over variable x1,1, the integration result is 1
2n . By doing this

iteratively, we have that MI(∆ak ) = ( 1
2n )

2n−1 where the 2n − 1 comes from the number of variables.
Then we prove that satisfying assignments for variable Xj,i in formula ∆an lie in the interval
[
∑

l alsl − 2k− j+2−1
4n ,

∑
l alsl + 2k− j+2−1

4n ] where l ∈ {l | Xk+1,l is a descendant of Xj,i} by performing
mathematical induction in a bottom-up way.
For j = 1, any variable Xk+2−j,i with i ∈ [2k+2−j] has satisfying assignments consisting of the interval
[aisi − 1

4n, aisi +
1

4n ]. Thus the statement holds for this case.

Suppose that the statement holds for j = m, that is, for any i ∈ [2k+2−m], any variable Xk+2−m,i
has satisfying assignments consisting interval [

∑
l alsl − 2m−1

4n ,
∑

l alsl + 2m−1
4n ] where l ∈ {l |

Xk+1,l is a descendant of Xk+2−m,i}.

Then for j = m + 1 and any i ∈ [2k+1−m], the variable Xk+1−m,i has two descendants, variable
Xk+2−m,2i−1 and variable Xk+2−m,2i . Moreover, we have that − 1

4n + Xk+2−m,2i−1 + Xk+2−m,2i <

Xk+1−m,i <
1

4n + Xk+2−m,2i−1 + Xk+2−m,2i . Then the lower bound of the interval for variable Xk+1−m,i

is− 1
4n+

∑
l alsl−2 2m−1

4n =
∑

l alsl− 2m+1−1
4n ; similarly the upper bound of the interval is

∑
l alsl+ 2m+1−1

4n ,
where l ∈ {l | Xk+1,l is a descendant of Xk+1−m,i}. That is, the statement also holds for j = m + 1
which finishes our proof. �

The above claim shows what the model integration of formula ∆ak is like. We’ll show in the next
claim what the model integration of formula ∆an conjoined with a query l < X1,1 < u is like.

Claim B.5. For each assignments an ∈ {0, 1}n, the model integration of ∆an ∧ (l < X1,1 < u) falls
into one of the following cases:

i) If S(an) < L or S(an) > L, then MI(∆an ∧ (l < X1,1 < u)) = 0.
ii) If S(an) = L, then MI(∆an ∧ (l < X1,1 < u)) = ( 1

2n )
2n−1.

Proof. (Claim B.5) From previous Claim B.4, it is shown that variable X1,1 has its satisfying
assignments in the interval [S(an) − 2n−1

4n , S(an) + 2n−1
4n ] in formula ∆an for each an ∈ {0, 1}n.

If S(an) < L, given that S(an) is a sum of positive integers, then it holds that S(an) + 1
2 ≤

(L − 1) + 2n−1
4n < L − 1

2 = l and therefore, MI(∆an ∧ (l < X1,1 < u)) = 0; similarly, if S(an) > L,
then it holds that S(an) − 1

2 > u and therefore, MI(∆an ∧ (l < X1,1 < u)) = 0. If S(an) = L, then by
Claim B.4 we have that the satisfying assignment interval is inside the interval [l, u] and thus it holds
that MI(∆an ∧ (l < X1,1 < u)) = MI(∆an ) = ( 1

2n )
2n−1. �

Claim B.6. The following two equations hold:

i) MI(∆) =
∑

an MI(∆an ).
ii) MI(∆ ∧ (l < X1,1 < u)) =

∑
an MI(∆an ∧ (l < X1,1 < u)).
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Proof. (Claim B.6) Observe that for each pair of literals `(i, 0) and `(i, 1), i ∈ [n], literals are mutually
exclusive since each si is a positive integer. Then we have that formulas ∆an are mutually exclusive
and meanwhile formula ∆ =

∨
an ∆an . Thus it holds that MI(∆) =

∑
an MI(∆an ). Similarly, we

have formulas (∆an ∧ (l < X1,1 < u))’s are mutually exclusive and meanwhile ∆ ∧ (l < X1,1 < u) =∨
an ∆an ∧ (l < X1,1 < u). Thus the second equation holds. �

From the above claims, we can conclude that MI(∆ ∧ (l < X1,1 < u)) = t( 1
2n )

2n−1 where t is the
number of assignments an s.t. S(an) = L. Notice that for each an ∈ {0, 1}n, there is a one-to-one
correspondence to a subset S′ ⊆ S by defining an as ai = 1 if and only if si ∈ S′; and S(an) equals to
L if and only if the sum of elements in S′ is L. Therefore (2n)2n−1MI(∆ ∧ (l < X1,1 < u)) equals to
the number of subset S′ ⊆ S whose element sum equals to L. This finishes the proof for the statement
that inference in WMI(Ω, log(n), 2) is #P-hard. �

B.3 PROPOSITION 4.1

Proof. W.l.o.g, consider the case where the augmented WMI model (∆aug,Waug) is obtained by
removing an edge Xi − Xj and inducing the dependency Xi − Xc

i − Xj from the original WMI model
(∆,W) as shown in Algorithm 2.
Instrumentally to the proof, we introduce the concept of total truth assignments of an SMT(LRA)
formula ∆. A total truth assignment µ is defined as a partitioning of all true literals in L, the set of all
literals in formula ∆, into a set of literals µ> interpreted as true for a certain total configurations of
the variables in ∆ and and the complementary set µ⊥ containing the literals interpreted as false. Let
tta(∆) be the set of all total truth assignments for formula ∆.
Notice that when operating on continuous variables only, the definition of WMI in Equation 1 can be
rewritten in terms of the total truth assignments to ∆ as follows:

WMI(∆,W) =
∑

µ∈tta(∆)

∫
nx |= µo

∏̀
∈L

w(x)nx |=`odx :=
∑

µ∈tta(∆)
Zµ . (6)

Before we prove that the WMI remains unchanged for the augmented model, we need the following
claim.

Claim B.7. Let tta(∆) and tta(∆aug) be the set of total truth assignments of formula ∆ and that of
formula ∆aug respectively. Then there exists a bijection between tta(∆) and tta(∆aug).

Proof. The proof is done by explicitly constructing a bijection f : tta(∆) → tta(∆aug) which maps
µ ∈ tta(∆) to µ′ ∈ tta(∆aug) in the following way:

i) for every ` ∈ ∆i , if ` ∈ µ>, then ` ∈ µ′> and `{Xi : Xc
i } ∈ µ

′
>; otherwise ` ∈ µ′⊥ and

`{Xi : Xc
i } ∈ µ

′
⊥.

ii) for every ` ∈ ∆i j , if ` ∈ µ>, then `{Xi : Xc
i } ∈ µ

′
>; otherwise `{Xi : Xc

i } ∈ µ
′
⊥.

iii) for every ` < ∆i and ` < ∆i j , if ` ∈ µ>, then ` ∈ µ′>; otherwise ` ∈ µ′⊥.
iv) finally, by definition, literal Xi = Xc

i is always in set µ′> (otherwise µ′ would not be a
satisfying assignment to formula ∆aug)

where ∆i is the sub-formula containing all the univariate clauses in ∆ referring to Xi only and
analogously ∆i j is the sub-formula containing bivariate clauses in ∆ referring to Xi and Xj .
First, note that the function f is well-defined since every literal in formula ∆aug is assigned to either set
µ′> or set µ′⊥ by the construction of formula ∆aug and this uniquely defines a µ′ ∈ tta(∆aug). Second,
by construction, if f (µ1) = f (µ2) for some µ1, µ2 ∈ tta(∆), the two total truth assignments µ1 and µ2
should have the same set of positive literals as well as the same set of negative literals, which means
that µ1 = µ2. Thus, the function f is a one-to-one mapping. Moreover, for each µ′ ∈ tta(∆aug), there
exists µ ∈ tta(∆) obtained by substituting the variable x ′i by Xi and deleting literals in ∆i{Xi : Xc

i }

and literal Xi = Xc
i , such that f (µ) = µ′. That is, the function f is also an onto mapping. Overall, the

function f is a bijection between tta(∆) and tta(∆aug). �

From Equation 6, it follows that to prove that WMI(∆,W) =WMI(∆aug,Waug), it suffices to prove
that for each µ ∈ tta(∆), Zµ, the integration inside summation corresponding to assignment µ, equates
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Zaug
f (µ)

inside WMI(∆aug with function f as defined in Claim B.7. Let X−i = X \ {Xi}. Then the set of
variables appearing in formula ∆aug can be written as X−i ∪ {Xi} ∪ {Xc

i }. Let ∆
aug
i j := ∆i j{Xi : Xc

i }

and ∆aug := ¯∆aug ∧ (Xi = Xc
i ). We explicitly formulate the integration Zµ and Zaug

f (µ)
as follows.

Zµ =
∫

nx |= µo
∏̀
∈∆

w`(x)
nx |=`odx

Zaug
f (µ)
=

∫
nx−i, xi, xci |= f (µ)o

∏
`∈ ¯∆aug

w`(x−i, xi, xci )
nx−i,xi,xci |=`oδ(xi − xci )dxci dxidx−i

=

∫ ∏
`∈ ¯∆aug

`<∆
aug
i j

w`(x−i, xi)nx−i,xi |=`o ·

©­­«
∫ ∏

`∈∆
aug
i j

w`(xci , xj)nx
c
i ,x j |=`oδ(xi − xci )nx−i, xi, xci |= f (µ)odxci

ª®®¬ dxidx−i

Notice that by the property of Dirac Delta function and the construction of function f , it holds that∫ ∏
`∈∆

aug
i j

w`(xci , xj)nx
c
i ,x j |=`oδ(xi − xci )nx−i, xi, xci |= f (µ)odxci =

∏
`∈∆i j

w(xi, xj)nxi,x j |=`onx |= µo

Therefore, it holds that

Zaug
f (µ)
=

∫
nx |= µo

∏
`∈ ¯∆aug

`<∆
aug
i j

w`(x−i, xi)nx−i,xi |=`o
∏
`∈∆i j

w`(xi, xj)nxi,x j |=`odx = Zµ

Finally, we have that the WMI of the original model (∆,W) equates that of the augmented model
(∆aug,Waug) by observing that WMI(∆,W) =

∑
µ Zµ =

∑
f (µ) Zaug

f (µ)
=WMI(∆aug,Waug).

Moreover, for any univariate literal `, it can be shown by similar arguments that WMI(∆ ∧ `,W) =
WMI(∆aug ∧ `,Waug). Thus, it holds that Pr∆(`) = WMI(∆ ∧ `,W)/WMI(∆,W) = WMI(∆aug ∧
`,Waug)/WMI(∆aug,Waug) = Pr∆aug (`). �

B.4 THEOREM 4.3

For the remaining WMI model (∆rem,Wrem), it holds that

Pr∆rem (`k,i ∧ `
c
k,i) =

WMI(∆rem ∧ `k,i ∧ `
c
k,i
,Wrem)

WMI(∆rem,Wrem)

=
WMI(∆rem ∧ `k,i ∧ `

c
k,i
,Wrem)

WMI(∆rem ∧ `k,i ∧ `
c
k,i
,Wrem) +WMI(∆rem ∧ ¬`k,i ∧ ¬`

c
k,i
,Wrem)

=
exp (θk,i + θck,i)

rk + exp (θk,i + θck,i)

By substituting the sum of θk,i and θck,i with the first equality in Equation 3, it holds that Pr∆rem (`k,i ∧

`c
k,i
) = Pr∆rel (`k,i); similarly, by substituting the sumwith the second equality, it holds thatPr∆rem (`k,i∧

`c
k,i
) = Pr∆rel (`ck,i), which finishes the proof.
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C Algorithms

Algorithm 2 augmentModel(∆,W, Ed)
Input: a WMI model with SMT formula ∆ and per-literal weightsW and a set Ed of edges to be
deleted
Output: augmented WMI model (∆aug,Waug) and equivalence constraint set L
1: ∆aug ← copy(∆)
2: Waug ← copy(W)
3: L ← {}
4: for edge Xi − Xj ∈ Ed do
5: Xc

i ← copy(Xi) . Assume to copy Xi

6: ˆ̀← (Xi = Xc
i )

7: L ← L ∪ { ˆ̀}
8: ∆′← ∆aug ∧ ˆ̀,
9: w ˆ̀ := δ(Xi, Xc

i )

10: Waug ←Waug ∪ {w ˆ̀}
11: for clause Γ ∈ ∆i, j do . Rename edges
12: Γ′← Γ{Xi : Xc

i }

13: ∆′← ∆′{Γ : Γ′}
14: for each literal ` ∈ Γ do
15: `′← `{Xi : Xc

i }

16: w`′ ← copy(w`)
17: Waug ←Waug ∪ {w`′} \ {w`}

18: for clause Γ ∈ ∆i do . Copy and rename bounding-box literals
19: Γ′← copy(Γ)
20: ∆′← ∆′ ∧ Γ′{Xi : Xc

i }

21: ∆aug ← ∆′

22: return ∆aug,Waug,L
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Algorithm 3 relaxModel(∆aug,Waug,L)
Input: an augmented WMI model (∆aug,Waug), L: equivalence constraints to be relaxed
Output: a relaxed WMI model (∆rel,Wrel), and its “remaining-part” model (∆rem,Wrem).
1: ∆rem ← >
2: Wrem ← {}
3: ∆rel ← copy(∆aug)
4: Wrel ← copy(Waug)
5: for each `∗ : (Xi = Xc

i ) ∈ L do
6: for clause Γ ∈ ∆i do
7: ∆rem ← ∆rem ∧ Γ ∧ Γ{Xi : Xc

i }

8: for each literal ` ∈ Γ do
9: `′← `{Xi : Xc

i }

10: w`′ ← copy(w`)
11: Wrel ←Wrel ∪ {w`′}
12: Wrem ←Wrem ∪ {w`,w`′}

13: ∆rel ← ∆rel{`∗ : >} . disconnect Xi and copy Xc
i

14: Wrel ←Wrel \ {w`∗ }
15: ∆rem ← ∆rem ∧ `∗

16: Wrem ←Wrem ∪ {w`∗ }

17: return (∆rel,Wrel), (∆rem,Wrem)

Algorithm 4 addingCompensations(∆rel,Wrel, L, K)
Input: a relaxed WMI model (∆rel,Wrel), K number of compensating literals to introduce
Output: the relaxed WMI model (∆rel

+ ,W
rel
+ ) with compensating literals initialized.

1: ∆rel
+ ← ∆

rel,Wrel
+ ←W

rel

2: Xo ← nonCopyVars(L) . Gather original variables
3: for each Xi ∈ Xo do
4: for k = 1, . . . ,K do
5: τi,k ∼ Uniform(support(Xi)) . Randomly help support
6: σi,k ∼ Uniform({+1,−1}) . And pick one half
7: `i,k ← (Xi ≤ σi,k · τi,k)

8: ∆rel
+,i ← ∆

rel
+,i ∧ `i,k

9: θi,k ← 1 . Initiate potentials
10: w`i,k := exp(θi,k)
11: Wrel

+ ←W
rel
+ ∪ {w`i,k }

12: for each ` : (Xi = Xc
i ) ∈ L do

13: `c
i,k
← (Xc

i ≤ σi,k · τi,k)

14: ∆
rel,c
+,i ← ∆

rel,c
+,i ∧ `i,k

15: θc
i,k
← 1 . Initiate potentials

16: w`c
i,k

:= exp(θc
i,k
)

17: Wrel
+ ←W

rel
+ ∪ {w`ci,k }

18: Return (∆rel
+ ,W

rel
+ )
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