
Probabilistic Sufficient Explanations

Eric Wang , Pasha Khosravi and Guy Van den Broeck
Department of Computer Science

University of California, Los Angeles
ericzxwang@ucla.edu, {pashak,guyvdb}@cs.ucla.edu

Abstract
Understanding the behavior of learned classifiers
is an important task, and various black-box expla-
nations, logical reasoning approaches, and model-
specific methods have been proposed. In this pa-
per, we introduce probabilistic sufficient explana-
tions, which formulate explaining an instance of
classification as choosing the “simplest” subset of
features such that only observing those features is
“sufficient” to explain the classification. That is,
sufficient to give us strong probabilistic guarantees
that the model will behave similarly when all fea-
tures are observed under the data distribution. In
addition, we leverage tractable probabilistic rea-
soning tools such as probabilistic circuits and ex-
pected predictions to design a scalable algorithm
for finding the desired explanations while keeping
the guarantees intact. Our experiments demonstrate
the effectiveness of our algorithm in finding suf-
ficient explanations, and showcase its advantages
compared to Anchors and logical explanations.

1 Introduction
Machine learning models are becoming ubiquitous, and are
being used in critical and sensitive areas such as medicine,
loan applications, and risk assessment in courts. Hence, unex-
pected and faulty behaviors in machine learning models can
have significant negative impact on people. As a result, there
is much focus on explaining and understanding the behavior
of such models. Explainable AI (or XAI) is an active area of
research that aims to tackle these issues.

There have been many approaches toward explaining an in-
stance of a classification (called a local explanation) from dif-
ferent perspectives, including logic-based [Shih et al., 2018;
Ignatiev et al., 2019a; Darwiche and Hirth, 2020] or model-
agnostic approaches [Ribeiro et al., 2016; Lundberg and Lee,
2017; Ribeiro et al., 2018]. Each of these methods have their
pros and cons; some focus on scalability and flexibility, and
some focus on providing guarantees.

In this work, we strive to probabilistically explain an in-
stance of classification. Explanations are partial examples,
where we treat the features not in the explanation as miss-
ing values. We aim for our explanations to be as simple as

possible while providing the following sufficiency guarantee:
given only the features in the explanation, with high proba-
bility under the data distribution Pr(X), the classifier makes
the same prediction as on the full example. Simplicity and
sufficiency are often at odds with each other, hence balancing
them is a challenging act.

We briefly overview other approaches to local explanations
and discuss their pros and cons in the framework of suffi-
ciency and simplicity. Broadly, model-agnostic methods are
more scalable and flexible but tend to be not as reliable as
logic-based methods in providing sufficiency. On the other
hand, logical explanation methods tend to sacrifice simplicity
for deterministic guarantees of sufficiency. We then motivate
how probabilistic notions of sufficiency can overcome these
shortcomings as the foundation for sufficient explanations.

Next, we introduce the probabilistic reasoning tools needed
to quantify sufficiency and define sufficient explanations: the
Same-Decision Probability (SDP) and Expected Prediction
(EP). We use probabilistic circuits (PCs) [Choi et al., 2020]
to model the probability distribution Pr(X) over the features
due to their expressivity and tractability in answering com-
plex probabilistic queries. We also explore connections be-
tween SDP and expected prediction and show why expected
prediction is better suited for providing the probabilistic guar-
antees for sufficient explanations.

We then formalize the desired properties of sufficient ex-
planations and motivate our choices for sufficiency and sim-
plicity. Sufficiency leads to maximizing the expected predic-
tion, while simplicity leads to constraining the size of expla-
nations as well as choosing the subset that also maximizes the
marginal probability. We capture all these with an optimiza-
tion problem for finding sufficient explanations. Then, we de-
sign a scalable algorithm for finding the most likely sufficient
explanation by leveraging tractability of expected prediction.

We provide experiments showcasing the empirical advan-
tage of sufficient explanations and the effectiveness of our
search algorithm. Our advantages include: (i) compared to
Anchors we get better and more accurate sufficiency guar-
antees and (ii) our method finds simpler explanations and
is more scalable than logical methods. Lastly, we show the
tradeoffs between sufficiency and simplicity, and show that
slightly reducing the guarantee can lead to simpler explana-
tions with higher likelihood.

2 Background and Related Work
Notation We use uppercase letters (X) for features (ran-
dom variables) and lowercase letters (x) for their value as-
signments. Analogously, we denote sets of features in bold
uppercase (X) and their assignments in bold lowercase (x).
We denote the set of all possible assignments to X asX . Con-
catenation XY denotes the union of disjoint sets. We focus
on discrete features unless otherwise noted.

We represent a probabilistic predictor as f : X → [0, 1]
and its decision function as C : X → {0, 1}, with T de-
noting the decision threshold. Hence, C(x) = Jf(x) ≥ T K.
Sometimes we want to directly deal with log-odds instead
of probabilities, in which case we use the log-odds predictor
O : X → R which is defined as O(x) = log f(x)

1−f(x) .

Related Work
Computing explanations of classifiers has been studied from
many different perspectives, including logical reasoning,
black-box methods, and model-specific approaches. Some
try to explain the learned model globally, making it more in-
terpretable [Guidotti et al., 2018; Liang and Van den Broeck,
2019], while others focus more locally on explaining its pre-
diction for a single instance. Next, we go over some local
explanation methods, discuss their pros and cons, and moti-
vate how our framework might solve those issues.

Model Agnostic Approaches
These methods treat the classifier as a black box. Given an
input instance to explain, they perturb the instance in many
different ways and evaluate the model on those perturbed in-
stances. Then, they use the results from the perturbations to
generate an explanation. Two popular methods under this um-
brella are Lime [Ribeiro et al., 2016] and SHAP [Lundberg
and Lee, 2017]. The main difference between these methods
is the heuristics used to obtain perturbed instances and how
to analyze the predictions on these local perturbations. Most
provide feature attributions, which are real-valued numbers
assigned to each feature, to indicate their importance to the
decision and in what direction.

A benefit of these methods is that they can be used to ex-
plain any model and are generally more flexible and scalable
than their alternatives. On the other hand, the downsides are
that they can be very sensitive to the choice of local pertur-
bations and might produce over-confident results [Ignatiev et
al., 2019b] or be fooled by adversarial methods [Slack et al.,
2020; Dimanov et al., 2020]. One of the main reasons for
these downsides is that the distribution of the local pertur-
bations tends to be different from the data distribution the
classifier was originally trained on. Hence, these approaches
do not benefit from the intended generalization guarantees of
machine learning models. Moreover, some of the perturba-
tions might be low probability or even impossible inputs, and
we might not care as much about their classification outcome.

Additionally, feature attribution methods treat each feature
independently and cannot easily capture interactions between
bigger subsets of features such as when two features cancel
each other’s effects. We refer to Camburu et al. [2020] for
more such examples and discussion on pros/cons of attribu-
tion based explanations.

Logical Reasoning Approaches
These methods provide explanations with some principled
guarantees by leveraging logical reasoning tools. Some ap-
proaches use knowledge compilation and tractable Boolean
circuits [Shih et al., 2018; Darwiche and Hirth, 2020; Shi
et al., 2020], some adopt the framework of abductive rea-
soning [Ignatiev et al., 2019a; Ignatiev et al., 2019b], and
some tackle a specific family of models such as linear mod-
els [Marques-Silva et al., 2020], decision trees [Izza et al.,
2020], or tree ensembles [Devos et al., 2020].

The main benefit of these approaches is that they guarantee
provably correct explanations, that is they guarantee a certain
prediction for all examples described by the explanation. On
the other hand, one downside is that they are generally not
as scalable (in the number of features) as black-box methods.
Another downside is that they need to completely remove the
uncertainty from the classifier to be able to use logical tools
and therefore become more rigid. In particular, in order to
guarantee a certain outcome with absolute certainty, it is of-
ten necessary to include many of the features into the expla-
nation, making the explanation more complex.

Sufficient Reasons [Shih et al., 2018; Darwiche and Hirth,
2020] is one example of these methods that selects as an ex-
planation a minimal subset of features guaranteeing that, no
matter what is observed for the remaining features, the de-
cision will stay the same. Sufficient reasons, as well as re-
lated logical explanations, ensure minimality and determinis-
tic guarantees in the outcome, while as we see later our suffi-
cient explanations ensure probabilistic guarantees instead.

For a recent and more comprehensive comparison of logic-
based vs. model-agnostic explanation methods, we refer to
Ignatiev et al.; Ignatiev [2019b; 2020].

3 Motivation and Problem Statement
We will overcome the limitations of both the model-agnostic
and logic-based approaches by building local explanation
methods that are aware of the distribution over features
Pr(X). We assume for now that we have access to an ac-
curate model for the feature distribution, and discuss in Sec-
tion 4.1 how it can be obtained. This distribution will allow
us to (i) reason about the classifier’s behavior on realistic in-
put instances and (ii) provide probabilistic guarantees on the
veracity of the explanations. We thus take a principled prob-
abilistic approach in explaining an instance of classification.

Intuitively, given an instance x and the classifiers outcome
C(x), we would like to choose a subset of features z ⊆ x as
the “simplest sufficient explanation.” Firstly, we want it to be
sufficient, in that it provides strong probabilistic guarantees
about the outcome of the classifier when only features z are
observed. To this end, we want to maximize some sufficiency
metric F(z,x, f,Pr) describing the behavior of our predictor
when only the explanation z is observed. However, naively
maximizing this metric can run into the pitfall of building
more complex explanations in order to squeeze out tiny im-
provements in the sufficiency metric. To address this, we have
our second metric of simplicity S(z,Pr), which we use to
define a constraint when maximizing the sufficiency metric.
Putting these together, we call a subset z of an instance x a

sufficient explanation if it maximizes some sufficiency metric
F under some simplicity constraint.

With this current definition of sufficient explanations, there
is still the possibility that two subsets of a given instance,
one a subset of the other, are both simple and have the same
degree of sufficiency. This motivates us to further define a
minimal sufficient explanation z, i.e. no subset of z is also a
sufficient explanation. This condition is exactly the meaning
of “prime” in prime implicants as they are used in logical
explanations. We will see in Section 5 how we can use the
feature distribution to ensure this minimality property.

4 Probabilistic Notions of Sufficiency
We next introduce two notions of sufficiency using proba-
bilistic reasoning tools and discuss their pros and cons. Then,
we discuss their connections. Finally, we use these tools in
Section 5 to formalize our definition and formulate finding
the desired subsets of features as an optimization problem.

4.1 Probabilistic Reasoning Tools
Probabilistic reasoning is a hard task in general, so we need
to choose our probabilistic model for Pr(X) carefully. We
choose probabilistic circuits (PCs), which given some struc-
tural constraints enable tractable and exact computation of
probabilistic reasoning queries such as marginals [Choi et al.,
2020]. Moreover, they do so without giving up much expres-
sivity. Another advantage of PCs is that we can learn their
structure and parameters from data, allowing us to avoid the
exponential worst-case behavior of other probabilistic mod-
els.

The two main probabilistic reasoning tools that we use for
our explanations are the Same Decision Probability (SDP)
[Chen et al., 2012] and Expected Prediction (EP) [Khosravi et
al., 2019b]. We introduce them next and explore their trade-
offs and connections.

First we have SDP [Chen et al., 2012] which, intuitively,
gives us the probability that our classifier has the same output
as C(x) given only some subset of observed features z.1

Definition 1 (Same Decision Probability). Given a classi-
fier C, a distribution Pr(X) over features, a partition ZM
of features X, and an assignment x to X (and corresponding
z ⊆ x), the same decision probability (SDP) of z w.r.t. x is

SDPC,x(z) = E
m∼Pr(M|z)

JC(zm) = C(x)K.

The higher the SDP, the better guarantee we have that the
partial example z will be classified the same way as the full
example x. SDP and related notions have been successfully
used in applications such as trimming Bayesian network clas-
sifiers [Choi et al., 2017] and robust feature selection [Choi
and Van den Broeck, 2018]. Renooij [2018] introduced vari-
ous theoretical properties and bounds on the SDP.

Other explanation methods that provide sufficiency guar-
antees can be fit into our framework, using SDP as the suf-
ficiency metric. Notably, Anchors [Ribeiro et al., 2018] can

1SDP was originally defined for the classifier being a conditional
probability test in distribution Pr. Here, we slightly generalize SDP
to apply to a distribution Pr with a separate classifier C.

be thought of as an empirical approximation of SDP suffi-
ciency, as they aim to provide sufficiency guarantees based
on sampling local perturbations instead of relying on the data
distribution. Logical explanations also fit in this framework,
as they completely prioritize having deterministic guarantees,
i.e. SDP=1, over the need for simplicity. Another example of
a method that uses probabilistic sufficiency can be found in
Khosravi et al. [2019b], where they explain logistic regres-
sion models w.r.t. Naive Bayes data distributions.

Expected Prediction is another probabilistic reasoning task
that has been shown to be successful in handling missing val-
ues in classification [Khosravi et al., 2019a; Khosravi et al.,
2019b; Khosravi et al., 2020]. It provides a promising alter-
native for SDP in explanations. Intuitively, given some par-
tial observation, expected prediction can be thought of as try-
ing all possible ways of imputing the remaining features and
computing an average of all subsequent predictions weighted
by the probability of each imputation. In many cases, our
classifiers directly output a probability and in those cases we
can compute expected prediction as follows:
Definition 2 (Expected Prediction). Given a probabilistic
predictor f , a distribution Pr(X) over features, a partition
ZM of features X, and an assignment z to Z, the expected
prediction of f on z is

EPf (z) = E
m∼Pr(M|z)

f(zm).

For some tasks, we may care more about odds rather than
probabilities. In those cases, the predictor usually outputs the
log-odds O(x), so we also define expected log-odds:
Definition 3 (Expected Log-Odds). Given a log-odds predic-
tor O, a distribution Pr(X) over features, a partition ZM of
features X, and an assignment z to Z, the expected log-odds
of f on z is

EPO(z) = E
m∼Pr(M|z)

O(zm).

In this paper, unless otherwise noted, expected prediction
denoted as EP(z) could refer to both cases.

4.2 Connections between SDP and EP
The choice between using SDP and expected prediction as a
sufficiency metric is important, as it will decide what kind of
guarantees our explanations provide and how efficient they
are to compute. Here we explore connections between SDP
and expected prediction and provide intuition on some ad-
vantages of using expected prediction in defining sufficient
explanations.

One of the main differences between SDP and expected
prediction is their computational complexity. While SDP is
an appealing criteria to use for selecting explanations, com-
puting the SDP exactly is computationally hard. In particular,
it is PPPP -hard on Bayesian networks [Choi et al., 2012].
Even on a simple Naive Bayes model for both Pr and the
classifier, computing SDP is NP-hard [Chen et al., 2013].

On the other hand, expected predictions can be tractably
computed for many different pairs of discriminative and gen-
erative models. For example, it is known to be tractable for
the following cases: (i) logistic regression using a conformant

naive Bayes distribution [Khosravi et al., 2019b], (ii) decision
trees w.r.t. probabilistic circuits (PCs) [Khosravi et al., 2020],
(iii) discriminative circuits w.r.t. PCs [Khosravi et al., 2019a],
and (iv) when both the feature distribution and predictor are
defined by the same PC distribution Pr. In the latter case,
the predictor is the conditional probability Pr(c | X), and the
feature distribution is Pr(X). Then, expected prediction can
be reduced to probabilistic marginal inference in PCs which
is tractable for decomposable circuits [Choi et al., 2020].

Another difference comes from how SDP and expected
prediction handle the two distinct uncertainties that arise from
the feature distribution and the classifier. Although both are
aware of the uncertainty from the feature distribution Pr, SDP
ignores the uncertainty in the classifier since it only deals
with the decision function C(x). For example, SDP cannot
distinguish between cases when the classifier has low confi-
dence f(x) = T + ε (only slightly above decision thresh-
old) and cases when the classifier has high confidence such
as f(x) = 0.99. In many domains this distinction is vital.
For example, doctors care more about the odds of a patient
having cancer rather than binary decisions.

For these reasons, we choose to use expected predictions to
define and optimize for our explanations. The good news is
that optimizing EP also allows us to maximize a lower bound
on SDP. The next theorem provides a theoretical lower bound
for SDP using expected predictions.
Theorem 1. Given a predictor f (orO), its thresholded clas-
sifier C, a positively classified instance x (i.e. C(x) = 1), a
distribution Pr, and some subset of the features z ⊆ x, we
have:

SDPC,x(z) >
EP(z)− T
U(z)− T

. (1)

where EP(z) refers to expected prediction, and U(z) is an
upper bound for the predictor after fixing z, i.e. ∀mU(z) ≥
f(zm). Moreover, if U(z) is a tight bound, then Equation 1
is also tight.

Proof. The proof is included in the appendix.2

Theorem 1 gives us two ways of computing a lower bound
for SDP: using a probabilistic predictor f or a log-odds pre-
dictorO. Additionally, the theorem can be easily generalized
to cases when C(x) = 0. See appendix for a more detailed
discussion on which bound is better.

5 Probabilistic Sufficient Explanations
In this section, we use the aforementioned sufficiency metrics
and introduce some desirable constraints to ensure simplicity.
Then, we put everything together to formalize sufficient ex-
planations and introduce an optimization problem for finding
them. Finally, we introduce a search algorithm for finding
sufficient explanations by modifying beam search and lever-
aging tractability of expected predictions.

To simplify the definitions, we assume without loss of gen-
erality that the instance we want to explain is positively clas-
sified, i.e. C(x) = 1. In Section 4.2, we saw two candi-
dates that we can use for probabilistic sufficiency guarantees.

2Available at http://starai.cs.ucla.edu/papers/WangIJCAI21.pdf

The first was SDP, which focuses on the final decision of the
model. The second was expected prediction, which takes the
confidence of the model into account. Because of this, along
with its computational tractability, we choose to use expected
prediction for our sufficiency guarantees. More specifically,
we want to maximize the expected prediction of our explana-
tion to ensure our model is confident in its classification. In
addition, maximizing the expected prediction also maximizes
a lower bound for SDP, so in practice we will still get good
SDP guarantees.

Having chosen a suitable sufficiency metric, we must now
choose a simplicity constraint. There are multiple candidates
to choose from for this as well. For example, we can impose
a cardinality constraint or require explanations to have a high
enough likelihood. We choose the cardinality constraint as it
is easy to decide on a threshold on the explanation size. We
can now formalize the notion of sufficient explanations.
Definition 4 (Sufficient Explanations). Given a predictor f ,
distribution Pr, and a positively classified instance x (i.e.
C(x) = 1), the set of sufficient explanations for x is defined
as the solution of the following optimization problem:

argmax
z⊆x

EP(z) s.t. |z| ≤ k

which we denote as SEk(x).
Having defined sufficient explanations, and following the

same line of thought as before, we are now interested in
choosing sufficient explanations which are minimal. For log-
ical explanations, any minimal sufficient subset can be cho-
sen. However, we can be more selective in our choices us-
ing the feature distribution. A natural choice is to choose
the most likely sufficient explanations, as these are the most
realistic. By maximizing the marginal probability of the ex-
planation, we also ensure the desired minimality. This is be-
cause, for subsets z1 and z2 of an instance x, if z1 ⊆ z2 then
Pr(z1) ≥ Pr(z2). We thus arrive at the following definition.
Definition 5 (Most Likely Sufficient Explanations). Given a
predictor f , a distribution Pr, and an instance x, the most
likely sufficient explanations for x are given by:

MLSEk(x) = argmax
z∈ SEk(x)

Pr(z)

Next, we devise a search algorithm for finding sufficient
explanations. In Section 6, we show that our algorithm works
well in practice, ensuring both sufficiency and simplicity.

Finding Probabilistic Sufficient Explanations
To find the most likely sufficient explanations, we use a beam
search algorithm to greedily search the space of potential ex-
planations. We do so by keeping track of the top b candidates
(the beam) for explanations for each cardinality based on their
expected predictions and marginal probabilities.

In more detail, we begin at level zero with the empty can-
didate, i.e. no features selected. For each subsequent level,
we expand the top b candidates of the previous level by con-
sidering all feature subsets with one more feature than in the
previous level, formed by adding a previously unselected fea-
ture to each candidate. We then select the new top b candi-
dates by ranking the expanded states based on EP, breaking

http://starai.cs.ucla.edu/papers/WangIJCAI21.pdf

ties using Pr, and keeping the top b. The search stops after
level k. At the same time we keep track of the most likely
candidate satisfying the current maximum EP.

Due to the nature of the search, each level of the beam
search is highly parallelizable, which can be leveraged to
speed up the search. Additionally, by running the algorithm
for k levels, we can also keep track of the best sufficiency
guarantee at each level between 1 and k. Hence, with a little
extra book keeping we can keep track of explanations with
different sizes, and thus degrees of simplicity, and their cor-
responding sufficiency guarantees.

Note that the search framework can also be easily adapted
for different use cases. For example, we can provide a fixed
sufficiency constraint and then find the simplest and most
likely explanation with an expected prediction higher than the
sufficiency threshold. However, choosing a good threshold
for expected prediction is not always straightforward.

6 Experiments
In this section, we provide several experiments to showcase
the effectiveness of our search algorithm in finding sufficient
explanations.3 Additionally, we aim to highlight the advan-
tages of our method in comparison with Anchors and logical
explanation methods. More specifically, we would like to an-
swer the following questions:

– Can we find explanations with good sufficiency guaran-
tees? How do they compare with Anchors?

– Does relaxation from logical to probabilistic guarantees
lead to much simpler explanations?

– What are the tradeoffs between different sufficiency lev-
els and explanation complexity?

We use the adult and MNIST datasets [Kohavi, 1996;
Yann et al., 2009] for our experiments. For each dataset,
we model the feature distribution by learning a probabilis-
tic circuit (PC) using the open source Juice library [Dang et
al., 2021]. We choose decision forests learned by XGBoost
[Chen and Guestrin, 2016] as our classifier, as they are pop-
ular and because expected prediction is tractable for forests
w.r.t. PCs [Khosravi et al., 2020]. For more detailed informa-
tion on the datasets, preprocessing steps, learned models, and
computing infrastructure, please refer to the appendix.

6.1 Comparison with Anchors
To demonstrate the scalability of our method and showcase
some advantages of our method in comparison with Anchors,
we ran our algorithm on the binarized MNIST dataset with a
binary classification task of distinguishing between 3s and 5s.

Some images are shown in Figure 1 along with a compar-
ison between explanations found using our method and An-
chors. For Anchors, we used an SDP (precision) threshold of
0.95, a tolerance (δ) of 0.05, and a beam size of 5. On average
it took Anchors 454s to generate explanations. Our algorithm
with the same beam size and cardinality constraint k = 30
took 347s using 16 threads; the sufficient explanations with

3Code at github.com/UCLA-StarAI/SufficientExplanations

(a) Correctly classified examples

(b) Misclassified examples

Figure 1: Explanations for selected MNIST images. From left to
right: 1) original image; 2) Anchors explanation; 3) our explanation
with same number of features 4) our explanation with k = 30. Gray
pixels were not chosen for the explanation. Pixels chosen for the
explanation are colored the same color as the original image.

Method |EPO(z)| SDPC,x(z) logP (z)
Anchors 0.75± 0.37 0.66± 0.08 −3.29± 0.88
MLSEs 1.57± 0.29 0.86± 0.05 −3.05± 0.65
MLSE10 3.11± 0.23 0.99± 0.01 −6.98± 1.37
MLSE20 3.60± 0.15 1.00± 0.00 −9.90± 2.14
MLSE30 3.75± 0.13 1.00± 0.00 −11.77± 2.88

Table 1: Comparison of average expected log-odds, SDP, and
marginals between Anchors and MLSE, averaged over 50 random
MNIST test images. We take the absolute value of EPO(z) to mea-
sure confidence of the explanations (since it could be negative).
MLSEs sets the cardinality constraint to the same size of the An-
chors explanation for each image. The ± denotes one standard de-
viation. The SDP values are approximated.

the same size as Anchors took 45s. See appendix for more
details on the run-times.

The last image of each row in Figure 1 is the explanation
found using our algorithm with cardinality constraint k = 30.
We see that these explanations were able to pick up on certain
features we would naturally use to distinguish between 3s and
5s. In particular the chosen pixels were mostly in the upper
portion of each image. This makes sense as both 3s and 5s
have a similar arch shape in their lower portions, so the upper
portion would be more useful for distinguishing between the
two. Additionally, the explanations contain not only some
white pixels showing an outline of the predicted number, but
also some black pixels, where a number of the opposite label
may be present. Finally, by looking only at the explanation in
the rightmost column of the last two rows we can guess that
the classifier will misclassify those examples.

Table 1 provides data for the expected log-odds, SDP, and
marginal probabilities for generated explanations using An-
chors and our method in a few different scenarios. Since SDP

https://github.com/UCLA-StarAI/SufficientExplanations

Figure 2: For sufficient explanations (sizes 1-30), we plot SDP es-
timates (green) vs SDP lower bounds calculated based on expected
log-odds (blue), and lower bounds based on approximate expected
prediction (red), averaged over 50 test images of MNIST. Shaded
regions represent one standard deviation.

is intractable to compute exactly, we estimate it by comput-
ing the SDP on 10000 samples drawn from the probabilistic
circuit conditioned on the explanation. One advantage of us-
ing PCs as our generative model is that drawing conditional
samples from Pr(· | z) is very fast. For example, generat-
ing 10K samples takes 1 second. We see that the Anchors
are quite overconfident, giving explanations with much lower
sample SDPs compared to the desired 0.95. This trend was
also observed in Ignatiev et al. [2019b].

We plot the sample SDPs for our explanations, along with
lower bounds calculated using Theorem 1, in Figure 2. The
green line shows that, even when optimizing the EP of our
explanations, the SDP still tends to be very high. Moreover,
the blue line shows that the simple and efficient SDP lower
bound can also provide this guarantee for some of the larger
explanations with high EP. The red line is yet another way
to estimate the SDP lower bound. See appendix for more
details.

6.2 Comparison with Logical Explanations
We also compared explanations found using our method to
logical explanations, i.e. minimal explanations with SDP =
1. We used the adult dataset, which has much fewer features,
for this task in order for the logical explanation computation
to become feasible. We removed some features to allow for
brute force computation of minimum cardinality logical ex-
planations. We chose to use brute force because, as far as
we know, there is no method for finding logical explanations
for our use case. In total we removed 3 features, leaving us
with 11 features. From our brute force search on some test
examples, we found that logical explanations needed on av-
erage 39% of the features in order reach an SDP of one. By
using our algorithm of maximizing the expected prediction,
we found that in most cases selecting only 18% of the fea-
tures was already enough to guarantee an SDP of 0.95 on
average. More detailed numbers are provided in Table 2. We
see that the strict requirement imposed by logical explanation
methods can lead to selecting more features leading to more
complex explanations. We expect this gap between the com-
plexities of logical and probabilistic explanations to widen for
datasets with more features or more complex models.

Method SDPC,x(z) logP (z) size
Logical 1.0 −7.12± 2.11 4.30± 1.13
Anchors 0.98± 0.02 −4.27± 2.61 2.02± 1.26
MLSEs 0.97± 0.03 −3.85± 2.37 2.17± 1.18
MLSE1 0.88± 0.19 −2.23± 1.34 1.0± 0.0
MLSE2 0.95± 0.08 −3.88± 1.88 2.0± 0.0
MLSE3 0.98± 0.05 −4.77± 2.31 2.99± 0.06
MLSE4 0.99± 0.03 −5.63± 2.59 3.96± 0.22

Table 2: SDP, marginal probability, and size statistics for explana-
tions found using different methods for the adult dataset.

Figure 3: Tradeoff between expected prediction and marginal prob-
ability for MLSEs. The first plot is for positive label images (5s);
the second is for negative label images (3s). Expected predictions
were computed using a first order approximation.

6.3 Tradeoffs between Sufficiency and Simplicity
Finally, we examine the tradeoff between maximizing suffi-
ciency and explanation simplicity. We compare the expected
predictions with marginal likelihoods of explanations. Fig-
ure 3 shows a scatter plot comparing these two quantities for
different explanations generated for 50 MNIST images. As
we see, the general trend is that by enforcing less strict suffi-
ciency requirements we can get more likely (and also smaller)
explanations. In particular, the trend is very steep around EPs
of 0 and 1, meaning that making the guarantees even slightly
probabilistic will lead to significant simplification of the ex-
planations, thus validating our probabilistic approach.

7 Conclusion
We introduced a new framework for reasoning about the local
behavior of classifiers. We formulated the problem as finding
simplest and most likely explanations that maximize a prob-
abilistic guarantee, and discussed advantages of our frame-
work compared to model agnostic and logical explanation
methods. We provided experiments to validate our claims.
We conclude that probabilistic sufficient explanations are a
valuable addition to the arsenal of local explanation methods.

Acknowledgments
The authors would like to thank YooJung Choi for helpful
discussions regarding SDP. This work is partially supported
by NSF grants #IIS-1943641, #IIS-1633857, #CCF-1837129,
DARPA grant #N66001-17-2-4032, a Sloan Fellowship, In-
tel, and Facebook.

References
[Camburu et al., 2020] Oana-Maria Camburu, Eleonora

Giunchiglia, Jakob Foerster, Thomas Lukasiewicz, and
Phil Blunsom. The struggles of feature-based expla-
nations: Shapley values vs. minimal sufficient subsets.
2020.

[Chen and Guestrin, 2016] Tianqi Chen and Carlos Guestrin.
Xgboost: A scalable tree boosting system. In KDD, 2016.

[Chen et al., 2012] Suming Jeremiah Chen, Arthur Choi, and
Adnan Darwiche. The same-decision probability: A new
tool for decision making. 2012.

[Chen et al., 2013] Suming Jeremiah Chen, Arthur Choi, and
Adnan Darwiche. An exact algorithm for computing the
same-decision probability. In IJCAI, 2013.

[Choi and Van den Broeck, 2018] YooJung Choi and Guy
Van den Broeck. On robust trimming of bayesian network
classifiers. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence (IJCAI), July 2018.

[Choi et al., 2012] Arthur Choi, Yexiang Xue, and Adnan
Darwiche. Same-decision probability: A confidence mea-
sure for threshold-based decisions. International Journal
of Approximate Reasoning, 53(9):1415–1428, 2012.

[Choi et al., 2017] YooJung Choi, Adnan Darwiche, and
Guy Van den Broeck. Optimal feature selection for de-
cision robustness in bayesian networks. In Proceedings of
IJCAI, August 2017.

[Choi et al., 2020] YooJung Choi, Antonio Vergari, and Guy
Van den Broeck. Probabilistic circuits: A unifying frame-
work for tractable probabilistic models. 2020.

[Dang et al., 2021] Meihua Dang, Pasha Khosravi, Yitao
Liang, Antonio Vergari, and Guy Van den Broeck. Juice:
A julia package for logic and probabilistic circuits. In
AAAI Conference (Demo Track), 2021.

[Darwiche and Hirth, 2020] Adnan Darwiche and Auguste
Hirth. On the reasons behind decisions. In European Con-
ference on Artificial Intelligence (ECAI), 2020.

[Devos et al., 2020] Laurens Devos, Wannes Meert, and
Jesse Davis. Additive tree ensembles: Reasoning about
potential instances, 2020.

[Dimanov et al., 2020] Botty Dimanov, Umang Bhatt,
Mateja Jamnik, and Adrian Weller. You shouldn’t trust
me: Learning models which conceal unfairness from
multiple explanation methods. In ECAI, 2020.

[Guidotti et al., 2018] Riccardo Guidotti, Anna Monreale,
Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and
Dino Pedreschi. A survey of methods for explaining black
box models. August 2018.

[Ignatiev et al., 2019a] Alexey Ignatiev, Nina Narodytska,
and Joao Marques-Silva. Abduction-based explanations
for machine learning models. Proceedings of the AAAI
Conference, 2019.

[Ignatiev et al., 2019b] Alexey Ignatiev, Nina Narodytska,
and Joao Marques-Silva. On validating, repairing and re-
fining heuristic ml explanations, 2019.

[Ignatiev, 2020] Alexey Ignatiev. Towards Trustable Ex-
plainable AI, 2020.

[Izza et al., 2020] Yacine Izza, Alexey Ignatiev, and Joao
Marques-Silva. On explaining decision trees, 2020.

[Khosravi et al., 2019a] Pasha Khosravi, YooJung Choi, Yi-
tao Liang, Antonio Vergari, and Guy Van den Broeck.
On tractable computation of expected predictions. In Ad-
vances in Neural Information Processing Systems, 2019.

[Khosravi et al., 2019b] Pasha Khosravi, Yitao Liang, Yoo-
Jung Choi, and Guy Van den Broeck. What to expect of
classifiers? reasoning about logistic regression with miss-
ing features. In Proceedings of IJCAI, Aug 2019.

[Khosravi et al., 2020] Pasha Khosravi, Antonio Vergari,
YooJung Choi, Yitao Liang, and Guy Van den Broeck.
Handling missing data in decision trees: A probabilistic
approach. In The Artemiss Workshop at ICML, 2020.

[Kohavi, 1996] Ron Kohavi. Scaling up the accuracy of
naive-bayes classifiers: A decision-tree hybrid. In KDD,
1996.

[Liang and Van den Broeck, 2019] Yitao Liang and Guy
Van den Broeck. Learning logistic circuits. In Proceed-
ings of the 33rd AAAI Conference, 2019.

[Lundberg and Lee, 2017] Scott M Lundberg and Su-In Lee.
A unified approach to interpreting model predictions.
NeurIPS, 2017.

[Marques-Silva et al., 2020] Joao Marques-Silva, Thomas
Gerspacher, Martin C. Cooper, Alexey Ignatiev, and Nina
Narodytska. Explaining naive bayes and other linear clas-
sifiers with polynomial time and delay. In NeurIPS, 2020.

[Renooij, 2018] Silja Renooij. Same-decision probability:
threshold robustness and application to explanation. In
Proceedings of the Ninth International Conference on
Probabilistic Graphical Models (PGM). PMLR, 2018.

[Ribeiro et al., 2016] Marco Tulio Ribeiro, Sameer Singh,
and Carlos Guestrin. ”why should i trust you?”: Explain-
ing the predictions of any classifier. In KDD, August 2016.

[Ribeiro et al., 2018] Marco Tulio Ribeiro, Sameer Singh,
and Carlos Guestrin. Anchors: High-precision model-
agnostic explanations. In Proceedings of AAAI, 2018.

[Shi et al., 2020] Weijia Shi, Andy Shih, Adnan Darwiche,
and Arthur Choi. On tractable representations of binary
neural networks, 2020.

[Shih et al., 2018] Andy Shih, Arthur Choi, and Adnan Dar-
wiche. A symbolic approach to explaining bayesian net-
work classifiers. In Proceedings of IJCAI, 2018.

[Slack et al., 2020] Dylan Slack, Sophie Hilgard, Emily Jia,
Sameer Singh, and Himabindu Lakkaraju. Fooling lime
and shap: Adversarial attacks on post hoc explanation
methods. In AAAI/ACM Conference on AI, Ethics, and
Society (AIES), 2020.

[Yann et al., 2009] LeCun Yann, Cortes Corinna, and
Christopher JC Burges. The MNIST database of hand-
written digits, 2009.

A Appendix
A.1 Proof of Theorem 1
Proof. We provide the proof for the case of using EP = EPf ,
and U(z) providing an upper bound on the probabilistic pre-
dictor f(zM). The proof is mostly identical in the case of
having EP = EPO and U(z) being an upper bound for the
log-odds predictor O(zM) .

Let T be the decision threshold. Then we have
SDPC,x(z) = Pr(f(zm) ≥ T) and EPf (z) = E[f(zm)]
where m ∼ Pr(M|z). Thus,

EPf (z) = E[f(zm)]

= E[f(zm)|f(zm) < T] · Pr(f(zm) < T)

+ E[f(zm)|f(zm) ≥ T] · Pr(f(zm) ≥ T)
< T (1− Pr(f(zm) ≥ T))
+ U(z) Pr(f(zm) ≥ T)

= T + (U(z)− T) Pr(f(zm) ≥ T)
= T + (U(z)− T) SDPC,x(z).

Rearranging the terms leads to Equation 1.
Next we show how to construct a distribution for f(zM) to

demonstrate the tightness of the bound. Assume we are given
EPf (z) = F , U(z) = U , and a decision threshold T with
F < T < U . Then let ε > 0 and consider the distribution
given by

P (f(zM) = k) =

F − T
U − T

+ ε if k = U

U − F
U − T

− ε if k = A

0 otherwise

where A is some constant which makes EPf (z) = F and
A < T so that SDPC,x(z) = F−T

U−T + ε. We now show how to
solve for A.

We start by computing expected prediction (Definition 2),
we have:

EPf (z) = E
m∼Pr(M|z)

f(zm)

= U × P (f(zM) = U) +A× P (f(zM) = A) + 0

= U

(
F − T
U − T

+ ε

)
+A

(
U − F
U − T

− ε
)

= F

and then solve for A:

A =
F − U

(
F−T
U−T + ε

)
(

U−F
U−T − ε

)
=
F (U − T)− U(F − T)− U(U − T)ε

U − F − (U − T)ε

=
T (U − F)− U(U − T)ε
U − F − (U − T)ε

<
T (U − F)− T (U − T)ε
U − F − (U − T)ε

= T

Thus we have EPf (z) = F and, since A < T , SDPC,x(z) =
F−T
U−T + ε.

A.2 Beam Search Algorithm
Pseudocode

Algorithm 1 Finding Most likely Sufficient Explanations
Input: instance x, feature distribution Pr(z), expected pre-
diction function EP(z), max features k, beam size b

1: MLSE← ∅
2: beam← {∅}
3: for i = 1...k do
4: candidates←

⋃
c∈beam expand(c)

5: compute EP(c) and Pr(c) for c ∈ candidates
6: beam← top b(candidates)
7: update MLSE
8: end for

In the above pseudocode, the expand function generates a
new set of candidates, each formed by adding one yet un-
observed feature to the input candidate. The top b function
selects the b candidates with the highest EP, with ties broken
using Pr. Finally, the MLSE is updated if an explanation with
a higher EP is found, or if one has the same EP as the previous
MLSE but a higher Pr.

Computational Complexity
When using PCs to model the feature distribution, the run-
times for tractable expected prediction (EP) and marginal
(Pr) algorithms do not depend on how many features are ob-
served. Pr can be computed in linear time w.r.t. circuit size.
Linearity of decision forest classification also allows for ex-
pected prediction computations in time linear w.r.t. circuit
size. Thus we treat EP and Pr as oracles and measure our
algorithm’s runtime by the number of calls to them. In each
level of the beam search, we expand the previous level’s top
b candidates, giving us at most nb unique states, where n is
the number of features. We then call EP and Pr once for each
state. Since the search stops after level k, overall we make in
total O(nkb) calls to the EP and Pr oracles.

A.3 More Experiment Details
Computing Infrastructure
All experiments were run on a Linux server with 40 CPU
cores and 500 GB of RAM, albeit not all the memory or
CPU cores where needed for generating one explanation. Our
method is highly parallizable as we see adding more threads
speeds up the process substantially. No GPUs were used in
this paper.

Although we did not use any GPUs, it should be easy to
re-implement some parts of our method to support GPUs.
Some of the main ingredients of our method such as com-
puting marginal probabilities using Probabilistic Circuits al-
ready support GPUs and enjoy huge speed ups. Furthermore,
computing expected predictions and the search at each level
should be amenable to GPU parallization. So, overall we
should be able to speed up the algorithm by 1-2 orders of
magnitude. This allows us to scale to even more complicated
models with more features in the future.

Figure 4: MNIST Runtimes. Average cumulative time taken until
completion of each iteration of the beam search algorithm for differ-
ent numbers of threads.

Datasets and Preprocessing Steps
The MNIST [Yann et al., 2009] dataset consists of 60,000
grayscale images (28 × 28 pixels) of handwritten digits (0-
9). We limit the dataset into digits of 3 and 5 to ensure we
have a binary classification task. The dataset is already split
between train and test images, so we used the same split, se-
lecting from each digits of 3s and 5s. Since our probabilistic
circuit library currently only supports binary feature values,
we also binarized pixel values. indepedently for each image,
by applying a threshold at 0.05 standard deviations above the
mean.

The classification task for the adult dataset [Kohavi, 1996]
is to determine whether a given individual makes over
$50, 000 per year. Features include age, sex, working class,
hours worked per week, education level, nationality, etc. We
perform discretization of continuous features by applying
standard binning. We then perform one-hot-encoding for all
features. Again, this is because the probabilistic circuit li-
brary only supports binary features. We then used an 80-20
split for our training and test data. In general, our method
should be straightforward to extend to multi-category features
and also continuous features.

Source code for processing the datasets will be included in
the final version of paper as supplementary.

Details on models
For our MNIST experiments, we used a PC with 10124 nodes,
15640 edges, and 5916 parameters. It took approximately 35
minutes to train, stopping after 410 iterations. For our classi-
fier, we trained a decision forest with 6 trees, each with a max-
imum depth of 6. The final model has a total of 297 leaves.
The classification accuracy on our test images is 98.63%.

For our adult experiments, we used a PC with 22899 nodes,
44152 edges, and 14828 parameters. It took approximately
17 minutes to train, stopping after 190 iterations of structure
learning. For our classifier, we trained a decision forest with
the same constraints as above. The final model has a total of
255 leaves. The classification accuracy on our test dataset is
84.20%.

Metric Calculation Details
The classifiers used in our experiments were decision forests,
which allow for efficient computation of expected log-odds.
Classification using these models is done by summing the

weights of one leaf from each tree, where the chosen leaf
from each tree has a path from the root not contradicting with
the instance to be classified. This additive model allows us to
utilize linearity of expectation to compute expected log-odds
[Khosravi et al., 2020].

This model does not, however, allow for efficient computa-
tion of expected predictions, where prediction refers to taking
the sigmoid of the classifier output. This is due to the non-
linear nature of the sigmoid function. Instead, when we give
expected prediction values, we use a first order approximation
by taking the sigmoid of the expected log-odds.

In Figure 2 we show a plot with SDP lower bounds com-
puted using Theorem 1. Graphing of the blue curve requires
computation of an upper bound U(z) on the predictions of a
decision forest. The upper bound used is a loose one which
we computed by adding the weights of one leaf from each tree
in the forest, where each leaf is the maximum weighted leaf
in its tree whose path from the root does not contradict with
the explanation. This bound is a loose once since paths for
leaves from different trees may contradict. For the red curve,
since our model outputs log-odds, we used the first order ap-
proximation mentioned above.

Effects of Parallelism on Performance
One advantage of our method is that we can parallelize com-
putation of expected predictions at each level of the beam
search. The effects of can be seen in Figure 4, which plots
the cumulative time taken to complete each level of the beam
search for different numbers of threads. We see that more
threads do indeed allow for much faster runtimes. We leave
investigating benefits of GPU acceleration for future work.

More on SDP Lowerbounds
In the main text we saw that Theorem 1 gives us two ways
of computing a lower bound for SDP: using a probabilistic
predictor f or a log-odds predictorO. One of them might give
a tigher bound, depending on how our predictor is defined.
Generally, the tighter bound we can find for U(z) the tighter
bound we get for SDP.

For example, in the case of having a probabilistic predic-
tor, the decision threshold is usually T = 0.5, and we can
easily get a trivial upper bound of U(z) = 1. Depending on
the model family we might be able to get a tighter bound for
U(z), and hence a tighter lower bound for SDP. For the case
of a log-odds predictor, we usually take T = 0, but getting
an upper-bound U(z) might not be trivial. However, in many
cases an upper bound U(z) can be computed efficiently for
log-odds predictor, but might not be tight.

Limitations
Some knowledge of probabilities is needed to fully interpret
the results. However, as seen with the MNIST example, vi-
sual representations can be designed to give users a feel for
what the model is doing.

More MNIST examples
Figure 5 provides some extra examples on sufficient expla-
nations for MNIST. We see examples for both correctly and
incorrectly classified images, and see the effects of cardinal-
ity constraints on the explanations.

(a) Correctly classified 5s

(b) Correctly classified 3s

(c) Misclassified 5s

(d) Misclassified 3s

Figure 5: More MNIST examples along with explanations with car-
dinality constraint k = 10, 20, 30.

	Introduction
	Background and Related Work
	Motivation and Problem Statement
	Probabilistic Notions of Sufficiency
	Probabilistic Reasoning Tools
	Connections between SDP and EP

	Probabilistic Sufficient Explanations
	Experiments
	Comparison with Anchors
	Comparison with Logical Explanations
	Tradeoffs between Sufficiency and Simplicity

	Conclusion
	Appendix
	Proof of Theorem 1
	Beam Search Algorithm
	Pseudocode
	Computational Complexity

	More Experiment Details
	Computing Infrastructure
	Datasets and Preprocessing Steps
	Details on models
	Metric Calculation Details
	Effects of Parallelism on Performance
	More on SDP Lowerbounds
	Limitations
	More MNIST examples

