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Abstract

This paper develops a novel methodology for using symbolic knowledge in deep
learning. We define a semantic loss function that bridges between neural output
vectors and logical constraints. This loss function captures how close the neural
network is to satisfying the constraints on its output. An experimental evaluation
shows that our semantic loss function effectively guides the learner to achieve
(near-)state-of-the-art results on semi-supervised multi-class classification. More-
over, it significantly increases the ability of the neural network to predict struc-
tured objects under weak supervision, such as rankings and shortest paths.

1 Introduction

The widespread success of representation learning raises the question of which AI tasks are
amenable to deep learning, which require classical model-based symbolic reasoning, and whether we
can benefit from an integration of both. In recent years, significant effort has gone towards various
ways of using representation learning to solve tasks that were previously tackled by symbolic meth-
ods. Such efforts include neural computers, Turing machines, and differentiable programming (e.g.,
[15, 31, 32, 37]), relational embeddings, deep learning for graph data, and neural theorem proving
(e.g., [1, 12, 25, 26]), and many more. Other work has sought to augment deep learning with sym-
bolic knowledge through logical or arithmetic constraints (e.g., [9–11, 16, 19, 21, 24, 28, 33, 35, 36]).

We consider learning tasks where symbolic knowledge is provided to connect the different outputs
of a neural network. This knowledge takes the form of a constraint (or sentence) in Boolean logic. It
can be as simple as an exactly-one constraint for one-hot output encodings, or as complex as a struc-
tured output prediction constraint for intricate combinatorial objects such as rankings, subgraphs,
and paths. Our goal is to augment neural network with the ability to learn how to make predictions
subject to these constraints, and use the symbolic knowledge to improve its performance.

Most neuro-symbolic approaches aim to simulate or learn symbolic reasoning in an end-to-end deep
neural network, or capture symbolic knowledge in a vector-space embedding. This choice is partly
motivated by the need for smooth differentiable models; adding symbolic reasoning code (e.g., SAT
solvers) to a deep learning pipeline destroys this property. Unfortunately, while making reasoning
differentiable, the precise logical meaning of the knowledge is often lost. In this paper, we take a
distinctly different approach. We first define a differentiable semantic loss function that captures
how well the outputs of a neural network match a given constraint. This function precisely captures
the meaning of the constraint, and is independent of its syntax.

Next, we show how this semantic loss gives significant practical improvements in semi-supervised
classification. The semantic loss defined over the exactly-one constraint in this setting permits us to
obtain a learning signal from vast amounts of unlabeled data. The key idea is that the semantic loss
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Figure 1: Binary classification toy example: a linear classifier without and with semantic loss.

helps us improve how consistently we are able to classify the unlabeled data. This simple addition to
the loss function of standard deep learning architectures yields (near-)state-of-the-art performance
in semi-supervised classification on MNIST, FASHION and CIFAR-10 datasets. Our final set of
experiments study the benefits of the semantic loss function for complex structured output learning
tasks, such as preference learning and path prediction in a graph [2, 4, 8, 15] to show how it can be
generalized onto more difficult problems. By capturing the structure of the output space with logical
constraints, and minimizing the semantic loss for this constraint during learning, we are able to learn
networks that are much more likely to correctly predict structured objects.

2 Semantic Loss and its Application in Semi-Supervised Classification

The goal of a semantic loss function is to bridge the gap between the continuous world of neural
networks, and the symbolic world of propositional logic. The semantic loss Ls(α, p) is a function
of a sentence α in propositional logic, defined over variables X = {X1, . . . , Xn}, and a vector of
probabilities p for the same variables X. Element pi denotes the predicted probability of variable
Xi, and corresponds to a single output of the neural net. For example, the semantic loss between an
exactly-one constraint α and a neural net output vector p captures how close the prediction p is to
having exactly one output set to true (1), and all false (0), regardless of which output is correct.

We desire our semantic loss Ls(α, p) to be proportional to the negative log-probability of α being
satisfied when sampling values according to p. More formally,

Ls(α, p) ∝ − log
∑
x|=α

∏
i:x|=Xi

pi
∏

i:x|=¬Xi

(1− pi). (1)

Here, x |= α means that assignment x to variables X satisfies sentence α, and x |= Xi means that
X is set to true in world x. Intuitively, this is the self-information of obtaining an assignment that
satisfies the constraint. This equation is derived from first principles in the long version of this paper.

Illustrative Example To illustrate the benefit of semantic loss in the semi-supervised setting, we
begin our discussion with a small toy example. Consider a binary classification task as depicted
in Figure 1. Ignoring the unlabeled examples, a simple linear classifier learns to distinguish the
two classes by separating the labeled examples in Figure 1a. However, the unlabeled examples
are also informative, as they must carry some properties that give them a particular label. This is
the crux of semantic loss: a model must confidently assign a consistent class even to unlabeled
data. Encouraging the model to do so results in a more accurate decision boundary, as illustrated in
Figure 1b. Next, we further explore this idea and apply it to real-world image classification tasks.

2.1 Algorithm

Our proposed method intends to be generally applicable and compatible with any feedforward neural
network. The semantic loss is simply another regularization term that can directly be plugged into
an existing loss function. More specifically, for some weight w, the new overall loss becomes

existing loss + w · semantic loss.

When the constraint over the output space is simple (for example, there is a small number of so-
lutions x |= α), the semantic loss can be directly computed with Equation 1. Concretely, for the
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Table 1: MNIST. Previously reported test accuracies followed by semantic loss results (± stddev)
Accuracy % with # of used labels 100 1000 ALL
AtlasRBF [29] 91.9 (± 0.95) 96.32 (± 0.12) 98.69
Deep Generative [17] 96.67(± 0.14) 97.60(± 0.02) 99.04
Virtual Adversarial [22] 97.67 98.64 99.36
Ladder Net [30] 98.94 (±0.37 ) 99.16 (±0.08) 99.43 (± 0.02)
Baseline: MLP, Gaussian Noise 78.46 (±1.94) 94.26 (±0.31) 99.34 (±0.08)
Baseline: Self-Training 72.55 (±4.21) 87.43 (±3.07 ) 99.34 (±0.08)
MLP with Semantic Loss 98.38 (±0.51) 98.78 (±0.17) 99.36 (±0.02)

exactly-one constraint used in n-class classification, the semantic loss reduces to

Ls(exactly-one, p) ∝ − log

n−1∑
i=0

pi

n−1∏
j=0,j 6=i

(1− pj),

where he values pi denote the probability of class i as predicted by the neural net. The semantic loss
for the exactly-one constraint is efficient and causes no noticeable overhead in our experiments.

In general, for arbitrary constraints α, the semantic loss is not efficient to compute using Equation 1,
and more advanced automated reasoning is required. Section 3 discusses this issue in more detail.

2.2 Experimental Evaluation

We evaluate semantic loss in the semi-supervised setting by comparing it with several competitive
models. We add semantic loss to the same base models used in ladder nets [30], which currently
achieve state-of-the-art results on semi-supervised MNIST and CIFAR-10 [18]. Specifically, the
MNIST base model is a fully-connected multilayer perceptron (MLP), with layers of size 784-1000-
500-250-250-250-10. On CIFAR-10, it is a 10-layer convolutional neural network (CNN) with
3-by-3 padded filters. After every 3 layers, features are subject to a 2-by-2 max-pool layer with
strides of 2. We refer to the long version of this paper for further details.

For all semi-supervised experiments, we use the standard 10,000 held-out test examples provided in
the original datasets and randomly pick 10,000 training examples as validation set. For values of N
that depend on the experiment, we retainN randomly chosen labeled examples from the training set,
and remove labels from the rest. We balance classes in the labeled samples to ensure no particular
class is over-represented.

MNIST The permutation invariant MNIST classification task is commonly used as a test-bed for
general semi-supervised learning algorithms. We run experiments for 10 epochs, with a batch size
of 10 labeled and 10 unlabeled examples. Experiments are repeated 10 times with different random
seeds. Table 1 compares semantic loss to two baselines and state-of-the-art results from the liter-
ature. The first baseline is a purely supervised MLP, which makes no use of unlabeled data. The
second is the classic self-training method for semi-supervised learning, which operates as follows.
After every 1000 iterations, the unlabeled examples that are predicted by the MLP to have more than
95% probability of belonging to a single class, are assigned a psuedo-label and become labeled data.

When given 100 labeled examples (N = 100), MLP with semantic loss gains around 20% im-
provement over the purely supervised baseline. The improvement is even larger (25%) compared to
self-training. Considering the only change is an additional loss term, this result is very encouraging.
Compared to the state of the art, ladder nets slightly outperform semantic loss by 0.5% accuracy.
This difference may be an artifact of the excessive tuning of architectures, hyper-parameters and
learning rates that the MNIST dataset has been subject to.

FASHION The FASHION [38] dataset consists of Zalando’s article images, aiming to serve as a
more challenging drop-in replacement for MNIST. Arguably, it has not been overused and requires
more advanced techniques to achieve good performance. As in the previous experiment, we run our
method for 10 epochs, whereas ladder nets need 100 epochs to converge. Again, experiments are
repeated 10 times and Table 2 reports the classification accuracy and its standard deviation (except
for N = all where it is close to 0 and omitted for space).
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Table 2: FASHION. Test accuracy comparison between MLP with semantic loss and ladder nets.
Accuracy % with # of used labels 100 500 1000 ALL
Ladder Net [30] 81.46 (±0.64 ) 85.18 (±0.27) 86.48 (± 0.15) 90.46
Baseline: MLP, Gaussian Noise 69.45 (±2.03) 78.12 (±1.41) 80.94 (±0.84) 89.87
MLP with Semantic Loss 86.74 (±0.71) 89.49 (±0.24) 89.67 (±0.09) 89.81

Table 3: CIFAR. Test accuracy comparison between CNN with semantic loss and ladder nets.
Accuracy % with # of used labels 4000 ALL
CNN Baseline in Ladder Net 76.67 (± 0.61) 90.73
Ladder Net [30] 79.60 (±0.47)
Baseline: CNN, Whitening, Cropping 77.13 90.96
CNN with Semantic Loss 81.79 90.92

Experiments show that utilizing semantic loss results in a very large 17% improvement over the
baseline when only 100 labels are provided. Moreover, our method compares favorably to ladder
nets, except when the setting degrades to be fully supervised. Note that our method already nearly
reaches its maximum accuracy with 500 labeled examples, which is only 1% of the training dataset.

CIFAR-10 To show the general applicability of semantic loss, we evaluate it on CIFAR-10. This
dataset consisting of 32-by-32 RGB images in 10 classes. A simple MLP would not have enough
representation power to capture the huge variance across objects within the same class. To cope with
this spike in difficulty, we switch our underlying model to a 10-layer CNN as described earlier. We
use a batch size of 100 samples of which half are unlabeled. Experiments are run for 100 epochs.
However, due to our limited computational resources, we report on a single trial. Note that we
make slight modifications to the underlying model used in ladder nets to reproduce similar baseline
performance. Please refer to the long version of this paper for the details of this experimental setup.

As shown in Table 3, our method compares favorably to ladder nets. However, due to the slight dif-
ference in performance between the supervised base models, a direct comparison would be method-
ologically flawed. Instead, we compare the net improvements over baselines. In terms of this mea-
sure, our method scores a gain of 4.66% whereas ladder nets gain 2.93%.

2.3 Discussion

Overall, the experiments so far have demonstrated the competitiveness and general applicability of
our proposed method on semi-supervised learning tasks. It surpassed the previous state of the art
(i.e. ladder nets ) on FASHION and CIFAR-10, while being close on MNIST. Considering the sim-
plicity of our method, such results are encouraging. Indeed, a key advantage of semantic loss is that
it only requires a simple additional loss term. Without changing the network architecture itself, we
incur almost no computational overhead. Conversely, this property makes our method sensitive to
the underlying model’s performance. Without the underlying predictive power of a strong supervised
learning model, we do not expect to see the same benefits we observe here. Recently, we became
aware that [22] extended their work to CIFAR-10 and achieved state-of-the-art results [23], surpass-
ing our performance by 5%. In future work, we plan to investigate whether applying semantic loss
on their architecture would yield an even stronger performance. The objective of semantic loss to
increase the confidence of predictions on unlabeled data is in common with information-theoretic
approaches to semi-supervised learning [13, 14, 22]. A key difference between semantic loss and
information-theoretic losses is that semantic loss generalizes to arbitrary output constraints [39].

3 Learning with Complex Constraints

While much of current machine learning research is focused on problems such as multi-class classi-
fication, there remain a multitude of difficult problems involving highly constrained output domains.
Because semantic loss is defined by a Boolean formula, it can be used on any output domain that
can be fully described in this manner. Here, we develop a framework for tractable semantic loss on
highly complex constraints, and evaluate it on some difficult examples.
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Table 4: Grid shortest path test accuracy.
Test accuracy % Coherent Incoherent
5-layer MLP 5.62 85.91
With semantic loss 28.51 83.14

Table 5: Peference prediction test accuracy.
Test accuracy % Coherent Incoherent
3-layer MLP 0.01 75.74
With semantic loss 13.59 72.43

3.1 A Tractable Semantic Loss

Our goal here is to develop a method for computing both the semantic loss and its gradient in a
tractable manner. Examining Equation 1, we see that the right-hand side is a well-known automated
reasoning task called weighted model counting (WMC) [3, 34]. A key property of WMC is that
its partial derivatives can be computed in terms of other, slightly modified WMCs. Furthermore,
we know of circuit languages that compute weighted model counts, and that are amenable to back-
propagation [5]. We use the language and circuit compilation techniques described in [6] to build a
Boolean circuit representing our semantic loss. Due to certain properties of this circuit form, we can
use it to compute both the values and the gradients of the semantic loss in time linear in the size of
the circuit [7]. Once we have constructed this function, we can add it to our standard loss function
as described in Section 2.1.

3.2 Experimental Evaluation: Grids & Preference Learning

Our ambition when evaluating semantic loss’ performance on complex constraints is not to achieve
state-of-the-art performance on any particular problem, but rather to highlight its effect. To this end,
we evaluate our method on problems with a difficult output space, where the model could no longer
fit directly from data, and purposefully use simple MLPs for evaluation.

We begin with the problem of finding the shortest path in a graph. Specifically, we use a 4-by-4 grid
G = (V,E), and randomly remove some edges for each example to increase difficulty. Formally,
our input is a binary vector of length |V | + |E|, with the first |V | variables indicating sources and
destinations, and the next |E| which edges are removed. Similarly, the label for a given example
is a binary vector of length |E| indicating which edges are in the shortest path. Finally, we require
through our semantic loss that the output form a valid simple path between the desired source and
destination. This is achieved by using the appropriate logical constraint, as specified in [27].

We also examine the problem of predicting a complete order of user preferences. That is, for a given
set of user features, we would like to predict how the user would rank their preference over a fixed
set of items. We encode a preference ordering over n items as a flattened binary matrix {Xij},
where for each i, j ∈ {1, . . . , n}, it denotes that item i is at position j [4]. Clearly most outputs do
not represent a total ordering, so we use semantic loss to enforce this. We predict rankings over 4
items, with data taken from PREFLIB’s sushi dataset [20].

Tables 4 and 5 report two different accuracies that illustrate the effect of semantic loss: “Coherent”
indicates the percentage of examples for which the classifier gets the entire configuration right, while
“Incoherent” measures the percentage of individually correct binary labels, which as a whole may
not constitute a valid path/ranking at all. In the case of incoherent accuracy, semantic loss has little
effect, and in fact slightly reduces the accuracy as it combats the standard sigmoid cross entropy.
In regard to coherent accuracy, however, the semantic loss has a very large effect in guiding the
network to jointly output structured objects, rather than optimizing each binary output individually.
Remarkably, without semantic loss, the network is only able to output a valid preference ordering
on 0.01% of the test examples.

4 Conclusions

Both reasoning and semi-supervised learning are often identified as key challenges for deep learning
going forward. In this paper, we developed a principled way of combining automated reasoning
for propositional logic with existing deep learning architectures. Moreover, we showed that our
semantic loss function provides significant benefits during semi-supervised classification, as well as
deep structured prediction for highly complex output spaces.
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