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Abstract
Bayesian deep learning performs well at provid-
ing prediction accuracy and calibrated uncertainty.
Current research has been focused on scalability
by imposing simplistic assumptions on posteri-
ors and predictive distributions, which harms the
prediction performances. While an accurate esti-
mation of the posterior is critical to performance,
doing so is computationally expensive and pro-
hibitive in practice since it would require running
a long Monte Carlo chain. In this paper, we ex-
plore a trade-off between reliable inference and
algorithm scalability. The main idea is to use
collapsed samples: while doing full Bayesian in-
ference, we sample some of the stochastic weights
and maintain tractable conditional distributions
for the others, which are applicable to exact infer-
ence. This is possible by encoding the Bayesian
ReLU neural networks into probabilistic Satisfia-
bility Modulo Theories models and further lever-
aging a recently proposed tool that is able to
perform exact inference for such models. We
illustrate our proposed collapsed Bayesian deep
learning algorithm on regression tasks. Empirical
results show significant improvements over the
existing Bayesian deep learning approaches.

1. Introduction
Bayesian inference with neural networks by Bayesian model
averaging (BMA) (Fragoso et al., 2018) is particularly com-
pelling in Bayesian deep learning community. However,
to compute BMA is distinctly challenging. We will show
that even with approximate posteriors in a simple form and
a low-dimensional parameter space, doing BMA involves
integration over highly non-convex distributions. In general,
BMA requires to integrate complex and multi-modal pos-
teriors over high dimensional parameter space, which has
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observed to have some unusual topological properties such
as mode-connectivity.

How to accurately approximate the true BMA has been an at-
tractive topic since it can potentially achieve significant per-
formance gains (Izmailov et al., 2021). Existing Bayesian
deep learning approaches mainly focus on computational
convenience such as MCMC-based ones that could poten-
tially give heavily biased estimation in practice for posterior
expectations, and variational-inference-based approaches
that typically use unimodal Gaussian approximations for
posterior estimation. Their strong performance on bench-
mark problems does not imply that the algorithm accurately
approximate the true BMA.

In this work, we are interested in using collapsed samplers,
also known as cutset or Rao-Blackwellised samplers for
BMA, which improve over classical particle-based methods
by limiting sampling to a subset of the variables while pair-
ing it with some closed-form representation of a conditional
distribution over the rest. The accuracy of BMA computa-
tion is improved by performing exact marginalization on the
conditional distributions while the efficiency is guaranteed
by the sampling part of the inference algorithm.

The exact marginalization is possible thanks to recent ad-
vances in probabilistic inference tools under algebraic con-
straints. Inspired by recent work where ReLU neural
networks are compiled into Satisfiability Modulo Theo-
ries (SMT) formulas and analyzed by SMT solvers, we
observe that BNNs with ReLU activation functions can be
encoded as probabilistic SMT models, over which BMA
can be solved by leveraging the weighted model integra-
tion (WMI), an inference framework for doing marginal-
ization over probabilistic SMT models (Belle et al., 2015;
Morettin et al., 2017; Zeng et al., 2020b). Various WMI
solvers have been built (Morettin et al., 2019; de Salvo Braz
et al., 2016; Kolb et al., 2018; Zuidberg Dos Martires et al.,
2019; Zeng and Van den Broeck, 2019; Zeng et al., 2020a;b).
With the above insights, we make two main contributions: 1)
we propose to perform BMA using collapsed samples to in-
crease the accuracy of prediction and uncertainty estimation
while maintaining scalability; 2) we propose an algorithm
name CIBER for collapsed BMA based on an encoding
of the BNN in probabilistic SMT models over which exact
inference can be performed by the WMI solvers.
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2. Proposed Approach
Notation. Uppercase letters (e.g., X) denote random vari-
ables and lowercase letters (e.g., x) denote their assignments.
We use bold for sets of variables or a vector of variables
(e.g., X) and their joint assignments (e.g., x). We use capi-
tal Greek letters (e.g., ∆) for logical formulas. Let x |= ∆
denote the satisfaction of a formula ∆ by an assignment x,
with a corresponding indicator function Jx |= ∆K.

We start by formalizing the predictive distribution given by
Bayesian model averaging (BMA):

p(y | x) =
∫

p(y | x,w) p(w | D) dw, (1)

where w are the parameters of a neural network model
denoted by fw, D denotes the observed data, and p(y |
x,w) is a succinct representation for p(y | fw(x),x,w).
In this work, we are interested in regression tasks. With
the above predictive distribution, an expected regression
prediction is given by Ep(y|x)[y].

To obtain an accurate estimation of the predictive uncer-
tainty p(y | x) is hard. First, computing the exact posterior
p(w | D) is intractable in general and it requires approxi-
mation. Current Bayesian inference methods approximate
the posterior either by variational inference, to learn some
approximate distributions of simple forms for example Gaus-
sian distributions that are easy to sample from, or by SGD
approximate inference, to sample from SGD trajectories that
is believed to be a good approximation for the true posterior.
Further, even with approximate posteriors being Gaussian,
there is no analytical solution for p(y | x) or the marginal-
ized predictions Ep(y|x)[y], where most of existing work
require Monte Carlo estimation for the marginalization.

Instead, we are interested in providing an accurate estima-
tion of the predictive uncertainty p(y | x) by computing
the marginalization in Equation 1 exactly under some ap-
proximate posteriors. While the exact computation might
be costly especially when the parameter space is large, we
propose a collapsed BMA scheme that allows a trade-off
between accuracy and scalability.
Definition 2.1. (Collapsed BMA) Let (Ws,Wc) be a par-
tition for network parameters W . A collapsed sample from
the posterior for parameters W takes the form of a tuple
(ws, p(Wc | ws,D)), where ws is an assignment for the
sampled parameter Ws and p(Wc | ws,D) is a conditional
posterior over the collapsed set Wc. With M collapsed sam-
ples, the collapsed BMA gives the predictive distribution
and marginalized prediction as below

p(y | x) = 1

M

∑
ws

∫
p(y | x,w) p(wc | ws,D) dwc,

Ep(y|x)[y] =
1

M

∑
ws

∫
y p(y | x,w) p(wc | ws,D) dwc dy.

To develop an algorithm to compute collapsed BMA, we
are faced with a few design choice questions: (Q1) how to
sample ws from the posterior? (Q2) what should be the
closed-form representation for the collapsed set such that
the integrals in collapsed BMA can be computed exactly?
Next, we will provide our answer to the two questions that
leads to our proposed solution CIBER.

The answer to (Q1) is more straightforward than (Q2). To
find an approximation to posteriors, we follow Maddox
et al. (2019) where we sample from the SGD trajectory
and use the information contained in the SGD trajectory to
efficiently approximate the posterior distribution over the pa-
rameters of the neural network, leveraging the interpretation
of SGD as approximate Bayesian inference (Mandt et al.,
2017; Chen et al., 2020). Given a set of parameter samples
W , the sample set is defined as Ws = {ws | w ∈ W}.
For each assignment ws, an approximation q(Wc) to the
conditional posterior p(Wc | ws,D) is necessary since the
posteriors induced by SGD trajectories are implicit. Next,
we focus on our solution to (Q2).

2.1. Exact BMA via WMI

One key insight in our work is that the Bayesian neural
network models can be encoded as a so-called probabilis-
tic Satisfiability Modulo Theories (SMT) model, which is
amenable to advanced exact inference tool called weighted
model integration (WMI) solvers such that the integral in
BMA can be solved exactly. We propose to use the prob-
abilistic SMT model as the closed-form representation for
the approximate conditional posterior on the collapsed set
as our answer to (Q2). We first introduce the probabilistic
SMT models and WMI solvers and then show how BMA
can be exactly solved by WMI solvers.

An SMT formula is an expression containing both propo-
sitional and theory atoms connected with the usual logical
connectives (Barrett et al., 2010). The theory atoms encode
algebraic constraints over X, often restricted to the theory
of linear algebra over reals (LRA), where atoms have form
(cTX ≤ b). The encoding of neural networks into SMT
formulas has been explored to enable formal verification on
behaviours of neural networks (Katz et al., 2017; Huang
et al., 2017).

Example 2.2. The ReLU activation function Z =
ReLU(x;W ) with ⇒ denoting logical implications, can
be encoded by a set of SMT constraints as below,

∆ReLU =

{
x ·W > 0 ⇒ Z = x ·W
x ·W ≤ 0 ⇒ Z = 0

}
Definition 2.3. (Probabilistic SMT model) Let X be a set of
continuous random variables. A probabilistic SMT model is
a pair M = (∆,W ), where ∆ is an SMT formula over X
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Figure 1: Exact Bayesian Model Averaging for a Bayesian ReLU model. Figure 1a shows the choice of the approximate
posterior to be uniform distributions and the likelihood function to be triangular distribution (cf. Section 2.2); Figure 1b
shows the parameter space divided into four polytopes by logical constraints, each of which is weighted by some polynomial
induced by the likelihood p(y = 0 | x,W ), over which an integral would give predictive uncertainty p(y = 0 | x); Figure 1c
shows the full predictive distribution p(y | x), which is piecewise and highly non-convex, as well as the marginalized
prediction E[Y ], both of which are computed by WMI solvers (cf. Section 2.1).

and a set of per-literal weights Φ = {ϕℓ}ℓ∈L, where L are
a set of SMT literals and each ϕℓ are non-negative function
defined over variables in literal ℓ. The unnormalized density
of the probabilistic SMT model M is defined as the product
of per-literal weights as below

pM(x) =
∏
ℓ∈L

ϕℓ(x)
Jx|=ℓK, x |= ∆. (2)

Intuitively, the unnormalized density of a probabilistic SMT
model is a piecewise functions where each piece is defined
by a truth assignment to the literals in both SMT formula ∆
and the literal set L.

WMI is a recently proposed probabilistic inference frame-
work that allows to perform marginalization over proba-
bilistic SMT models. To develop WMI solvers has been an
active research topic and several WMI solvers have been
proposed for delivering exact and efficient inference, and
WMI-based inference has been receiving increasing interest.

Definition 2.4. (Weighted Model Integration) Let M =
(∆,Φ) be a probabilistic SMT model over real variables X ,
the task of weighted model integration (WMI) is to compute

WMI(∆,W) =

∫
x|=∆

∏
ℓ∈L

ϕℓ(x)
Jx|=ℓK dx. (3)

That is, the task is to integrate over the weighed assignments
of X that satisfy the SMT formula ∆.

The encoding of Bayesian ReLU f into a probabilistic SMT
model inspires us to cast the BMA problem as a weighted
model integration (WMI) problem and leverage exact WMI
solvers to provide accurate computation of the integration
as in the definition of BMA in Equation 1.

We observe that if a Bayesian neural network model can
be encoded as a probabilistic SMT model, the predictive
uncertainty in BMA can be solved exactly by WMI solvers.

Proposition 2.5. Given a Bayesian neural network model,
if the neural network fw can be encoded as an SMT for-
mula ∆fw , and the likelihood function p(y | x,w) as
well as the approximate posterior q(w) can be encoded
as probabilistic SMT models Mpred = (∆pred ,Φpred) and
Mpos = (∆pos ,Φpos) respectively, then the BMA problem
can be solved by WMI solvers as shown below,∫

p(y | x,w) q(w) dw =
WMI(∆ ∧ (Y = y),W)

WMI(∆,W)
,

Ep(y|x)[y] =
WMI(∆,Wpos ∪W∗

pred)

WMI(∆,W)
,

with the SMT formula ∆ = ∆fw ∧∆pos ∧∆pred , weights
W = Wpos ∪Wpred , and weights Φ∗

pred = {ϕ∗
ℓ (Y,Wc) =

Y · ϕℓ(Y,Wc) | ϕℓ ∈ Φpred}.

2.2. Algorithmic Choice

Now the challenge is, how to choose the likelihood function
p(y | x,w) and approximate posterior q(w) such that they
are amenable to probabilistic SMT model encoding. One
limitation of the existing WMI solvers is that they are only
applicable when the weights in a probabilistic SMT model
are (piecewise) polynomials, meaning that our choice are
restricted to piecewise polynomials. As will show in the
empirical results, the piecewise polynomial is sufficient to
deliver surprisingly good empirical performance.

For an approximation q(wc) to the conditional posterior
p(wc | ws,D), we choose it to be a uniform distri-
bution which can be encoded into a probabilistic SMT
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Figure 2: Average test performance for UCI regression tasks The first row reports root mean squared errors (RMSE) with
standard deviations, where the results for dataset NAVAL are scaled by 1e3, ELEVATORS scaled by 1e2, and the four datasets,
KEGGD, KEGGU, PROTEIN and SKILLCRAFT are scaled by 1e1. The second row reports the negative log likelihood and
standard deviation. The baseline results are reported by Izmailov et al. (2020).

model as Mpos = (∆pos ,Φpos) with the SMT formula
being ∆pos = ∧i∈c li ≤ Wi ≤ ui and weights being
Φpos = {ϕℓ(Wc) = 1 | ℓ = true}, where li and ui are
domain lower and upper bounds.

For the choice of likelihood function p(y | x,w), a com-
mon choice in existing literature is Gaussian distributions.
To make the marginalization in collapsed BMA amenable to
WMI solvers, we propose to use a triangular distribution as
a piecewise polynomial approximation to Gaussian density,
whose specific form is as follows,

p(y | x,w) =
1

rσ(x)
−|y − fw(x)|

r2σ2(x)
, |y−fw(x)| ≤ rσ(x)

where the constant r determines the shape of the triangular
distribution and it is solved by minimizing the L2 distance
between a standard Gaussian distribution and a symmetric
triangular distribution parameterized by r; the σ(x) is the
variance estimation which might be independent from the
input depending on whether the BNN is homoscedastic or
heteroscedastic. The probabilistic SMT model encoding of
the likelihood function p(y | x,w) would then be as below.

∆pred =

{
Y − fw(x) ≤ rσ(x)

Y − fw(x) ≥ −rσ(x)

}

Φpred =

{
ϕℓ1(Y ,Wc) =

1
rσ(x) −

Y −fw(x)
(rσ(x))2

ϕℓ2(Y ,Wc) =
1

rσ(x) −
fw(x)−Y
(rσ(x))2

}
with ℓ1 = Y > fw(x), ℓ2 = fw(x) > Y

3. Experiments: UCI Regression
We evaluate our approach on standard datasets from the
BNN literature: small and large UCI regression datasets,
following the set-up of Izmailov et al. (2020). For the five
small UCI datasets, they are Boston, Concrete, Yacht, Naval
and Energy. and use a fully-connected network with a sin-
gle hidden layer with 50 units with ReLU activation and
two outputs parameterizing prediction and heteroscedastic
variance. For the six large UCI datasets, they are elevators,
keggdirected, keggundirected, pol, protein and skillcraft. On
all datasets except skillcraft we use a feedforward network
with five hidden layers of sizes [1000, 1000, 500, 50, 2] with
ReLU activation and two outputs parameterizing prediction
and heteroscedastic variance.

Baselines. We compare our proposed collapsed inference
algorithm called CIBER to the state-of-the-art approximate
BNN inference methods: SWAG (Maddox et al., 2019),
PCA+ESS (SI) (Izmailov et al., 2020) and PCA+VI (SI) (Iz-
mailov et al., 2020), where they derive approximate posteri-
ors by sampling from SGD trajectories as we do.

We summarize the experimental results in Figure 2. We
observe that our proposed CIBER performs surprising well
on prediction accuracy: CIBER outperforms all baselines in
10 our of 11 datasets. This is consistent with our conjecture
that exact inference over conditional approximate posteriors
helps achieve accurate estimation of the true BMA and it
boosts prediction performance. On uncertainty estimation,
we outperforms all baselines in 6 out of 11 datasets and has
comparable performance on the others.
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