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Abstract

Probabilistic circuits are a unifying representation
of functions as computation graphs of weighted
sums and products. Their primary application is
in probabilistic modeling, where circuits with non-
negative weights (monotone circuits) can be used
to represent and learn density/mass functions, with
tractable marginal inference. Recently, it was pro-
posed to instead represent densities as the square
of the circuit function (squared circuits); this al-
lows the use of negative weights while retaining
tractability, and can be exponentially more com-
pact than monotone circuits. Unfortunately, we
show the reverse also holds, meaning that mono-
tone circuits and squared circuits are incomparable
in general. This raises the question of whether we
can reconcile, and indeed improve upon the two
modeling approaches. We answer in the positive
by proposing InceptionPCs, a novel type of circuit
that naturally encompasses both monotone circuits
and squared circuits as special cases, and employs
complex parameters. Empirically, we validate that
InceptionPCs can outperform both monotone and
squared circuits on image datasets.

1 INTRODUCTION

Probabilistic circuits (PC) [Choi et al., 2020] are a unifying
class of tractable probabilistic models. By imposing simple
structural properties on the circuit, one can answer many
inference queries such as marginalization and maximization,
efficiently and exactly. The typical way to learn PCs is to
enforce non-negativity throughout the circuit, by restricting
to non-negative parameters; these are known as monotone
PCs [Darwiche, 2003, Poon and Domingos, 2011]. However,
recent works have also shown that there exist many tractable
models that provably cannot be expressed in this way [Zhang

et al., 2020, Yu et al., 2023, Broadrick et al., 2024].

This motivates the development of new approaches for prac-
tically constructing generalized PCs. To this end, Loconte
et al. [2024] recently proposed employing PCs with real
(possibly negative) parameters; the probability distribution
is then (proportional to) the square of the circuit function. It
was shown that this can be exponentially more expressive
efficient than similar monotone PCs.

In this work, we reexamine monotone and squared
(structured-decomposable) PCs, and show that they are in-
comparable in general: either can be exponentially more
expressive efficient than the other. Motivated by this ob-
servation, we show that by explicitly instantiating latent
variables inside or outside the square, one can express both
types of PCs. This gives rise to a novel means of construct-
ing tractable models representing non-negative functions,
which we call InceptionPCs, that generalizes and extends
monotone and squared PCs. Finally, we empirically test
InceptionPCs on image datasets including MNIST and Fash-
ionMNIST, demonstrating improved performance.

2 PRELIMINARIES

Notation We use capital letters to denote variables and
lowercase to denote their assignments/values (e.g. X,x).
We use boldface (e.g. X,x) to denote sets of vari-
ables/assignments.

Definition 1 (Probabilistic Circuit). A probabilistic circuit
C over a set of variables V is a rooted DAG consisting of
three types of nodes n: input, product and sum nodes. Each
input node n is a leaf encoding a function fn : W → R
for some W ⊆ V , and for each internal (product or sum)
node n, denoting the set of inputs (i.e. nodes n′ for which
n → n′) by in(n), we define:

fn =

{∏
ni∈in(n) fn if n is product;∑
ni∈in(n) θn,ni

fni
if n is sum.

(1)
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where each sum node has a set of weights {θn,ni}ni∈in(n)
with θn,ni ∈ R. Each node n thus encodes a function over
a set of variables sc(n), which we call its scope; this is
given by sc(n) =

⋃
ni∈in(n) sc(ni) for internal nodes. The

function encoded by the circuit fC is the function encoded
by its root node. The size of a probabilistic circuit |C| is
defined to be the number of edges in its DAG.

In this paper, we will assume that sum and product nodes
alternate. A key feature of the sum-product structure of prob-
abilistic circuits is that they allow for efficient (linear-time)
computation of marginals, for example the partition function
Z =

∑
v f(v)

1, if they are smooth and decomposable:

Definition 2 (Smoothness, Decomposability). A probabilis-
tic circuit is smooth if for every sum node n, its inputs ni

have the same scope. A probabilistic circuit is decomposable
if for every product node n, its inputs have disjoint scope.

We will also need a stronger version of decomposability
that enables circuits to be multiplied together efficiently
[Pipatsrisawat and Darwiche, 2008, Vergari et al., 2021]:

Definition 3 (Structured Decomposability). A smooth
and decomposable probabilistic circuit is structured-
decomposable if any two product nodes n, n′ with the same
scope decompose in the same way.

3 EXPRESSIVE EFFICIENCY OF
MONOTONE AND SQUARED
STRUCTURED-DECOMPOSABLE
CIRCUITS

One of the primary applications of probabilistic circuits is
as a tractable representation of probability distributions. As
such, we typically require the function output of the circuit
to be a non-negative real. The usual way to achieve this is to
enforce non-negativity of the weights and input functions:

Definition 4 (Monotone PC). A probabilistic circuit is
monotone if all weights are non-negative reals, and all
input functions map to the non-negative reals.

Given a monotone PC C, one can define a probability distri-
bution p1(V ) := fC(V )

ZC
where ZC is the partition function

of the PC. However, this is not the only way to construct
a non-negative function. In Loconte et al. [2024], it was
proposed to instead use fC to represent a real (i.e. possi-
bly negative) function, by allowing for real weights/input
functions; this can then be squared to obtain a non-negative
function. That is, we define p2(V ) := fC(V )2∑

v fC(v)2
.

In order for
∑

v fC(v)
2 to be tractable to compute, a

sufficient condition is for the circuit C to be structured-
decomposable; one can then explicitly construct a

1alternatively,
∫

in the case of continuous variables

smooth and (structured-)decomposable circuit C2 such that
fC2(V ) = fC(V )2 of size and in time O(|C|2) [Vergari
et al., 2021]. Then we have that p2(V ) =

fC2 (V )

ZC2
, i.e. the

distribution induced by the PC C2. Crucially, the circuit C2 is
not necessarily monotone; squaring thus provides an alterna-
tive means of constructing PCs that represent non-negative
functions. In fact, it is known that squared real PCs can be
exponentially more succinct than structured-decomposable
monotone PCs for representing probability distributions:

Theorem 1. [Loconte et al., 2024] There exists a class of
non-negative functions p(V ) such that there exist structured-
decomposable PCs C with p(V ) = fC(V )2 of size poly-
nomial in |V |, but the smallest structured-decomposable
monotone PC C′ such that p(V ) = fC′(V ) has size 2Ω(|V |).

However, we now show that, in fact, the other direction
also holds: monotone PCs can also be exponentially more
succinct than squared (real) PCs.

Theorem 2. There exists a class of non-negative func-
tions p(V ), such that there exist monotone structured-
decomposable PCs C with p(V ) = fC(V ) of size poly-
nomial in |V |, but the smallest structured-decomposable
PC C′ such that p(V ) = fC′(V )2 has size 2Ω(|V |).

This is perhaps surprising, as squaring PCs generate struc-
tured PCs with possibly negative weights, suggesting that
they should be more general than monotone structured PCs.
The key point is that not all circuits that represent a posi-
tive function (not even all monotone structured ones) can
be generated by squaring. Taken together, these results are
somewhat unsatisfying, as we know that there are some
distributions better represented by an unsquared monotone
PC, and some by a squared real PC. In the next section, we
will investigate how to reconcile these different approaches
to specifying probability distributions.

4 TOWARDS A UNIFIED MODEL FOR
DEEP SUMS-OF-SQUARES-OF-SUMS

We begin by noting that, beyond simply negative parameters,
one can also allow for weights and input functions that are
complex, i.e. take values in the field C. Then, to ensure the
non-negativity of the squared circuit, we multiply a circuit
with its complex conjugate. That is:

p2(V ) =
|fC(V )|2∑
v |fC(v)|2

=
fC(V )fC(V )∑
v fC(v)fC(v)

As complex conjugation is a field isomorphism of C, taking
a complex conjugate of a circuit is as straightforward as
taking the complex conjugate of each weight and input
function, retaining the same DAG as the original circuit.

2



Proposition 1 (Tractability of Complex Conjugation).
Given a smooth and decomposable circuit C, it is possi-
ble to compute a smooth and decomposable circuit C such
that fC(V ) = fC(V ) of size and in time O(|C|). Fur-
ther, if C is structured decomposable, then it is possible
to compute a smooth and structured decomposable C2 s.t.
fC2(V ) = fC(V )fC(V ) of size and in time O(|C|2).

4.1 DEEP SUMS-OF-SQUARES-OF-SUMS: A
LATENT VARIABLE INTERPRETATION

In the latent variable interpretation of probabilistic circuits
[Peharz et al., 2016], for every sum node, one assigns a cate-
gorical latent variable, where each state of the latent variable
is associated with one of the inputs to the sum node; we
show an example in Figure 1a. In this interpretation, when
performing inference in the probabilistic circuit, we explic-
itly marginalize over all of the latent variables beforehand.

However, interpreting these latent variables when we con-
sider probability distributions defined by squaring circuits.
The key question is, does one marginalize out the latent
variables before or after squaring? We show both options in
Figures 1b and 1c. In Figure 1b, we square before marginal-
izing Z. In this case, and we are left with a sum node
with non-negative real parameters. On the other hand, if
we marginalize before squaring, we have a sum node with
four children and complex parameters. Interestingly, the for-
mer case is very similar to directly constructing a monotone
PC, while the latter is more like an explicit squaring without
latent variables. This suggests that we can switch between
monotone and squared PCs simply by deciding whether to
sum the latent variables inside or outside the square.

Using this perspective, we propose the following model,
which makes explicit use of both types of latent variable. For
simplicity, we assume that each sum node has the same num-
ber of children KU×KW . For each scope sc(n) of sum node
in the circuit, we assign two latent variables Usc(n),Wsc(n),
which are categoricals with cardinality KU ,KW respec-
tively. Writing U ,W for the sets of all such latents, we can
then construct an augmented PC where each child of a sum
node corresponds to a value of both latents Usc(n),Wsc(n).

Definition 5 (Augmented PC). Given a smooth and decom-
posable probabilistic circuit C over variables V where each
sum node has KU ×KW children, we define the augmented
PC Caug over variables V ∪U ∪W as follows. In reverse
topological order (i.e. from leaves to root), for each sum
node n with inputs n1, ..., nKU×KW

, we replace the inputs
with new product nodes n′

1, ..., n
′
KU×KW

, where for each
1 ≤ i ≤ KU , 1 ≤ j ≤ KW :

n′
iKW+j = niKW+j × JUsc(n) = iK × JWsc(n) = jK

where JUsc(n) = iK, JWsc(n) = jK are input nodes with input
functions that output 1 if the condition inside the bracket is
satisfied and 0 otherwise.

Given this augmented PC, we then define a probability dis-
tribution over V as follows:

pInception(V ) =

∑
u

∣∣∑
w fCaug(V ,u,w)

∣∣2∑
v

∑
u

∣∣∑
w fCaug(v,u,w)

∣∣2 (2)

The next Theorem shows that we can efficiently compute a
PC representing this distribution, which we call InceptionPC
in view of its deep layering of summation and squaring:

Theorem 3 (Tractability of InceptionPC). Given a smooth
and structured decomposable circuit C, it is possible to com-
pute a smooth and structured decomposable circuit CInception

such that fCInception(V ) =
∑

u

∣∣∑
w fCaug(V ,u,w)

∣∣2 of size
and in time O(|C|2).

Proof. The augmented PC Caug retains smoothness and
structured decomposability. We can marginalize out
W to obtain a PC C′

aug such that fC′
aug
(V ,U) =∑

w fC′
aug
(V ,U ,w), retaining smoothness and structured

decomposability. Then the computation of the square is
possible by Proposition 1.

This provides an elegant resolution to the tension between
monotone and squared (real/complex) PCs. To retrieve a
monotone PC, we need only set KW = 1; then there is
no summation inside the square, and CInception has the same
structure as C but with the parameters and input functions
squared (and so non-negative real)2. To retrieve a squared
PC, we simply set KU = 1; then there is no summation
outside the square. However, by choosing KU ,KW > 1,
we obtain a generalized PC model that is potentially more
expressive than either individually3.

A drawback of squared PCs (KU = 1,KW > 1) relative
to monotone PCs (KU > 1,KW = 1) is the quadratic vs.
linear complexity of training and inference. However, during
training for squared PCs, the partition function ZC2 only
needs to be computed once per mini-batch. Unfortunately,
for general InceptionPCs (KU ,KW > 1), this is no longer
possible; thus training can be much slower.

4.2 TENSORIZED IMPLEMENTATION

To implement InceptionPCs at scale and with GPU accelera-
tion, we follow recent trends in probabilistic circuit learning
[Peharz et al., 2020, Mari et al., 2023] and consider ten-
sorized architectures, where sum and product nodes are

2Interestingly enough, in this case we can relax the conditions
of Theorem 3 to require decomposability rather than structured
decomposability, as Caug is then also deterministic. Multiplying
a deterministic circuit with itself (or its conjugate) is tractable in
linear time [Vergari et al., 2021].

3The special cases can also be learned for KU ,KW > 1, by
setting appropriate sum node weights to 0.
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Figure 1: Latent variable interpretation for squaring PCs.
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Figure 2: Fragment of tensorized PC C before transforma-
tion to CInception.

Table 1: Test bpd (bits-per-dimension) on MNIST variants

Dataset Model

MonotonePC SquaredPC InceptionPC

Real Complex KU = 2 KU = 8

MNIST 1.305 1.296 1.253 1.247 1.245
EMNIST(Letters) 1.908 1.881 1.868 1.854 1.853

EMNIST(Balanced) 1.944 1.907 1.898 1.884 1.882
FashionMNIST 3.562 3.580 3.501 3.470 3.464

grouped into layers by scope. The key component to modify
for our purposes is the connection between sum nodes and
their input product nodes. In general, given an architecture
with NS sum nodes each with (the same) NP product nodes
as inputs, we set KW = NP , while KU is a free hyperpa-
rameter that can be varied. Then we set niKW+j to be the jth

product node for every 1 ≤ i ≤ KU . In Figure 2, we show
a layer of 3 sum nodes connected to 3 product nodes. In this
case, KW = 3, while we choose KU = 2. To avoid clutter,
we represent weights for multiple connections between the
same nodes by a vector.

For training, we use gradient descent on the negative log-
likelihood of the training set. We use Wirtinger derivatives
[Kreutz-Delgado, 2009] in order to optimize the complex
weights and input functions. To achieve numerical stabil-
ity, we use a variant of the log-sum-exp trick for complex
numbers; details can be found in Appendix B.

5 EXPERIMENTS

We run preliminary experiments with InceptionPCs on vari-
ants of the MNIST image dataset [LeCun and Cortes, 2010,
Cohen et al., 2017, Xiao et al., 2017]. Our primary re-
search question is to examine the relative expressivity and

learning behavior of monotone PCs, squared PCs (real
and complex), and InceptionPCs, when normalized to have
the same structure. For the PC architecture, we use the
quad-tree region graph structure [Mari et al., 2023] with
CANDECOMP-PARAFAC (CP) layers [Cichocki et al.,
2007], where NS = NP = KW is chosen to be 24. Further
experimental details can be found in Appendix C.

The results are shown in Table 1. We find that for squared
circuits, using complex parameters generally results in better
performance compared with real parameters. We hypoth-
esize that this is due to the optimization problem induced
by using complex parameters being easier; indeed, in Ap-
pendix C we show some learning curves where optimizing
with complex parameters converges much more quickly. In-
ceptionPCs give a further boost to performance compared to
squared complex PCs. Interestingly, increasing KU beyond
2 does not appear to provide much benefit; this is a point
that needs further investigation.

6 DISCUSSION

To conclude, we have shown that two important classes
of tractable probabilistic models, namely monotone and
squared real structured-decomposable PCs are incompara-
ble in terms of expressive efficiency in general. Thus, we
propose a new class of probabilistic circuits based on deep
sums-of-squares-of-sums that generalizes these approaches.
As noted by [Loconte et al., 2024], these PCs can be viewed
as a generalization of tensor networks for specifying quan-
tum states [Glasser et al., 2019, Novikov et al., 2021]; indeed
InceptionPCs can be interpreted as a mixed state, i.e. a sta-
tistical ensemble of pure quantum states. Our InceptionPCs
are also related to the PSD circuits of [Sladek et al., 2023],
which can be interpreted as a sum of squared circuits, with
the difference being that we allow for latents to be summed
out both inside and outside the square throughout the circuit
while achieving quadratic complexity. Promising avenues to
investigate in future work would be improving the optimiza-
tion of InceptionPCs, for example, by deriving an EM-style
algorithm using the latent variable interpretation outlined
here; as well as reducing the computational cost of training
by designing more efficient architectures.
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On the Relationship Between Monotone and Squared Probabilistic Circuits
(Supplementary Material)

Benjie Wang1 Guy Van den Broeck1

1Department of Computer Science, UCLA

A PROOFS

Proposition 1 (Tractability of Complex Conjugation). Given a smooth and decomposable circuit C, it is possible to compute
a smooth and decomposable circuit C such that fC(V ) = fC(V ) of size and in time O(|C|). Further, if C is structured
decomposable, then it is possible to compute a smooth and structured decomposable C2 s.t. fC2(V ) = fC(V )fC(V ) of size
and in time O(|C|2).

Proof. We show the first part inductively from leaves to the root. By assumption, we can compute the complex conjugate of
the input functions. Thus we need to show that we can compute the conjugate of the sums and products efficiently, assuming
that we can compute the conjugates of their inputs.

Suppose that we have a sum n; then we have that: fn =
∑

ni∈in(n) θn,ni
fni

=
∑

ni∈in(n) θn,ni
fni

. Thus we can simply
conjugate the weights and take the conjugated input nodes.

Suppose that we are given a product n; then we have that: fn =
∏

ni∈in(n) fni
=

∏
ni∈in(n) fni

. Thus we can take the
conjugated input nodes.

This procedure is clearly linear time and keeps exactly the same structure as the original circuit (thus smoothness and
decomposability). If the input circuit is structured decomposable, then we can multiply fC and fC as they are compatible
[Vergari et al., 2021], producing a smooth and structured decomposable circuit as output.

Theorem 2. There exists a class of non-negative functions p(V ), such that there exist monotone structured-decomposable
PCs C with p(V ) = fC(V ) of size polynomial in |V |, but the smallest structured-decomposable PC C′ such that p(V ) =
fC′(V )2 has size 2Ω(|V |).

Proof. Given a set of d variables V , we consider the function:

p(V ) = n(V ) + 1 (3)

where we write n(V ) for the non-negative integers given by the binary representation.

Existence of Compact Str.Dec.Monotone Circuit This function can be easily represented as a linear-size monotone
structured-decomposable PC as follows:

p(V ) = fC(V ) =

d−1∑
i=0

2i1Vi=1 + 1

which can also be easily smoothed if desired.

Accepted for the 7th Workshop on Tractable Probabilistic Modeling at UAI (TPM 2024).



Lower Bound Strategy It remains to show the lower bound on the size of the negative structured-decomposable PC C′.
Firstly, we have the following Lemma:

Lemma 1. [Martens and Medabalimi, 2014] Let F be a function over variables V computed by a structured-decomposable
and smooth circuit C. Then there exists a partition of the variables (X,Y ) with 1

3 |V | ≤ |X|, |Y | ≤ 2
3 |V | and N < |C|

such that:

F (X,Y ) =

N∑
i=1

Gi(X)×Hi(Y ) (4)

for some functions Gi, Hi.

To show a lower bound on |C′|, we can thus show a lower bound on N . To do this, we use another Lemma:

Definition 6. Given a function F over variables X,Y , we define the value matrix MF (X,Y ) ∈ R2|X|×2|Y |
by:

Mn(X),n(Y ) := F (X,Y ) (5)

Lemma 2. [de Colnet and Mengel, 2021] Suppose Equation 4 holds. Then rank(MF (X,Y )) ≤ N .

Thus, it suffices to lower bound rank(MF (X,Y )) over all partitions X,Y such that 1
3 |V | ≤ |X|, |Y | ≤ 2

3 |V |.

Lower Bound Given such a partition X,Y , assume w.l.o.g. |X| ≤ |Y |. Consider any function F (V ) such that
F (V ) = ±

√
n(V ) + 1.

Each variable X ∈ X corresponds to some variable in V . We write idx(X) to denote the index of the variable X
corresponds to; for example, if X is V4, then idx(X) = 4. Then we have the following:

F (X,Y ) = ±

√√√√|X|−1∑
i=0

2idx(Xi)Xi +

d−|X|−1∑
i=0

2idx(Yi)Yi + 1 (6)

We write ι(X) :=
∑|X|−1

i=0 2idx(i)Xi and ι(Y ) :=
∑d−|X|−1

i=0 2idx(i)Yi such that F (X,Y ) = ±
√

ι(X) + ι(Y ) + 1.
Note that ι is injective as the idx(Xi) are distinct for each i (sim. for idx(Yi)).

Now we need the following Lemma:

Lemma 3. For any ϵ > 0, and for sufficiently large d, there exists at least M = 2(
1
4−ϵ)d distinct instantiations of

{xi}M−1
0=1 and M distinct instantiations of {yi}M−1

i=0 of Y such that pi := ι(xi) + ι(yi) + 1 are distinct primes, and
ι(xj) + ι(yk) + 1 ̸= pi for any 0 ≤ i, j, k ≤ M − 1 except i = j = k.

Proof. We begin by lower bounding the number of prime pairs; that is, the number of instantiations (x,y) of X,Y such
that (F (x,y))2 = ι(x) + ι(y) + 1 is prime. Each prime p less than or equal to 2d will have exactly 1 prime pair. The
number of primes π(m) less than or equal to any given integer m ≥ 17 is lower bounded by m

lnm Rosser and Schoenfeld
[1962]. Thus, we have that the number of prime pairs is at least:

2d

d ln 2
(7)

Given any instantiation x of X , we call y a prime completion of x if (x,y) is a prime pair. We now claim that there are at
least M instantiations of X such that each has at least 2M2 + 1 prime completions. Suppose for contradiction this was not
the case. Then the total number of prime pairs is upper bounded by:

(M − 1)× 2d−|X| + (2|X| −M + 1)× 2M2

< 2(
1
4−ϵ)d × 2d−|X| + 2|X| × 2(

1
2−2ϵ)d+1

= 2(
5
4−ϵ)d−|X| + 2(

1
2−2ϵ)d+|X|+1

≤ 2(
11
12−ϵ)d + 2(1−2ϵ)d+1
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The first line is an upper bound on the number of prime pairs in this case; (M − 1) instantiations of X with any y being a
potential prime completion (2d−|X| total), and the rest having at most 2M2 prime completions. The second line follows by
substituting M , the third by rearrangement, and the fourth using the fact that 1

3d ≤ |X| ≤ 1
2d. But this upper bound is less

than the lower bound above, for sufficiently large d. Thus, we have a contradiction.

Now, to finish the Lemma, we describe an algorithm for picking the M instantiations {xi}M−1
i=0 , {yi}M−1

i=0 . From the claim
above, we have M instantiations {xi}M−1

i=0 each with at least 2M2+1 prime completions. We iterate over m = 0, ...,M −1.
Suppose that at iteration m, we have already chosen {yi}m−1

i=0 such that pi := ι(xi) + ι(yi) + 1 are distinct primes for
0 ≤ i ≤ m− 1, and ι(xj) + ι(yk) + 1 ̸= pi for any 0 ≤ j ≤ M − 1 and 0 ≤ i, k ≤ m− 1 except i = j = k. For xm, we
aim to choose a prime completion ym such that

(i) ι(xj) + ι(yk) + 1 ̸= ι(xm) + ι(ym) + 1 (8)
(ii) ι(xj) + ι(ym) + 1 ̸= pk + 1 (9)

for any 0 ≤ j ≤ M − 1 and any 0 ≤ k ≤ m except j = k = m. Thus, there are at most 2 ∗M ∗ (m+ 1) ≤ 2M2 values
that ι(ym) must not take; as we have 2M2 + 1 prime completions, we can always choose a ym satsifying the conditions
(i), (ii). Given conditions (i), (ii) together with the inductive hypothesis, we have that pi := ι(xi) + ι(yi) + 1 are distinct
primes for 0 ≤ i ≤ (m− 1) + 1, and ι(xj) + ι(yk) + 1 ̸= pi for any 0 ≤ j ≤ M − 1 and 0 ≤ i, k ≤ (m− 1) + 1 except
i = j = k.

With this Lemma in hand, we can finish the argument as follows. By Lemma 3, we have M distinct instantiations
{xi}M−1

i=0 , {yi}M−1
i=0 such that pi := ι(xi) + ι(yi) is prime for every i; suppose that these are ordered such that p0 < ... <

pM−1. Now consider the submatrix M ′ ∈ RM×M of MF (X,Y ) obtained by taking the rows (n(xi))
M−1
i=0 and columns

(n(yi))
M−1
i=0 (in-order). The rank rank(MF (X,Y )) is lower bounded by rank(M ′); thus, we seek to find rank(M ′).

Lemma 4. rank(M ′) = M

Proof. This proof is a variation on Example 10 from Fawzi et al. [2015]. Recall that F (X,Y ) = ±
√

ι(X) + ι(Y ) + 1.
Thus, the matrix M ′ is given by:

M ′
ij = ±

√
ι(xi) + ι(yj) + 1 (10)

Now consider the submatrices M ′(0), ...,M ′(M−1) defined by M ′(i) := M ′
0:i−1,0:i−1 (i.e. the first i rows and columns).

We show by induction that M ′(i) has rank i. The base case i = 0 is clear.

For the inductive step, suppose that M ′(i−1) has rank i− 1. Then consider M ′(i). Note that the square of the bottom right
entry (M ′

ii)
2 = ι(xi) + ι(yi) + 1 = pi is prime. We now claim that (M ′

jk)
2 is not a positive integer multiple of pi for any

0 ≤ j, k ≤ i except j = k = i. Firstly, by Lemma 3 there is no j, k such that (M ′
jk)

2 = ι(xj) + ι(yk) + 1 = pi unless
j = k = i, i.e. a multiple of 1 is not possible. We further notice that ι(xj)+ι(yk)+1 ≤ ι(xj)+ι(yj)+ι(yk)+ι(xk)+1 =
pj + pk − 1. Thus no multiple is possible.

Now, the determinant of the matrix M ′(i) takes the form αM ′
ii + β where α is the determinant of M ′(i−1). Both α and

β are in the extension field Q[
√
Pi], where Pi is the set of all primes that divide (M ′

jk)
2 for some 0 ≤ j, k ≤ i except

j = k = i. We have shown that (M ′
ii)

2 = pi is not in this set, and so M ′
ii is not in this extension field. By the inductive

assumption, α ̸= 0, and so det(M ′(i)) = αM ′
ii + β must be nonzero also.

Putting it all together, we have shown that given any square root function F (V ) = ±
√
n(V ) + 1 and any structured-

decomposable and smooth circuit C′ computing F , and any balanced partition X,Y of V , then for any ϵ > 0 and sufficiently
large d, we have a lower bound 2(

1
4−ϵ)d < rank(M ′) < rank(MF (X,Y )) < |C′|.

B LOG-SUM-EXP TRICK FOR COMPLEX NUMBERS

To avoid numerical under/overflow, we perform computations in log-space when computing a forward pass of a PC. For
complex numbers, this means keeping the modulus of the number in log-space and the argument in linear-space.
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(a) MNIST (b) FashionMNIST

Figure 3: Learning Curves (training loss) for each model on the MNIST and FashionMNIST Datasets

Explicitly, given a set of complex numbers x1 = eu1+iv1 , ..., xn = eun+ivn such that the log-modulus uk ∈ R and argument
vk ∈ R are stored in memory, we can compute the log-modulus u and argument v of x = x1 + . . .+ xn as follows:

u = log(
∣∣eu1−umax+iv1 + . . .+ eun−umax+ivn

∣∣) + umax (11)

v = arg(eu1−umax+iv1 + . . .+ eun−umax+ivn) (12)

where umax = max(u1, .., un), | · | is the modulus function for complex numbers, and arg is the principal value of the
argument function (i.e. ∈ (−π, π]).

C EXPERIMENTAL DETAILS

For each dataset, we split the training set into a train/valid split with a 95%/5% ratio. We train for 250 epochs, employing
early stopping if there is no improvement on the validation set after 10 epochs. We use the Adam optimizer [Kingma and Ba,
2015] with learning rate 0.005 and batch size 256. Model training was performed on RTX A6000 GPUs.

For the input functions, we use categorical inputs for each pixel V , i.e. for 8-bit data we have 256 parameters f(V = i) for
each i = 0, ..., 255. For monotone PCs, this takes values in R≥0, for squared negative PCs, this takes values in R, and for
squared complex PCs or InceptionPCs this takes values in C.

In Figure 3, we show learning curves for the MNIST and FashionMNIST datasets (y-axis shows training log-likelihood). It
can be seen that for monotone, squared complex, and InceptionPCs, the curve is fairly smooth and optimizes quickly, while
the curve is more noisy for squared real PCs. We hypothesize that this is due to the fact that gradients for the squared real
PC have a discontinuity in the complex plane when the parameter is 0; meanwhile PCs with non-negative real or complex
parameters can smoothly optimize over the complex plane.
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