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Abstract
Explaining and understanding the behavior of ma-
chine learning models is an important task, and
there have been many different approaches to ex-
planation: logical reasoning tools, black-box ex-
planations, and model-specific methods. This pa-
per introduces sufficient explanations as a princi-
pled probabilistic framework for defining explana-
tions, and discusses its relation to other methods.
We introduce two kinds of sufficient explanations,
provide theoretical bounds between them, and use
these bounds to devise a pruning algorithm for
reducing the search space for finding our expla-
nations. We showcase our algorithm with some
preliminary experiments to illustrate how suffi-
cient explanations can provide both intuitive and
principled explanations.

1. Introduction
Machine learning models are becoming ubiquitous, and are
being used in critical and sensitive areas such as medicine,
loan applications, and predicting risk assessment in courts.
Hence, unexpected and faulty behaviours in machine learn-
ing models can have significant negative impact on people.
As a result, there is much focus on explaining and under-
standing behavior of such models. Explainable AI (or XAI)
is an active area of research that aims to tackle these issues.

There have been many approaches toward explaining an
instance of a classification (called a local explanation) from
different perspectives, including logic-based (Shih et al.,
2018; Ignatiev et al., 2019a; Darwiche & Hirth, 2020) or
model-agnostic approaches (Ribeiro et al., 2016; Lundberg
& Lee, 2017; Ribeiro et al., 2018). Each of these methods
have their pros and cons; some focus on scalability and
flexibility, and some focus on providing guarantees.
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In this work, our specific goal is to probabilistically explain
an instance of classification. Explanations are partial exam-
ples, where we treat the features not in the explanation as
missing values. We aim for our explanations to provide the
following probabilistic guarantee: given only the features
in the explanation, with high probability under the data dis-
tribution Pr(x), the classifier makes the same prediction
as on the full example. We employ probabilistic reasoning
tools to choose the minimal subset of features that forms the
explanation, which we refer to as a Sufficient Explanation.

Section 2 gives a brief overview of other approaches to local
explanations and discusses their pros and cons. Broadly,
model-agnostic methods are more scalable and flexible but
tend to be not as reliable as logic-based methods. Then, we
introduce the probabilistic reasoning tools needed to define
sufficient explanations: Same-Decision Probability (SDP),
and Expected Prediction (EP). Additionally, we use proba-
bilistic circuits (Choi et al., 2020) to model the probability
distribution Pr(x) over the features.

Section 3 lays the theoretical foundation of our approach
by introducing two kinds of sufficient explanations. They
differ only in the probabilistic reasoning tool used to define
the notion of sufficiency, that is, either SDP or EP. We
discuss how these notions of sufficiency are related, and
how they quantitatively bound each other, and how they can
be computed in practice. Finally, we argue that probabilistic
sufficiency can provide an intuitive and principled way of
thinking about explanations.

Section 4 designs a search algorithm to find the most likely
sufficient explanation for a given instance of classification.
It uses our theoretical bounds on sufficiency to prune the
search space of possible explanations. We start with the
empty explanation with no observed features, and then in
each iteration ask our probabilistic circuit density estimator
to expand the explanation with the most likely observed
features. We continue the search until we find the desired
minimal sufficient explanation.

Section 5 provides some preliminary experiments to give
concrete examples of explanations produced by our method
and the effectiveness of our pruning algorithm. In particular
we give some examples of sufficient explanations for two
different classifiers, with one being a highly biased classifier.
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2. Background and Motivation
Notation We use uppercase letters (X) for features (ran-
dom variables) and lowercase letters (x) for their value
assignments. Analogously, we denote sets of features in
bold uppercase (X) and their assignments in bold lowercase
(x). We denote the set of all possible assignments to X as
X . Concatenation XY denotes the union of disjoint sets.
We will be explaining classifiers, so we use C as a special
random variable to denote the class variable. We focus on
discrete features unless otherwise noted.

We represent a probabilistic predictor as f : X → [0, 1] and
its thresholded classifier as C : X → {0, 1}, where Tc de-
notes the decision threshold. Hence, C(x) = Jf(x) ≥ TcK,
where J∆K = 1 if and only if ∆ is true.

2.1. Related Work

Computing explanations of classifiers has been studied from
many different perspectives, including logical reasoning,
black-box methods, and model-specific approaches. Some
try to explain the learned model globally, making it more
interpretable (Liang & Van den Broeck, 2017; 2019), while
others focus more locally on explaining its prediction for
a single instance. Next, we go over some local explana-
tion methods, discuss their pros and cons, after which we
motivate how our framework might solve those issues.

Model Agnostic Approaches These methods treat the
classifier as a black box. Given an input instance to ex-
plain, they perturb the instance in many different ways and
evaluate the model on those perturbed instances. Then, they
use the results from the perturbations to generate an expla-
nation. Two popular methods under this umbrella are Lime
(Ribeiro et al., 2016) and SHAP (Lundberg & Lee, 2017).
The main difference between these methods is the heuristics
used to obtain perturbed instances and how to analyze the
predictions on these local perturbations. Most provide fea-
ture attributions, which are real-valued numbers assigned
to each feature, to indicate their importance to the decision
and in what direction.

A benefit of these methods is that they can be used to explain
any model and are generally more flexible and scalable than
their alternatives. On the other hand, the downsides are that
they can be very sensitive to the choice of local perturbation,
and might produce over-confident results (Ignatiev et al.,
2019b), or be fooled by adversarial methods (Slack et al.,
2020; Dimanov et al., 2020).

One of the main reasons for these downsides is that the
distribution of the local perturbations tends to be differ-
ent from the data distribution the classifier was originally
trained on. Hence, these approaches do not benefit from
the intended generalization guarantees of machine learning

models. Additionally, some of the perturbations might be
low probability or even impossible inputs, and we might not
care about how the model behaves on those inputs.

Logical Reasoning Approaches These methods provide
explanations with some principled guarantees by leveraging
logical reasoning tools. Some approaches use knowledge
compilation and tractable Boolean circuits (Shih et al., 2018;
Darwiche & Hirth, 2020; Shi et al., 2020), some adopt the
framework of abductive reasoning (Ignatiev et al., 2019a;b),
and some tackle a specific family of models such as tree
ensembles (Devos et al., 2020).

The main benefit of these approaches is that they guaran-
tee provably correct explanations, in that they guarantee a
certain prediction for all examples described by the expla-
nation. On the other hand, one downside is that they are
generally not as scalable (in the number of features) as the
black-box methods. Another downside is that they need to
remove the uncertainty from the classifier to be able to use
logical tools and hence become more rigid. Particularly, in
order to guarantee a certain outcome with certainty, it is
often necessary to include almost all of the features into the
explanation, making it much less informative.

Sufficient Reasons (Shih et al., 2018; Darwiche & Hirth,
2020) is one example of these methods that selects as an
explanation a minimal subset of features that guarantees
that, no matter what is observed for the remaining features,
the decision will remain the same. As we see in Section 3.1,
sufficient reasons, as well as related logical explanations,
can be thought of as a deterministic special case our proba-
bilistic sufficient explanations.

For a recent comparison of logic-based vs. model-agnostic
explanation methods, we refer to Ignatiev et al. (2019b);
Ignatiev (2020).

2.2. Motivation

We will overcome the limitations of both the model-agnostic
and logic-based approaches by building local explanation
methods that are aware of the distributions over features
Pr(x). This distribution will allow us to (i) reason about
the classifier’s behavior on realistic input instances, and
(ii) provide probabilistic guarantees on the veracity of the
explanations. We thus take a principled probabilistic ap-
proach in explaining an instance of classification.

Intuitively, given an instance x and the classifiers outcome
c = C(x), we would like to choose a subset of features y ⊆
x as the “simplest sufficient explanation.” Firstly, we want
it to be sufficient, which means having some probabilistic
guarantees about the outcome of the classifier when only
features y are observed. Secondly, we want to choose the
simplest possible subset for some definition of simplicity. In
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this paper, we formalize two different versions of sufficient
explanations and explore their relation.

There are a few other explanation methods with related goals.
Notably, Anchors (Ribeiro et al., 2018) can be thought of
as an empirical approximation of probabilistic sufficient
explanations, as it aims to provide high-probability guar-
antees for the explanations based on local perturbations.
Moreover, probabilistic sufficient explanations were used to
explain logistic regression models w.r.t. Naive Bayes data
distributions in Khosravi et al. (2019b).

2.3. Probabilistic Reasoning Tools

Before we formally define sufficient explanations in Sec-
tion 3, we first introduce the probabilistic reasoning tools
that support our method.

Probabilistic reasoning is a hard task in general, so we need
to choose our probabilistic model carefully. We choose prob-
abilistic circuits, which given some structural constrains en-
able tractable and exact computation of probabilistic reason-
ing queries such as marginals (Choi et al., 2020). Moreover,
they do so without giving up much expressivity. Another
advantage of probabilistic circuits is that we can learn their
structure and parameters from data, and hence avoid the ex-
ponential worst-case behavior of other probabilistic models.

The two main probabilistic reasoning tools that we use
for our explanations are Same Decision Probability (SDP)
(Chen et al., 2012), and Expected Prediction (EP) (Khosravi
et al., 2019b). We introduce them next, in order to define two
kinds of Sufficient Explanations in Section 3, and explore
their trade-offs and connections to other explanations.

First we have SDP (Chen et al., 2012), which intuitively,
given some subset of observed features y, gives us the prob-
ability that our classifier has the same output as C(x).1

Definition 1 (Same Decision Probability). Given a classi-
fier C, a distribution Pr(X) over features, a partition YM
of features X, and an assignment y to Y, the same decision
probability (SDP) of y w.r.t. x is

SDPC,x(y) = E
m∼Pr(M|y)

JC(ym) = C(x)K.

SDP gives the probability of the decision remaining the
same had we observed all the features conditioned on ob-
serving y. The higher the SDP the better guarantee we get
for partial example y being classified the same way as full
example x. SDP and related notions have been successfully
used in applications such as trimming Bayesian network
classifiers (Choi et al., 2017), and robust feature selection

1SDP was originally defined for the classifier being a condi-
tional probability test in distribution Pr. Here, we slightly general-
ize SDP to apply to a distribution Pr with a separate classifier C.

(Choi & Van den Broeck, 2018). Renooij (2018) introduced
various theoretical properties and bounds on the SDP.

Expected Prediction is another probabilistic reasoning task
that has shown to be successful in handling missing values
in classification (Khosravi et al., 2019a;b; 2020). It provides
a promising alternative for SDP toward explanations. Intu-
itively, given some partial observation, expected prediction
can be thought of as trying all the possible ways of imput-
ing the remaining features, computing an average of all the
subsequent predictions, as weighted by the probability of
each imputation. More formally:

Definition 2 (Expected Prediction). Given a probabilistic
predictor f , a distribution Pr(X) over features, a partition
YM of features X, and an assignment y to Y, the expected
prediction of f on y is

Ff (y) = E
m∼Pr(M|y)

f(ym).

In Section 3.3, we will show how to use the expected pre-
diction as a lower bound on the same-decision probability.

3. Sufficient Explanations
To explain the decision of a classifier on an instance x, we
want to choose a minimal subset of the features that best
explain the classifier’s decision on this instance. Next, we
introduce a probabilistic framework for sufficient explana-
tions that provide probabilistic guarantees. We develop two
kinds of sufficient explanations in Sections 3.1 and 3.2 and
then discuss their relation in Section 3.3.

3.1. Sufficient Explanations Using SDP

In this section, we use SDP as a tool to choose a minimal
subset of features as explanations so that, given only the
explanation, the classifier makes the same decision with
high probability. More formally:

Definition 3 (SDP Sufficient Explanation). Let C be a clas-
sifier and x be an instance that we wish to explain. A subset
y of x is called a SDP Sufficient Explanation (SDP-SE) of
x for probability π if

(i) SDPC,x(y) ≥ π (sufficiency)

(ii) no subset z of y satisfies (i) (minimality)

Intuitively, a SDP-SE of x for probability π is a minimal
subset of x which guarantees that, with probability at least π,
the classifier would make the same decision after observing
the remaining features. Hence, many logical explanations
discussed in Section 2 are special cases of SDP-SE. Indeed,
if we wish to logically guarantee that the classifier will
always make the same decision, we can take π = 1. The
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next lemma follows directly from the minimality property
of Definition 3.

Lemma 1. Given an instance x, a subset of features y ⊆ x,
and a classifier C, if SDPC,x(y) ≥ π, then there exists
z ⊆ y such that z is a SDP-SE of x for probability π.

As a consequence of this, we have the nice property that
SDP-SE’s for some threshold must come from SDP-SE’s for
lower thresholds. That is, they can all be obtained by adding
more features to SDP-SE’s for lower thresholds. Formally:

Lemma 2. Let x be an instance and let π2 > π1. If y is a
SDP-SE of x for probability π2, then some subset z ⊆ y is
a SDP-SE of x for probability π1.

Proof. Since y is a SDP-SE of x for probability π2,
SDPC,x(y) ≥ π2 > π1. By Lemma 1, some subset z ⊆ y
is a SDP-SE of x for probability π1.

While SDP-SE is an appealing criteria to use for selecting
explanations, computing the SDP exactly is known to be
computationally hard. In particular, it is PPPP -hard on
Bayesian networks (Choi et al., 2012). Even for a simple
Naive Bayes model and classifier, computing SDP is NP-
hard (Chen et al., 2013). On the other hand, SDP-SE pro-
vides intuitive and principled explanations with guarantees
for decision making.

Next, we propose a second type of sufficient explanation,
based on expected predictions, which will be more tractable
to compute. Afterwards, we show its relation to SDP-SE.

3.2. Sufficient Explanations Using Expected Prediction

Expected prediction has been shown to be useful in handling
missing values for classification (Khosravi et al., 2019b;a).
Here, we use expected prediction to define EP-SE, a type
of probabilistic sufficient explanations. Intuitively, we want
a minimal subset of features that are sufficient for their
expected prediction to be higher than a given threshold.

Without loss of generality, for the remainder of paper, we
assume that the classifier predicts the positive class, that is
C(x) = 1, and hence f(x) ≥ Tc.
Definition 4 (EP Sufficient Explanation). Given a proba-
bilistic predictor f and features x, a subset y of x is called
an Expected Prediction Sufficient Explanation (EP-SE) of x
for threshold π ∈ [0, 1] if

(i) Ff (y) ≥ π (sufficiency)

(ii) no subset z of y satisfies (i) (minimality)

Both SDP and expected prediction are taking an expectation
of the output of the classifier. The main difference is that
SDP takes the expectation after thresholding. On the one

hand, we can take a Bayesian interpretation of the EP-SE:
it answers the question of whether a probabilistic model
believes the same classification to be sufficiently likely. The
SDP-SE on the other hand is a property of a deterministic
model, where we do not care about the probabilistic beliefs
and uncertainty about the class variable.

One advantage of expected predictions is that, unlike SDP,
it can be tractably computed for many different pairs of dis-
criminative and generative models. For example, it is known
to be tractable for the following cases: (i) logistic regres-
sion using a conformant naive Bayes distribution (Khosravi
et al., 2019b) (ii) decision trees w.r.t. probabilistic circuits
(PCs) (Khosravi et al., 2020), (iii) discriminative circuits
w.r.t. PCs (Khosravi et al., 2019a) and (iv) when both feature
distribution and predictor are defined by the same PC distri-
bution Pr. In the latter case, the predictor is the conditional
probability Pr(c | x), and the feature distribution is Pr(x).
Then, expected prediction can be reduced to probabilistic
marginal inference in PCs which is tractable for smooth and
decomposable circuits (Choi et al., 2020).

As we see next, explanations found using expected predic-
tion are closely related to those found using SDP.

3.3. Relation between SDP-SE and EP-SE

In this section, we provide theoretical bounds between SDP
and expected predictions and use those bounds to relate
explanations provided by SDP-SE and EP-SE. The next
theorem, which is similar to Markov’s inequality, shows that
there is a simple relation between the expected prediction
and SDP.

Theorem 1. Given a probabilistic predictor f , its thresh-
olded classifier C, features x, and some subset of the features
y ⊆ x, we have:

SDPC,x(y) ≥ Ff (y)− Tc
1− Tc

. (1)

Proof. First note SDPC,x(y) = Pr(f(ym) ≥ Tc) and
Ff (y) = E[f(ym)] where m ∼ Pr(M|y). Thus,

Ff (y) = E[f(ym)]

= E[f(ym)|f(ym) < Tc] Pr(f(ym) < Tc)

+ E[f(ym)|f(ym) ≥ Tc] Pr(f(ym) ≥ Tc)
≤ Tc(1− Pr(f(ym) ≥ Tc)) + Pr(f(ym) ≥ Tc)
= Tc + (1− Tc) Pr(f(ym) ≥ Tc)
= Tc + (1− Tc) SDPC,x(y).

Rearranging the terms leads to Equation 1.

Theorem 1 provides a simple way of translating between
thresholds for SDP-SEs and EP-SEs. If we want to find
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SDP-SEs for probability π, we could instead try to find EP-
SEs for threshold π′ = π(1− Tc) + Tc. By combining the
previous theorem with the minimality property of sufficient
explanations, we arrive at the following result, which relates
explanations found using SDP and expected prediction.

Theorem 2. Given the features x and y ⊆ x as an EP-SE
of x for threshold π, there exists some z ⊆ y such that z is

a SDP-SE of x for probability π′ =
π − Tc
1− Tc

.

Proof. Since y is an EP-SE of x for threshold π, Ff (y) ≥
π. By Theorem 1, SDPC,x(y) ≥ π−Tc

1−Tc
= π′. Finally, by

Lemma 1, there exists some z ⊆ y such that z is a SDP-SE
of x for probability π′.

This translation, while making computations more tractable,
can produce explanations with fewer guarantees. Theorem
2 only guarantees that some subset of each EP-SE of x for
threshold π will be a SDP-SE of x for probability π′. Thus,
it is possible that explanations found using this translation
will be larger than need be, selecting features which are not
needed to guarantee the robustness of decision. Moreover,
Theorem 2 does not guarantee that, for each SDP-SE of x
for probability π′, we will find a corresponding EP-SE of
x for threshold π. Thus, we may miss some explanations
entirely.

4. Finding Sufficient Explanations
In this section we describe methods only for computing
EP-SEs, as expected prediction is much more tractable to
compute than SDP. Since the number of explanations can be
exponential, instead of computing all sufficient explanations,
we find only one of them. The natural choice is to find the
most likely sufficient explanation.

Definition 5 (Most Likely EP-SE). Given a probabilistic
predictor f and features x, the most likely EP-SE of x for
threshold π is given by

argmax
y⊆x

Pr(y)

s.t. y is an EP-SE.

Note that if z ⊆ y then Pr(z) ≥ Pr(y), so the minimality
requirement of Definition 4 is automatically enforced when
maximizing the likelihood. Thus, given an instance x and a
threshold π, the task of finding the Most Likely EP-SE can
be simplified to

argmax
y⊆x

Pr(y)

s.t. Ff (y) ≥ π.

Algorithm 1 Find Most Likely EP-SE
Input: instance x, threshold π, var-order v

1: maxheap← {∅}
2: while maxheap is not empty do
3: y← maxheap.pop()
4: if Ff (y) ≥ T then
5: return y
6: else if bound(y, v) ≤ π then
7: continue
8: else
9: for z in expand(y, v) do

10: maxheap.push(z)
11: end for
12: end if
13: end while

We solve this task by searching through the lattice consisting
of all possible subsets of the instance x. We use a simple
tree search algorithm to explore the state space, considering
more likely feature observations before less likely ones. To
increase efficiency of search, we make sure that each state
is visited at most once. In particular, we use an expand func-
tion which, given a variable order v, takes a subset of feature
observations y and returns a list of features observations
where each element is obtained by adding to y one feature
appearing later in the variable ordering than the latest fea-
ture in y. For example, for an instance x = {x1, x2, x3, x4}
with the same variable ordering v, a call to expand({x2}, v)
would return {x2, x3} and {x2, x4} but not {x1, x2}. The
following lemma makes use of the fact that we restrict the
features which states can expand into.

Lemma 3. Given a probabilistic predictor f , its thresh-
olded classifier C, and features x such that C(x) = c.
Let y ⊆ z ⊆ x. Then, for any w ⊆ z\y, Ff (yw) ≤
Ff (y)Pr(y)

Pr(z) .

Proof.

Ff (yw) = Pr(c|yw) =
Pr(c,yw)

Pr(yw)

≤ Pr(c,y)

Pr(z)
= Ff (y)

Pr(y)

Pr(z)
.

Here z represents the set of features which all states ex-
panded from y can contain, so yw then represents the pos-
sible states reachable from y. This result provides a way to
prune the search space. If, during our search, we ever reach
a state y and are limited to selecting additional features
from some set z where Ff (y)Pr(y)

Pr(z) ≤ π, then we no longer
need to continue searching from y.
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THRESHOLD (π) MOST LIKELY EP-SE EP π′ = π−0.5
1−0.5

SDP W/O BOUNDS W/ BOUNDS

CLASSIFIER 1 0.8 1, 2, 3, 4, 6, 7, 8 0.805 0.6 0.995 2868 2180
0.825 1, 3, 4, 5, 6, 7, 8 0.828 0.65 1.000 3299 2471
0.85 1, 2, 3, 4, 5, 6, 7, 8 0.857 0.7 1.000 3500 2605

0.875 1, 2, 3, 4, 5, 8, 11 0.879 0.75 1.000 4037 2937

CLASSIFIER 2 0.9 11 0.922 0.8 0.943 246 246
0.925 2, 11 0.949 0.85 0.965 333 333
0.95 2, 10, 11 0.951 0.9 0.966 335 335

0.975 7, 11 0.987 0.95 0.991 1315 1285

Table 1. Stats for Most Likely EP-SE of two instances given to two classifiers. The threshold (π) is the EP-SE threshold we would like
to achieve. The Most Likely EP-SE shows which features were selected and the EP column gives their expected prediction. π′ is the
translated SDP threshold and the SDP column gives the actual SDP. Finally, the number of states visited without and with using the
bounds from Lemma 3 are given in the last two columns.

The overall search algorithm is given in Algorithm 1. The
sets contained in the max-heap are ordered by their marginal
probabilities. Line 3 selects the most likely features out of
the ones currently being considered. Lines 4-5 check if
the feature subset selected is an EP-SE. If so, since higher
probability states are explored first, it will be the most likely
EP-SE and is returned. Lines 6-7 use Lemma 3 to prune the
search, not expanding states that cannot lead to the Most
Likely EP-SE. Finally, lines 9-10 continue the search using
the expand function mentioned previously.

5. Experiments
This section presents preliminary experiments to answer the
following questions: How efficient is Algorithm 1 and how
helpful are the bounds in pruning the search? How good are
the explanations found and can we detect biased classifiers?

Our experiments use the adult census income data set, where
the prediction task is to determine whether a given individual
makes over $50,000 per year. Features include age, sex,
working class, hours worked per week, education level,
nationality, etc. We binarize each feature and leave out
some redundant ones, such as education number. After
preprocessing, we thus obtain 12 features. A probabilistic
circuit was used both to model the feature distribution and
as the classifier with the classification threshold being 0.5.
In this case, computing expected predictions reduces to
computing marginals (Khosravi et al., 2019b).

We ran Algorithm 1 on two different classifiers, explaining
their decisions on various instances using different thresh-
olds. The data is presented in Table 1. The SDP values
where calculated using brute force enumeration.

For the first classifier, we explained the decision for an
individual predicted to make over $50,000 per year. We see
that for a threshold of 0.875, the features selected say that
the individual is over 40 years old, is either self employed or
works in the private sector or for the government, has above
a high school education, is married, has an occupation that is

either tech support, managerial, or a professional specialty,
is female, and works under 40 hours per week. While no
EP-SE’s were found for higher thresholds, we see that the
SDP of the EP-SE’s found for lower thresholds are already
very high.

For the second classifier, we explained the decision for an
individual predicted to make under $50,000 per year. We
see that for a threshold of 0.975, the features selected say
that the individual is not white or Asian and works less
than 40 hours per week. This provides evidence that the
second classifier uses race as a main factor when predicting
an individual makes under $50,000 per year.

Also, as we see from Table 1, if we do not use the bounds
provided in Lemma 3, we need to explore more states for
higher thresholds. This is because we stop the search the
moment we find an EP-SE with the desired threshold. In
fact, as we see in row 4, for a threshold of 0.875 we needed
to explore nearly all states before finding the most likely
EP-SE when not pruning the search. While the number
of explored states is also seen in Table 1 to be increasing
with higher thresholds, this is not always the case. This is
because higher thresholds can allow for earlier pruning in
line 6 of Algorithm 1.

6. Conclusion
This paper introduced sufficient explanations as a princi-
pled probabilistic approach to explaining the predictions
of classifiers. Sufficient explanations provide probabilistic
guarantees that a classifier would make the same prediction
on all examples that match the explanation. Using theoreti-
cal properties of SDP and EP, we developed an algorithm to
search for the most likely sufficient explanations.
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