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Abstract

Weighted model integration (WMI) is an appeal-
ing framework for probabilistic inference: it al-
lows for expressing the complex dependencies
in real-world problems, where variables are both
continuous and discrete, via the language of Sat-
isfiability Modulo Theories (SMT), as well as to
compute probabilistic queries with complex logi-
cal and arithmetic constraints. Yet, existing WMI
solvers are not ready to scale to these problems.
They either ignore the intrinsic dependency struc-
ture of the problem entirely, or they are limited to
overly restrictive structures. To narrow this gap,
we derive a factorized WMI computation enabling
us to devise a scalable WMI solver based on
message passing, called MP-WMI. Namely, MP-
WMI is the first WMI solver that can (i) perform
exact inference on the full class of tree-structured
WMI problems, and (ii) perform inter-query amor-
tization, e.g., to compute all marginal densities
simultaneously. Experimental results show that
our solver dramatically outperforms the existing
WMI solvers on a large set of benchmarks.

1. Introduction

In many real-world scenarios, performing probabilistic infer-
ence requires reasoning over domains with complex logical
and arithmetic constraints while dealing with variables that
are heterogeneous in nature, i.e., both continuous and dis-
crete. Consider for example the task of matching players in
a game by their skills. Performing probabilistic inference for
this task has been popularized by Minka et al. (2018) and is
at the core of several online gaming services. A probabilistic
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model for this task has to deal with continuous variables,
such as the player and team performance, and reason over
discrete attributes such as membership in a squad and the
achieved scores. Moreover, such a model would need to
take into account constraints such as the team performance
being bounded by that of the players in it, and that forming
a squad boosts performance. Ultimately, this translates into
performing probabilistic inference in the presence of logical
and arithmetic constraints and dependencies.

These hybrid scenarios are beyond the reach of probabilis-
tic models including variational autoencoders (Kingma &
Welling, 2013) and generative adversarial networks (Good-
fellow et al., 2014), whose inference capabilities, despite
their recent success, are limited. Classical probabilistic
graphical models (Koller & Friedman, 2009), while provid-
ing more flexible inference routines, are generally incapaci-
tated when dealing with continuous and discrete variables
at once (Shenoy & West, 2011), or they tend to make sim-
plistic (Heckerman & Geiger, 1995; Lauritzen & Wermuth,
1989) or overly strong assumptions about their parametric
forms (Yang et al., 2014). Even recent efforts in model-
ing these hybrid scenarios while delivering tractable infer-
ence (Molina et al., 2018; Vergari et al., 2019) can not
perform inference in the presence of complex constraints.

Weighted Model Integration (WMI) (Belle et al., 2015;
Morettin et al., 2017) is a recent framework for probabilis-
tic inference that offers all the aforementioned “ingredi-
ents” needed for hybrid probabilistic reasoning with logical
constraints, by design. WMI leverages the expressive lan-
guage of Satisfiability Modulo Theories (SMT) (Barrett
et al., 2010) for describing problems over continuous and
discrete variables. Moreover, WMI provides a principled
way to perform hybrid probabilistic inference: asking for the
probability of a complex query with logical and arithmetic
constraints can be done by integrating weight functions over
the regions that satisfy the constraints and query at hand.

Despite these appealing features, current state-of-the-
art WMI solvers are far from being applicable to high-
dimensional real-world scenarios. This is due to the fact
that most solvers ignore the dependency structure of the
problem, here expressible through the notion of a primal
or factor graph of an SMT formula (Dechter & Mateescu,
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2007). Thus, their practical utility is limited by their inabil-
ity to scale up the WMI inference. In contrast, SMI (Zeng
& Van den Broeck, 2019), is a recently proposed solver that
directly exploits the problem structure encoded in primal
graphs while reducing a WMI problem to an unweighted
one. However, in order to perform a tractable reduction,
SMI is limited to a restricted set of weights, and hence a
very narrow set of WMI problems.

The contribution we make in this work is twofold. First, we
theoretically trace the boundaries for the classes of tractable
WMI problems known in the literature. Second, we expand
these boundaries by devising a polytime algorithm for exact
WMI inference on a class that is strictly larger than the
class previously known to be tractable. Our proposed WMI
solver, called MP-WMI, adopts a novel message-passing
scheme for WMI problems. It is able to exactly compute
all the variable marginal densities at once. By doing so,
we are able to scale inference beyond the capabilities of
all current exact WMI solvers. Moreover, we can amortize
inference inter-queries for rich SMT queries that conform
to the problem structure.

The paper is organized as follows. We start by reviewing
the necessary SMT and WMI background. Then we trace
the boundaries between hard and tractable WMI problem
classes in Section 3. Next, we present our exact message-
passing WMI solver in Section 4 together with its complex-
ity analysis in Section 5. Before comparing our solver to the
existing WMI solvers on a set of benchmarks, we discuss
related work in Section 6.

2. Background

Notation. We use uppercase letters for random variables
(e.g., X, B) and lowercase letters for their assignments
(e.g., x,b). Bold uppercase letters denote sets of variables
(e.g., X, B) and their lowercase denote their assignments
(e.g., , b). We represent logical formulas by capital Greek
letters, (e.g., A, ®, A), and literals (i.e., atomic formulas
or their negation) by lowercase ones (e.g., ¢, ) or £. We
denote satisfaction of a formula ® by one assignment x by
x = ® and we denote its corresponding indicator function
as [x = ®]. For undirected graphs, neigh denotes the set
of neighboring nodes; for directed ones, pa and ch denote
the parent node and the set of child nodes respectively.

Satisfiability Modulo Theories (SMT). SMT (Barrett
& Tinelli, 2018) generalizes the well-known SAT prob-
lem (Biere et al., 2009) to determining the satisfiability
of a logical formula w.r.t. a decidable theory. Rich mixed
logical/arithmetic constraints can be expressed in SMT for
hybrid domains. In particular, we consider quantifier-free
SMT formulas in the theory of linear arithmetic over the
reals, or SMT(LR.A). Here, formulas are propositional com-

Figure 1: Feasible region (left) of formula I' with one
player and primal graph (right) of formula I with n players
from Example 1.

binations of atomic Boolean literals and of atomic LRA
literals over real variables, for which satisfaction is defined
in a natural way. W.l.o.g. we assume SMT formulas to be in
conjunctive normal form (CNF). In the following, we will
use the shorthand SMT to denote SMT(LR.A).

Example 1 (SMT representation of a skill matching sys-
tem). In a skill rating system for online games, the team
performance X of each team T is defined by the perfor-
mance X; of each player i in team T, both of which are
real variables. The team performance Xt is also related
to a Boolean variable B indicating whether players in the
team form a squad, i.e., a group of friends, which offsets
(boosts) the team performance. We can build an SMT for-
mula T of the relationship among these variables as follows.
For brevity, we omit the domains for real variables in the
formula.

M=/ [Xr-Xi|<1 \ (B=X7r>2)
€T
We show in Figure 1 the feasible regions of formula T i.e.,
the volumes for which the constraints are satisfied.

Weighted Model Integration (WMI). Weighted Model
Integration (WMI) (Belle et al., 2015; Morettin et al., 2017)
provides a framework for probabilistic inference with mod-
els defined over the logical constraints given by SMT for-
mulas.

Definition 2. (WMI) Let X be a set of continuous random
variables defined over R, and B a set of Boolean random
variables defined over B = {true, false}. Given an
SMT formula A over X and B, and a weight function
w : (x,b) — RT belonging to some parametric weight
function family €, the weighted model integration (WMI)
task computes

WMI(A, w; X, B) £

Z/ w(x,b)dx. (1)
beBIB| (z,b)FA

That is, summing over all possible Boolean assignments
b € BIBl while integrating over the weighted assignments of
X making the evaluation of the formula SAT: (z,b) = A.
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Weight functions w are usually defined as products of literal
weights (Belle et al., 2015; Chavira & Darwiche, 2008; Zeng
& Van den Broeck, 2019). That is, for a set of literals £,
a set of per-literal weight functions W = {wy(x)}scr is
given, with weight functions w, defined over variables in
literal £. Then, the weight of assignment (z, b) is:

w(x, b) = Héeﬁ we () =0

When all variables are Boolean (i.e., X = (), the per-literal
weights wy(x) are constants and we retrieve the original def-
inition of the well-known weighted model counting (WMC)
task (Chavira & Darwiche, 2008) as a special case of WMI.
In this paper, we assume that all per-literal weights are from
some certain weight function family, and for literals not in
the set L, their weights are the constant function one. This
setting is expressive enough to approximate many continu-
ous distributions (Belle et al., 2015).

Example 3 (WMI formulation of a skill matching system).
Consider the team performance SMT model I' in Example 1.
Assume that a set of per-literal weights wy,(X71,X;) =
0.1-(X7+X;—6)? is associated to literals {; = X7—X; <
1, quantifying how likely the team performance is upper
bounded by player performances. Then the WMI of the
Sormula T with two players is WMI(T', w; X, B) ~ 170.69.

Intuitively, WMI(A, w; X, B) equals the partition function
of the unnormalized probability distribution induced by
weights w on formula A. In the following, we will adopt
the shorthand WMI(A, w) for computing the WMI with all
the variables in A in scope. The set of weight functions w
together act as an unnormalized probability density while
the formula A represents logical constraints defining its
structure. Therefore, it is possible to compute the (now nor-
malized) probability of any logical query ® expressible as
an SMT formula involving complex constraints as

Pra(®) = WMI(A A ®,w) / WMI(A, w).

Example 4 (WMI inference for skill rating). Suppose we
want to quantify the squad effect in a 2v2 game. Specifically,
given two teams T; and To whose players have the same
performance, but team Ty is a squad while T3 is not, that
is, . = (B1 = true A By = false). We wonder what
is the probability of query ® = X, > X7, that is team
T1 wins and T3 loses. The probability of query ® can be
computed by two WMI tasks as follows.
WMI(AA®.AD,w) 4,206
Pra(®|.) = WMI(AAD,,w) 7,225
with the SMT formula A := T'y A\ T'y where the two sub-
formulas I'y and I'y model the two teams as in Example 1.

~ 58.22%

W.l.o.g, from here on we will focus on WMI problems on
continuous variables only. We can safely do this since a

WMI problem on continuous and Boolean variables of the
form WMI(A, w; X, B) can always be reduced in polytime
to a new WMI problem WMI(A’, w’; X') on continuous
variables only, by properly introducing auxiliary variables
in X’ to account for Boolean variables B without increasing
the problem size (Zeng & Van den Broeck, 2019).

From WMI to MI. Recently, model integration (MI)
(Luu et al., 2014) has been proposed as an alternative way to
perform WMI inference in Zeng & Van den Broeck (2019).
MI is the task of computing the volumes corresponding to
the models of an SMT formula. As such, Ml is a special case
of WMI in which the weights equate to one everywhere.

Definition 5. (Model Integration) Let X consist of continu-
ous random variables over R, and let A be an SMT formula.
The model integration (MI) of X over A is:

MI(A; X) 2 /

ldx = / [z E A] dx

zEA RIXI

Zeng & Van den Broeck (2019) propose a polytime reduc-
tion of a WMI problem with polynomial weights to an MI
one such that their proposed MI solver is amenable to a
certain class of WMI problems. This reduction provides
the basis for the largest class of tractable WMI problems
known before our work. We will review it in the next sec-
tion, before considerably expanding upon the class of WMI
problems that can be solved tractably in the prior work.

3. Tractable WMI inference

The major efforts in advancing WMI inference have been
so far concentrated on devising sophisticated WMI solvers
to deliver exact inference routines for general scenarios
without investigating the effect of the structure of a WMI
problems on its complexity. Little to no attention has gone
to formally understand which classes of WMI problems can
be guaranteed to be solved exactly and in polynomial time,
that is, tractably.

One notable exception can be found in Zeng & Van den
Broeck (2019) where the search-based MI (SMI) solver
is introduced. WMI problems for which SMI guarantees
polytime exact inference constitute the first class of tractable
WML Intuitively, SMI solves MI problems by using search
to leverage the conditional independence among variables.

As in Zeng & Van den Broeck (2019) we characterize the
structure of an SMT formula via its primal graph.

Definition 6. (Primal graph of SMT) The primal graph
of an SMT formula A is an undirected graph Ga whose
vertices are variables in formula A and whose edges con-

nect any two variables that appear in a same clause in the
Sformula A.
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treeWMI(2°M)

Figure 2: The current landscape of classes of WMI prob-
lems. We enlarge the boundaries of tractable WMI inference
from treeMI to treeWMI and prove the hardness of 2MI and
2WMI.

An example primal graph of the SMT formula in Example 1
is shown in Figure 1. The SMI solver guarantees polynomial
time execution for the class of MI problems with certain
tree-shaped primal graphs, which we denote as treeMI.

Definition 7. (treeMI Problem Class) Let treeM| be the set
of all MI problems over real variables whose SMT formula
A induces a primal graph Ga with treewidth one and with
bounded diameter d. Problems in treeMI can be solved in
polytime via SMI (Zeng & Van den Broeck, 2019).

Note that in Definition 7 the primal graph diameter here
plays the role of a constant since, otherwise, SMI com-
plexity can be worst-case exponential in diameter d. In
the following we will try to answer if larger classes than
treeMI are still amenable to tractable inference. We start
by demonstrating a novel result that states the hardness of a
larger class of MI problems, still focusing on dependencies
between two variables, but allowing for non-tree-shaped
primal graphs.

Definition 8. (2MI| Problem Class) Let 2M| be the set of all
MI problems over real variables whose SMT formula A is a
conjunction of clauses comprising at most two variables.

Note that a clause comprising at most two variables can be
a conjunction of arbitrarily many literals. Moreover, when
there are more than two variables in a clause, in the primal
graph there must be a loop and thus the treewidth of the
primal graph is larger than one. Hence all MI problems with
tree-shaped primal graph must be in the class 2MI.

Theorem 9. (Hardness of 2MI) Given an MI problem in
2MI with an SMT formula A, computing MI(A) is #P-hard.

Sketch of Proof. The proof is done by reducing the #P-
complete problem #2SAT to an MI problem in 2MI with an
SMT formula A such that counting the number of satisfying
assignments to the #2SAT problem equates to the MI of
formula A. See Appendix for a detailed proof. O

From Theorem 9 it follows that the problem class
2WMI(£2), i.e., the WMI problems with SMT formulas

being a conjunction of clauses comprising at most two vari-
ables, and with per-literal weights in weight function family
Q, is also hard since class 2Ml is a sub-class of 2WMI(€2).
We revert our attention to WMI problems exhibiting a de-
pendency tree structure. Notice that for WMI problems,
the tractability not only depends on the logical structure
defined by the SMT formulas, but also the statistical struc-
ture defined by weight functions. Next in our analysis, we
take into consideration the weight function families. Analo-
gously to what Definition 7 states, we introduce the notion
of treeWMI(Q2) with the associated weight function family
specified as follows.

Definition 10. (treeWMI(Q2) Problem Class) Let
treeWMI(QQ) be the set of all WMI problems over real
variables whose SMT formula A induces a primal graph
Ga with treewidth one and with bounded diameter d, and
whose per-literal weights are in a function family €.

Zeng & Van den Broeck (2019) propose a WMI-to-MI re-
duction such that some treeWMI(£2) problems with poly-
nomial weights are reduced in polynomial time to treeMI
problems amenable to tractable inference by the SMI solver.
Intuitively, the reduction process introduces auxiliary con-
tinuous variables and SMT formulas over these variables
to encode the polynomial weight functions. We refer the
readers to Zeng & Van den Broeck (2019) for a detailed
description of the reduction. However, as shown next, the
set of treeWMI problems that can be reduced to treeMl is
rather limited.

Definition 11. (QSMI Weight Function Family) Let oM
be the family of per-literal weight functions that are mono-
mials associated with either (i) univariate literals or (ii) a
literal that appears exclusively in a unit clause, i.e., a clause
consisting of a single literal.

Theorem 12. Let p be the polytime WMI-to-MI reduc-
tion for treeWMI(QQ) problems as defined in Zeng &
Van den Broeck (2019). Then the image {p(v) | v €
treeWMI(Q2)} C treeMl if-and-only-if @ c @™,

Sketch of Proof. The necessary condition can be proved by
the reduction process and the sufficient one can be proved
by contradiction. See Appendix for a detailed proof. O

Therefore, the SMI solver is limited to a rather restricted
subset of treeWMI(€2) since from the definition of Q™'
we can tell that it is a strict subset of monomial per-literal
weights. In order to enlarge the tractable class of WMI prob-
lems, next we will define a rich family of weight functions.

Definition 13. (Tractable Weight Conditions) Let €2 be
a family of per-literal weight functions. We say that the
tractable weight conditions (TWC) hold for Q2 if we have:

(i) closedness under product: Vf,g € Q, f-g € Q;
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(ii) tractable symbolic integration: NV f € 2, the symbolic
antiderivative of function f can be tractably computed
by symbolic integration;

(iii) closedness under definite integration: ¥ f € ) with its
antiderivative denoted by F, given integration bounds
l(z),u(z) in LRAwithz € X, F(u(z))—F(l(x)) €
Q.

Some example weight function families that satisfy TWC
include the polynomial family, exponentiated linear function
family and the function family resulting from their product.
Moreover note that piecewise function families, when pieces
belong to the above families, also satisfy TWC. It turns out
that the weight function families that satisfy TWC subsume
and extend all the parametric weight functions adopted in
the WMI literature so far. The following proposition is a
direct result from the fact that the piecewise polynomial
weight family QF is a strict superset of the family QsM!

Proposition 14. Let QF be the piecewise polynomial weight
function family. The WMI problem class treeWMI(QP) isa
strict superset of problem class treeWMI (QSN“).

Theorem 15. If a weight function family Q2 satisfies TWC
as in Definition 13, WMI problems in class treeWMI(Q2)
are tractable, i.e., they can be solved in polynomial time.

The proof to the above theorem is provided in the next two
sections by construction where in Section 4 we proposed our
WMI solver, called MP-WMI, operating on WMI problems
in treeWMI(£2) with its complexity analysis in Section 5. A
summary of the WMI problem classes is shown in Figure 2.

4. Message-Passing WMI

Message passing on tree-structured graphs has achieved
remarkable attention in the PGM literature (Pearl, 1988;
Kschischang et al., 2001). Its classical formulation and ef-
ficiency relies on compact factor representations allowing
easy computations. However, adapting existing message-
passing algorithms to WMI inference is non-trivial. This
is due to the fact that inference is computed in a hybrid
structured space with logical and arithmetic constraints. We
present our message-passing scheme by first deriving a fac-
torized representation of WMI problems.

4.1. Factor Graph Representation of WMI

In the literature of WMC, incidence graphs are proposed to
characterize the structure of problems defined by Boolean
CNF formulas (Samer & Szeider, 2010). Incidence graphs
are bipartite graphs with clause nodes and variable nodes,
where a clause and a variable node are joined by an edge if
the variable occurs in the clause. We derive the analogous
representation for the more general SMT formulas, which
we then turn into a factor graph of WMI problems.

Recall that for the joint distribution represented by a WMI
problem, the support is defined by the logical constraints
and the unnormalized density is defined by weight functions.
In the following, we first factorize the SMT formula A of a
WMI problem WMI(A, w) in the class treeWMI:

A= NAin N\ Ay 2)

i€V i,jEE

where the set V is the index set of variables and the set £
is the index pairs of variables in the same clause. Then a
WMI problem can be conveniently represented as a bipartite
graph, known as factor graph, that includes two sets of
nodes: variable nodes X, and factor nodes fs, where S
denotes a factor scope, i.e., the set of indices of the variables
appearing in it. A variable node X is connected to a factor
node fs if and only if = € S. Specifically, the factors are
defined as follows:

fs@s)= [ [es Tl J[ we@s)ls=T 3)

reCLS(As) LeLITS(T)

where x s denotes the restriction of x to the variables in
factor fs and analogously Ag is the restriction of formula
A to the clauses over the variables in S. Here, the set of
clauses in the SMT formula A is denoted by CLS(A), and
the set of literals in a clause I" is denoted by LITS(T).
Intuitively, the factors include the parameterized densities
as in the classic PGM literature, here represented by the
per-literal weights, but also the structure enforced by the
logical constraints in the SMT formula, via the indicator
functions. Figure 3 shown an example of a factor graph.

As in every tree-shaped factor graphs, we define an un-
normalized joint distribution corresponding to the WMI
problem in the form of a product of factors as follows.

p@) =[] fs(@s) =[] Hix0) I] £ii(Xi. X5) @
S

iey i,jEE

By construction, it is easy to see that the normalization
constant of such a distribution equals computing the corre-
sponding weighted model integral.

Proposition 16. Given a problem WMI(A| w) in treeWMI,
let p(x) being the unnormalized joint distribution as defined
in Equation 4. Then the partition function of distribution
p(x) is equal to WMI(A, w).

4.2. Message-Passing Scheme

Deriving a message-passing scheme for WMI poses unique
and considerable challenges. First, different from discrete
domains, on continuous or hybrid domains one generally
does not have universal and compact representations for
messages, and logical constraints in WMI make it even
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Figure 3: Factor graph (left) of formula y with two players
and piecewise polynomial messages (right) sent from the
three factor nodes to variable node X7 when solving the
WMI in Example 3 by MP-WMI.

harder to derive such representations. Moreover, marginal-
ization over real variables requires integration over poly-
topes, which is already #P-hard (Dyer & Frieze, 1988). The
integration poses the problem of whether the messages de-
fined are integrable and how hard it is to perform the inte-
gration. In the following part, we will present our solutions
to these challenges by first describing a general message-
passing scheme for WMI and then investigating of which
form the messages are, given certain weight families.

Given the factorized representation of WMI in Section 4.1,
our message-passing scheme, called MP-WMI and sum-
marized in Algorithm 1, comprises exchanging messages
between nodes in the factor graph. Before the message pass-
ing starts, we choose an arbitrary node in the factor graph
as root and orient all edges away from the root to define the
message sending order. MP-WMI operates in two phases:
an upward pass and a downward one. First, we send mes-
sages up from the leaves to the root (upward pass) such that
each node has all information from its children and then
we incorporate messages from the root down to the leaves
(downward pass) such that each node also has information
from its parent. The messages are formulated as follows.

Proposition 17. Both messages m Fi= X, from factor node
to variable node and messages My, _, ;. from variable node
to factor node have iterative formulations as follows.

(D) my x, (i) = [ fij(@i,zg) - my g (25) doj;

(ii) my,ro(@i) = Iy, eneigh(xi)\ fs Mper—x, (Ti)-

For the start of sending messages, when a leaf node is
a variable node X;, the message that it sends along its
one and only edge to a factor fsis my. ,, (c;) = 1;in
the case when a leaf node is a factor node f;, the mes-
sage from the factor node f; to a variable node X; is
m; _x,(z;) = fi(z;). Even though the weight function
family is not specified here, it can be shown that when the
integration in Proposition 17 is well-defined, i.e., the in-
tegrands are integrable, then the messages are univariate
piecewise functions, which is a striking difference with clas-

Algorithm 1 MP-WMI(A)

V, < sort variable nodes in factor graph
for each X; € V,, do {upward pass}
send-message( X, fi pa(i))
send-message(f; pa(i)» Xpa(i)
end for
Vdown < sort nodes in set V,, in reverse order
for each X; € V4o, do {downward pass}
for each X, € ch(X;) do
send-message(X;, fic)
send-message(fic, X.)
end for
: end for

: return {mXﬁfy My x5 }("L"hfs)eg

—_
S AN AP AR AR R o

—_—
W N

sical message-passing schemes.

Proposition 18. For any problem in treeWMI, the mes-
sages as in Proposition 17 are univariate piecewise func-
tions.

The specific form of messages also depends on the chosen
weight function family as mentioned in Section 3. For exam-
ple, when the weight functions are chosen to be polynomials,
the messages are piecewise polynomials, as in the example
in Figure 3. We show how to compute the piecewise polyno-
mial messages in Algorithm 2 with functions critical-points
and get-msg-pieces as subroutines to compute the numeric
and symbolic integration bounds for the message pieces.
Both of them can be efficiently implemented, see Zeng &
Van den Broeck (2019) for details. The actual integration of
the polynomial pieces can be efficiently performed symboli-
cally, as supported by many scientific computing packages.

When MP-WMI terminates, the information stored in the
obtained messages is sufficient to compute the unnormalized
marginals for each variable and it is independent of the
choice of root. Moreover, the integration of unnormalized
marginals equals to WMI(A, w).

Proposition 19. Let A be an SMT formula with a tree factor
graph and with per-literal weights w. For any variable X,
the unnormalized marginal p(x;) is

p(z;) = Hfseneigh(x,-) Myex, (i)

Moreover, the partition function for any x; is the WMI of
SMT formula A, i.e., WMI(A,w) = [ p(x;)dz;.

4.3. Amortization

We will show that by leveraging the messages pre-computed
in MP-WMI, we are able to speed up (amortize) inference
time over multiple queries on formula A. More specifically,
when answering queries that do not change the tree structure
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Algorithm 2 send-message(s, t)
if s = X;andt = fij then

Ju—

2 R(.Eturn Hfs/eneigh(xi)\fij Mfo—X;

3: elseif s = f;; and t = X, then

4: P+ .cr|t|cal-p0|nts(m)§j_>f” WAVE)!

5. 7 « intervals-from-points(P)

6: forinterval I € 7 consistent with formula A;; do
7: <l5, us,p> + get-msg- pieces(ij_,fU,I, w)
8: ) fl p(z;, ;) dz;

9: mfij_>Xi<—mfij_>Xi+[[xZ€I]]-p’(xi)

10:  end for

11: end if

12: returnm_,,

in the factor graph of formula A, we only need to update
messages that are related to the queries while other messages
are pre-computed. Some examples are SMT queries on a
node variable or queries over a pair of variables that are
connected by an edge in the factor graph, since these queries
either add leaf nodes or do not change existing nodes. Thus
we can reuse the local information encoded in messages.

Proposition 20. Ler WMI(A, w) be a problem in treeWMI,
and ® be an SMT query over a factor f; involving
a variable X; € X. Given pre-computed messages

{meﬁXi}fseneigh(Xi),
WMI(A A ) = /Rm;:ﬁxi (@1)-

11 my, L x, (wi)dx;

fs€neigh(Xi)\ f2

with message m}._, ., computed over factor f;(x;) =
fs(xs) - [xs = P] as in Proposition 17.

Pre-computing messages can dramatically speed up infer-
ence by amortization, as we will show in our experiments,
especially when traversing the factor graph is expensive or
the number of queries is large.

5. Complexity Analysis

This section provides a complexity analysis of our proposed
WMI solver MP-WMI. Given the SMT formula A with
a tree factor graph with a chosen root node, each factor
node would be traversed exactly once in each phase of the
message-passing scheme We denote the set of directed
factor nodes by F := {fs} ={fF,f | fs € V} where
1.+ denotes the factor node f; visited in the upward pass and
f5 denotes the one visited in downward pass respectively.

To characterize the message-passing scheme, we define a
nilpotent matrix A as follows. The matrix A € NIZ1xI7]
has both its columns and rows denoted by the factor nodes in

- .
set F. At each column denoted by f5, only entries at rows
denoted by factor nodes visited right after fs are non-zero.

Proposition 21. The nilpotent matrix A as described above
has its order at most the diameter of the factor graph.

Next we show how to define the non-zero entries in matrix A
with parameters about the SMT formulas in WMI problems.

Proposition 22. Suppose that the two variables X; and X
are connected in the factor graph by a factor f;; associated
with a sub-formula A;; of size c, then in MP-WMI:

(i) the number of pieces in message my, o fus is bounded
by >~ mg, where my is the number of pieces in message
_x, with fs € neigh(X;)\ fi;;
(ii) the “number of pieces in message m Fi— X, is bounded
by 2mc + ¢ with m being the number ofpteces in
message My, .

Now we show how to use the matrix A to bound the number
of pieces in messages. We define the non-zero entries in
the nilpotent matrix A to be 2¢ with ¢ being a constant
that bounds the size of sub-formulas associated to factors.
Define a vector v® € NI€| for the state of the message-
passing scheme at step ¢ — by state it means that each entry
in vector v(*) is denoted by a factor node in set F and the
entry denoted by f; bounds the number of pieces in the
message sent to f, in the MP-WMI. For the initial state
vector v(¥), it has all non-zero entries to be ¢, the constant
bounding the sub-formula size, and these entries are those
denoted by f‘,.
leaf.

Proposition 23. Ler A be the nilpotent matrix and v the
initial state vector as described above. Also let vV =
Avt=1 4-c2.sgn( Avt 1)) with sgn being the sign function.

1. with factor node f4 connected with a

Then each entry in vector v'\*) denoted by f, bounds the
number of pieces in the message m . _, . received by factor
fs from some variable node X; at step t in MP-WML

Proposition 24. Let A be the nilpotent matrix and v®) the
state vectors as described above. The total number of pieces
in the all the messages is bounded by || Zf:o v® ||y with
d being the diameter of the factor graph. Moreover, it holds
that || 20, v® ||y is of O((4nc)23+2),

This gives the worst-case total number of message pieces in
MP-WMI. From Proposition 24, it holds that the problems
in class treeWMI(£2) with the weight function family €2
satisfying TWC are tractable to MP-WMI, since the com-
plexity of MP-WMI is the total number of message pieces
multiplied by the symbolic integration cost of each piece,
which is tractable for functions in family €2 by definition.
This finishes the constructive proof for Theorem 15 in Sec-
tion 3. Notice the complexity of WMI problems depends on
the graph structures. In our experiments, we will compare
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solvers on WMI problems with three representative problem
classes with different factor graph diameters.

6. Related Work

WMI generalizes weighted model counting (WMC) (Sang
et al., 2005) to hybrid domains (Belle et al., 2015). WMC
is one of the state-of-the-art approaches for inference in
many discrete probabilistic models. Existing exact WMI
solvers for arbitrarily structured problems include DPLL-
based search with numerical (Belle et al., 2015; Morettin
et al., 2017; 2019) or symbolic integration (de Salvo Braz
et al., 2016) and compilation-based algorithms (Kolb et al.,
2018; Zuidberg Dos Martires et al., 2019a).

Motivated by their success in WMC, Belle et al. (2016)
present a caching scheme for WMI that allows reusing
computations at the cost of not supporting algebraic con-
straints between variables. Different from usual, Merrell
et al. (2017) adopt Gaussian distributions, while Zuidberg
Dos Martires et al. (2019a) fixed univariate parametric as-
sumptions for weight functions. Closest to our MP-WMI,
SMI (Zeng & Van den Broeck, 2019) is an exact solver
which leverages context-specific independence to perform
efficient search and operates on tree-shaped primal graphs.
Many recent efforts in WMI converged in the pywmi (Kolb
et al., 2019) python framework.

Tree-shaped dependency structures, as the ones character-
izing our treeWMI () class, naturally arise in many fields,
such genetics (Nei & Kumar, 2000), system analysis (Vesely
etal., 1981), linguistics (Petrov et al., 2006), and telecommu-
nications (Leon-Garcia & Widjaja, 2003). Moreover, thanks
to their appealing mathematical properties, trees serve as
practical approximations of non tree-shaped problems (Ru-
binstein et al., 1983; Robins & Zelikovsky, 2000; Binev &
DeVore, 2004).

Message-passing schemes have been widely used for devel-
oping exact and approximate inference algorithms for prob-
abilistic graphical models on discrete (Kschischang et al.,
2001), continuous (Guo et al., 2019; Wang et al., 2018) and
hybrid domains (Gogate & Dechter, 2012). Our amortiza-
tion scheme is closely related to the reuse of local computa-
tion in the join tree algorithm (Huang & Darwiche, 1996;
Lepar & Shenoy, 2013), which has never been explored
in hybrid domains for WMI inference, however. Similarly
to us, Gamarnik et al. (2012) adopts piecewise polynomial
messages, specifically piecewise-linear convex functions, in
a belief propagation scheme for non-probabilistic min-cost
network flow problems.

Research on learning WMI distributions from data is at its
early stages. Parameter learning for piecewise constant den-
sities has been addressed in (Belle et al., 2015). Recently, an
approach for jointly learning the structure and parameters

of a WMI problem has been proposed in (Morettin et al.,
2020). Developing faster inference algorithms is thus benefi-
cial in learning scenarios as, typically, learning a full model
requires numerous calls to an inference procedure. WMI
inference is closely related to probabilistic program infer-
ence, where complex arithmetic and logical constraints are
induced by the program structure or its abstraction (Holtzen
etal., 2017; 2018).

7. Experiments

In this Section, we aim to answer the following research
questions:! Q1) Can we effectively scale WMI inference
with MP-WMI? Q2) How beneficial is inter-query amorti-
zation with MP-WMI?

To answer Q1, we generated a benchmark of WMI prob-
lems with tree-shaped primal graphs of different diameters:
star-shaped graphs (STAR), complete ternary trees (SNOW)
and linear chains (PATH). These structures were originally
investigated by the authors of SMI and are prototypical of
tree shapes that can be encountered in real-world scenarios
such as phylogenetic trees (Nei & Kumar, 2000), hierar-
chies in file and networks systems (Vesely et al., 1981), and
natural language grammars (Petrov et al., 2006).

We sampled random SMT formulas with NV variables with
the tree structures described above and polynomial weights
mapping a subset of literals to a random non-negative poly-
nomials. We generated problems with /V ranging from 2 to
20 with step size 2, and from 20 to 100 with step size 10.
We compared our MP-WMI python implementation against
the following baselines: WMI-PA (Morettin et al., 2019), a
solid general-purpose WMI solver exploiting SMT-based
predicate abstraction techniques that is less sensitive to the
problem structure; and F-XSDD(BR) (Zuidberg Dos Mar-
tires et al., 2019b), a compilation-based solver achieving
state-of-the-art results in several WMI benchmarks.

Fig. 4 shows that, with timeout being an hour, our proposed
solver MP-WMI is able to scale up to 60 variables for STAR
problems and up to 90 variables for SNOW and PATH prob-
lems, while the other two solvers stop at problem size 20 for
all three classes. Note that the results are in line with those
reported in (Zuidberg Dos Martires et al., 2019b). This an-
swers Q1 affirmatively, raising the bar of the size of WMI
problems that can be solved exactly up to 100 variables.

We tackle Q2 by comparing MP-WMI with SMI (Zeng
& Van den Broeck, 2019) on tree-structured MI problems.
SMI is a search-based MI solver that has been shown to
be efficient for such problems. WMI-PA, F-XSDD and
the SGDPLL(T) (de Salvo Braz et al., 2016) solver are not

'Our implementation of MP-WMI and the code for reproducing
our empirical evaluation can be found at https://github.
com/UCLA-StarAI/mpwmi.
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Figure 4: Results of the comparison between MP-WMI, WMI-PA and F-XSDD on WMI problems with tree dependencies.
In this setting, MP-WMI remarkably scales to problems having up to 60 variables on STAR, while solving SNOW and
PATH problems having up to 90 variables, considerably “raising the bar” for the size of tractable WMI inference problems.
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Figure 5: Log-log plot of cumulative time (seconds, y-axis) for MP-WMI (orange, red, brown) and SMI (blue, green, purple)
over STAR, SNOW and PATH primal graphs (see text) with 10, 20 and 30 variables for increasing numbers of univariate
and bivariate queries (x-axis). For every class, MP-WMI takes up to two order of magnitude less time when amortizing 100

queries, while being faster than SMI on a single query.

included in the comparison since they were already shown
in Zeng & Van den Broeck (2019) to not be competitive
on such problems. The synthetic SMT formulas range over
n € {10,20,30} variables with tree factor graphs being
STAR, SNOW and PATH. We generate 100 univariate or
bivariate random queries for each MI problem.

Figure 5 shows the cumulative runtime of answering ran-
dom queries by both solvers. As expected, MP-WMI takes
a fraction of the time of SMI (up to two order of magni-
tudes) to answer 100 univariate or bivariate queries in all
experimental scenarios, since it is able to amortize inference
inter-query. More surprisingly, by looking at the first point
of each curve, we can tell that MP-WMI is even faster than
SMI to compute a single query. This is because SMI solves
polynomial integration numerically, by reconstructing the
univariate polynomials before the numeric integration via in-
terpolation, e.g., Lagrange interpolation; while in MP-WMI
we adopt symbolic integration. Hence the complexity of the
former is always quadratic in the degree of the polynomial,
while for the latter the average case is linear in the number of
monomials in the polynomial to integrate, which in practice
might be much less than the degree of the polynomial.

8. Conclusions

In this paper, we theoretically traced the boundaries of
tractable WMI inferece and proposed a novel exact WMI
solver based on message-passing, MP-WMI, which is effi-
cient on a rich class of tractable WMI problems with tree-
shaped factor graphs, the largest known so far. Furthermore,
MPWMI dramatically reduces the answering time of multi-
ple queries by amortizing local computations and allows to
compute all marginals and moments simultaneously.

We believe this provides a theoretical and algorithmic step-
ping stone needed to device principled approximate WMI
inference schemes that can scale even further to larger and
non tree-shaped problem structures.
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A. Proofs
A.1. THEOREM 9

Proof. (Theorem 9) The proof is done by reducing the #P-
complete problem #2SAT over a 2SAT formula Ag to an
MI problem on a 2-Clause SMT(LR.A) formula A.

By the Boolean-to-real reduction from (Zeng & Van den
Broeck, 2019), there exists an SMT(LR.A) formula A over
real variables only such that MI(Ag) = MI(A). The for-
mula A can be obtained in the following way. Any Boolean
literal B or =B in propositional formula A is substituted
by LR A literals Zg > 0 and Zp < 0 respectively where
the real variable Zp is an auxiliary real variable with bound-
ing box (Zg > —1) A (Zg < 1). Denote the formula after
replacement by A’. Then we have formula A as follows.

(Zp>-1)A(Zp <1)

A=A A /\

Bevars(Ag)

For each clause in formula A, since it contains at most
two Boolean variables before substitution, it also contains
at most two real variables now. Therefore formula A is
a 2-Clause SMT(LR.A) formula over real variables only.
Moreover, the reduction guarantees that MI(A) = MI(Ap)
where MI(Ag) is the number of satisfying assignments to
Ap by the definition of WMI. Thus, computing MI of a
2-Clause SMT(LR.A) formula over real variables is #P-
hard. O]

A.2. THEOREM 12

Proof. (Theorem 12) When the weight function family
Q=M by the WMI-to-MI reduction process in Zeng &
Van den Broeck (2019), any WMI problem in treeWMI(€2)
can be reduced to an MI problem in class treeMI.

We prove the other way by contradiction. Suppose that there
exists a WMI problem v = WMI(A, w) € treeWMI(2)
with a per-literal weight function w, ¢ QM such that
p(v) € treeMI. Since the per-literal weight function
wy ¢ Q™' from the definition of %', it holds that / is a
bivariate literal defined in a clause I' which is a conjunction
of more than one distinct literals, i.e., ' = é\/\/f:1 bik>1
with £ # ¢;,¥i = 1,--- | k. During the reduction, a clause
I = £ = AJ'0; is conjoined to the formula A to encode
the weight function w, with at least one auxiliary variable in
formula ;. Then there are at least three distinct variables in
clause I'” since given the form of clause I, clause I'” can not
be further simplified by resolution. This causes a loop in the
primal graph of the reduced MI problem p(v), which con-
tradicts the assumption that p(v) € treeMI. Therefore, if
Vv € treeWMI(Q), p(v) € treeMl, then @ € QM. [

A.3. PROPOSITION 16

Proof. (Proposition 16) Recall that given a WMI problem
with SMT formula A over real variables only, the WMI
can be computed as follows by the definition of WMI in
Equation 1.

WMI(A, w) = / we(x)FE dg

TEA pe LITS(A)

Notice that this 1is equivalent to integrating
on domain RIX| over the integrand f(z) =
[ = Al Treprrs(ay we(@)®ED Next, we  show
how to factorize over the integrand f(x) based on the
factorization on formula A in Equation 2. First, for the
indicator function, we have that

Zl;[[[$5|=AS]]=H 11

S TeCLS(As)

[[Cc ': A]] [.’135 ': F]].

Moreover, it holds that

H [[m = —

eeLJTS(A)

=11 I I weles

S TeCLS(A) e LITS(T)

Together they complete the proof that the integrand f(x)
here equals to the unnormalized joint distribution p(x) de-
fined in Equation 4 and therefore the partition function of
distribution p(x) equals to the WMI of formula A. O

A.4. PROPOSITION 18

Proof. (Proposition 18) This follows by induction on the
message-passing scheme. Consider the base case of the
messages sent by leaf nodes. When the leaf node is a vari-
able node X;, by definition the messages it sends to a factor
node fsismy, ,, (X;) = 1; when the leaf node is a factor
node f;, by definition the messages it sends to the variable
node X; is my ,  (X;) = fi(X;). By the definition of
factor functions in Equation 3, the function f; is a univari-
ate piecewise function in variable X; with pieces defined
by the logical constraints in formula A; as in Equation 2.
Then it holds that messages sent from the leaf nodes in the
message-passing scheme are piecewise function.

Further, by the recursive formulation of messages in Propo-
sition 17, since the piecewise functions are close under prod-
uct, messages sent from variable nodes to factor nodes are
again univariate piecewise functions; for messages m,__, v,
sent from factor nodes fs to variable nodes X;, the do-
main of variable X; is divided into different pieces by con-
straints in formula Ag that correspond to different integra-
tion bounds and thus the resulting messages from integration
is again univariate piecewise integration. This concludes the
proof. O

l=ska,
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A.5. PROPOSITION 19

Proof. (Proposition 19) Given the tree structure of the factor
graph as well as the factorization of WMI as in Equation 4,
the factors functions can be partitioned into groups, with
each group associated with each factor nodes fs that is a
neighbour of the variable node X;. Then the unnormalized
joint distribution can be rewritten as follows.

pi@) = ]

fs€neigh(X;)

Fs(zi,xs)

where xs denotes the set of all variables in the subtree
connected to the variable X; via the factor node fgs, and
Fs(z;,xs) denotes the product of all the factors in the
group associated with factor fs. Then we have that

pz)= I

fs€Eneigh(X;)

= H )/Fs(ﬂii,ws) dxs = /P(w) dz\z;

fs€Eneigh(X;

where the last equality is obtained by interchanging the in-
tegration and product. Thus it holds that p(z;) obtained
from the product of messages to variable node X is the
unnormalized marginal. The fact that the partition func-
tion of marginal p(z;) is the WMI of formula A follows
Proposition 16. O

A.6. PROPOSITION 21

Proof. (Proposition 21) W.L.o.g, assume that both the cho-
sen root node and leaf nodes are variable nodes. Recall
that the tree-height h is the longest path from root node to
any leaf node. Let n ¢ be the number of factor nodes in the
longest path in the factor graph from root node to a leaf node
that defines the tree-height h. Then it holds that A = 2ny
since the factor graph is a bipartite graph.

For another, consider a directed graph G whose nodes are
the directed factor nodes in F and whose directed edges
go from one factor node to factor nodes if they are visited
right after in the MP-WMI. By definition, we have that
A = 2c¢- M where M is the adjacency matrix of G, and c is
the constant that bounds the size of sub-formulas associated
to factors.

For adjacency matrix M, since the power matrix M* has
non-zero entries only when there exists at least one path in
graph G with length k, the order of matrix M is the length
of longest path in graph G plus one which is two times the
number of number of factor nodes in the longest path in the
factor graph, i.e., 2ns. Therefore the adjacency matrix M
is a nilpotent matrix with order being at most 2ny, i.e., the
tree-height of the factor graph, which is at most the diameter
of the factor graph. So is matrix A. O

A.7. PROPOSITION 22

Proof. (Proposition 22) The statement () holds since the
message My _, ¢ is the product of messages hence intersec-
tion of corresponding pieces by definition in Proposition 17.

For the statement (i4), the end points of the message pieces
in message m X, are obtained by the solving linear
equations with respect to variable x; as described in Zeng
& Van den Broeck (2019) where they define them as critical
points. For these equations, each side can be either an
endpoint in message my. ., ., Or an LRA atom from a
literal in sub-formula A;;. Then there are at most 2mc
equations with one side as an endpoint and the other size
as an LR.A atom, and at most ¢? equations with both sides
as LRA atoms. Thus the total number of critical points
from solving the equations is 2mc + ¢2, which indicates
that the number of pieces, whose domains are bounded
intervals with critical points being their endpoints, is at
most 2mc + 2. O

A.8. PROPOSITION 23

Proof. (Proposition 23) The proof is done by mathematical
induction at steps in MP-WMI. Given a directed factor node
fs € F, denote the set S(f) := {fs | Ay, 5., # 0}.

For step 0, the statement holds by the definition of v(%),
Suppose that for step ¢, each entry in vector v(*~1) denoted
by fs bounds the number of pieces in the message my, ,
received by factor f, from some variable node X; at step
t — 1. For step t, it holds for v(*) by its definition that

(v®)y, = ZfS/ES(fS)(Afmfs/ (”(tfl))fg + ).

Moreover, for a factor node f; € F, there exists an vari-
able X; such that nodes in S(fs) are connected to f
by the variable node X; in the factor graph. Since the
entry (v(tfl)) 7., bounds the number of message pieces
in m X,—fo for some variable X;, the number of mes-
sage pieces in each message m Foo X, is bounded by
2¢- (v, + ¢? by Proposition 22. It further indicates
that the number of message pieces inm -, 7, is bounded by
Yofes( (2 (D), +c2) = (v®)y, since the non-
zero entries in A are defined as 2¢. Thus the statement holds
for step ¢, which finishes the induction and the proof. [

A.9. PROPOSITION 24

Proof. (Proposition 24) For brevity, we denote the L1-norm
by || - |- Denote the cardinality of set F to be s. From the
definition of matrix A, it holds that || A ||< 2¢s. Then for
all ¢, it holds that

1o (<[l Av®D e sgn(AvY) [|< 2es || oY || 4%
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From the recurrence above, it can be obtained that

d

1> 0® ||<Z [
t=0
d t—1
[(2¢s)! || 0@ | —|—Z (2¢s)cs] < 2(2cs)?4T2
t=0 =0

Moreover, since the cardinality s < 2n, we have that
I g o s of O((4nc)>™+2), O



