
Exploiting Local and Repeated Structure
in Dynamic Bayesian Networks

Jonas Vlasselaer, Wannes Meert, Guy Van den Broeck, Luc De Raedt

Departement of Computer Science, Katholieke Universiteit Leuven
Celestijnenlaan 200A - bus 2402, 3001 Heverlee, Belgium

{firstname.lastname}@cs.kuleuven.be

Abstract

We introduce the structural interface algorithm for exact probabilistic in-
ference in dynamic Bayesian networks. It unifies state-of-the-art techniques for
inference in static and dynamic networks, by combining principles of knowl-
edge compilation with the interface algorithm. The resulting algorithm not only
exploits the repeated structure in the network, but also the local structure,
including determinism, parameter equality and context-specific independence.
Empirically, we show that the structural interface algorithm speeds up infer-
ence in the presence of local structure, and scales to larger and more complex
networks.

Keywords: Probabilistic Graphical Models, Dynamic Bayesian Networks,
Probabilistic Inference, Knowledge Compilation

1. Introduction

Bayesian Networks (BNs) are powerful and popular tools for reasoning about
uncertainty [1]. Although BNs where originally developed for static domains,
they have been extended towards dynamic domains to cope with time-related
or sequential data [2, 3]. These Dynamic Bayesian Networks (DBNs) generalize
hidden Markov models and Kalman filters, and are widely used in applications
such as speech recognition, bio-sequence analysis, health monitoring, machine
monitoring, robotics and games.

Inference methods for static BNs, including junction trees and variable elim-
ination, exploit conditional independencies (CI) by using a factorized represen-
tation of the probability distribution. More recent techniques, including knowl-
edge compilation [4], also exploit local structure (LS) in the network. This
type of structure can induce additional independencies, and is present when
the conditional probability tables contain deterministic dependencies or equal
parameters. It is well-known that, in the presence of LS, knowledge compilation
often outperforms traditional methods [4].

Inference in dynamic models can be performed by unrolling the network
and using static inference techniques on the resulting network. This approach,

Preprint submitted to Elsevier January 16, 2016

Approach CI LS RS

1. Traditional BN algorithm on the unrolled network X
2. Knowledge compilation on the unrolled network X X
3. Interface algorithm X X
4. Structural interface algorithm X X X

Table 1: Properties exploited by DBN inference algorithms.

however, performs poorly when the number of time steps increases. Therefore,
special purpose algorithms have been devised, such as the interface algorithm [3],
which extends the forward-backward algorithm for hidden Markov models to-
wards general DBNs. In addition to CI, these algorithms exploit the repeated
structure (RS) obtained from duplicating the network along the time dimension.

The key contribution of the present paper is that we show how to use knowl-
edge compilation techniques for efficient exact inference in DBNs. The resulting
structural interface algorithm speeds up inference by exploiting CI, RS as well as
LS (see Table 1). We investigate the trade-offs of compiling the complex tran-
sition model of a DBN into a circuit representation. We evaluate our algorithm
on three classes of benchmark DBNs, and show that the structural interface
algorithm outperforms the classical interface algorithm in the presence of LS.
As a result, we can tackle dynamic models that are considerably more complex
than what is currently possible with exact solvers.

The paper is organized as follows. Sections 2 and 3 provide the necessary
background, on inference for dynamic networks, and static networks with local
structure. Next, in Section 4 we describe the structural interface algorithm.
Finally, Section 5 compares the different DBN inference techniques empirically.

2. Inference in Dynamic Bayesian Networks

We first review Dynamic Bayesian Networks and existing work on exact
probabilistic inference with these representations. Upper-case letters (Y) denote
random variables and lower case letters (y) denote their instantiations. Bold
letters represent sets of variables (Y) and their instantiations (y).

2.1. Representation and Tasks

A Dynamic Bayesian Network (DBN) [2, 3] is a directed acyclic graphical
model that represents a stochastic process. It models a probability distribution
over a semi-infinite collection of random variables Z1,Z2,Z3, . . ., where Zt are
the variables at time t and Z1:T denotes all variables up until time T . A Dynamic
Bayesian Network is defined by two networks: B1, which specifies the prior or
initial state distribution PrpZ1q, and BÑ, a two-slice temporal BN (2TBN)
that specifies the transition model PrpZt|Zt´1q. Together, they represent the
distribution

PrpZ1:T q “ PrpZ1q

T
ź

t“2

PrpZt|Zt´1q (1)

2

The initial network B1 is a regular Bayesian network, which factorizes the
distribution over its N variables as PrpZ1q “

śN
i“1 PrpZi1|PapZi1qq, where Zit

is the ith variable at time t and PapZitq are the parents of Zit in the network.
The transition model BÑ is not a regular Bayesian network as only the nodes
in the second slice (for time t) of the 2TBN1 have an associated conditional
probability distribution. Thus, the transition model factorizes as PrpZt|Zt´1q “
śN
i“1 PrpZit |PapZitqq, where PapZitq can contain variables from either Zt or Zt´1.

(a) An electronic digital circuit. (b) The prior distribution.

(c) The transition model (2TBN). (d) The CPT for W4t.

Figure 1: A digital circuit containing a logical NOT-gate (with wire 1 as input and
wire 3 as output) and a logical AND-gate (with wire 2 and wire 3 as inputs and wire 4
as output) and its corresponding DBN (shaded nodes are observed). The 1.5TBN is
obtained by removing all dashed arcs and nodes from the 2TBN.

We use as running example the task of finding failing components in digital
electronic circuits (see Figure 1a). This problem can be easily modeled as a
DBN, where each of the variables in Zt either represents the state of a wire
(e.g. high or low) or the state of a logical component (e.g. healthy or faulty)
(see Figure 1b) [5]. The transition model (Figure 1c) defines the dynamics of
the components’ state over time.

1We focus on first-order Markov chains where the transition model is specified by a 2TBN.
However, our results generalize to kTBNs and pk ´ 1qth-order Markov processes.

3

The goal of (marginal) inference in a DBN is to compute PrpXi
t |e1:τ q, the

probability of a hidden variable Xi at time t, given a sequence of observations
e1:τ up until time τ . If (t “ τ) this is called filtering, if (t ą τ) prediction, and
if (t ă τ) smoothing. For our example, one is typically interested in the health
states HAt (for the AND-gate) and HNt (for the NOT-gate) at time t, given
a sequence of observed electrical inputs and outputs up to and including t, i.e.
the task of filtering. This corresponds to computing PrpHAt|w11:t,w21:t,w41:tq

and PrpHN t|w11:t,w21:t,w41:tq.

2.2. Unrolling the Network

The semantics of a DBN, for a finite number of time steps T , is defined by
unrolling the transition model (2TBN) for all time slices (Equation 1). Such an
unrolled network (see Figure 2) is equivalent to a static Bayesian network and
allows one to perform inference with any standard algorithm for BNs [6, 5].

Figure 2: The unrolled network for three time slices.

Despite the wide range of existing algorithms for BNs, naively unrolling the
network for T time slices has multiple drawbacks: (1) the time complexity of
inference depends on heuristics and is not guaranteed to scale linearly with T ,
(2) it requires OpT q memory, and (3) the number T is often unknown which
implies that adding a new time step requires inference in the complete network.
While a standard BN algorithm in combination with a sensible heuristic allows
one to overcome (1), e.g. heuristics based on a “slice-by-slice” ordering [7], more
specific algorithms are required to overcome (2) and (3).

2.3. Exploiting Repeated Structure

Explicitly unrolling the 2TBN introduces a repeated structure in the net-
work. This structure is exploited by specific inference algorithms for DBNs to
overcome all the above limitations of unrolling.

A key property of DBNs is that the hidden variables Xt d-separate the past
from the future, that is, knowing their values makes the future independent of
the past. Often, a subset It of Xt also suffices to d-separate the past from the

4

future. This set It, referred to as the interface2 [3], consists of the nodes from
time slice t that have an outgoing arc to nodes in time slice t` 1 (see Figure 2).
The interface allows one to define the transition model by means of a 1.5TBN
rather than a 2TBN. This 1.5TBN is obtained by removing all non-interface
variables and all arcs in the first time slice of the 2TBN (see Figure 1c) [3].

Exploiting the repeated structure in a DBN reduces the inference task in
DBNs to repeatedly performing inference in the 1.5TBN. This is achieved by
means of a forward (and backward) pass, similar to the forward-backward al-
gorithm for hidden Markov models [8]. The forward pass involves computing
the joint probability distributions PrpIt|e1:tq for every time step t. These dis-
tributions, referred to as the forward messages, can be computed recursively as
follows [3]:

PrpIt|e1:tq “
ÿ

It´1

PrpIt|It´1, etqPrpIt´1|e1:t´1q (2)

The factor PrpIt|It´1, etq can be computed as
ř

ZtzIt
PrpZt|It´1, etq on the

1.5TBN without the need to unroll the network. The standard implementation
of the interface algorithm3 [3] computes this factor using junction trees where
it is enforced that all nodes in It´1 and in It each form a clique. Based on the
forward messages, one can compute marginal probabilities as follows:

PrpZit |e1:tq “
ÿ

It´1

PrpZit |It´1, etqPrpIt´1|e1:t´1q

Although the size of the joint distribution in the forward message grows
exponentially with the size of the interface It, the interface algorithm overcomes
all drawbacks of naively unrolling the network. It scales linearly with the number
of time slices, only needs to keep in memory the last forward message and the
1.5TBN, and it allows for a time step to be added without the need to recompute
the forward messages for previous time steps.

The forward message allows one to correctly compute PrpZit |e1:τ q with t ě τ ,
but not when t ă τ (i.e., the smoothing task). Then, one also defines a backward
interface to compute backward messages. For the sake of simplicity, we omit
the backward pass, as it is similar to the forward pass [3].

Another approach, known as constant-space algorithms [7], extend the vari-
able elimination algorithm for Bayasian networks to efficiently perform inference
in dynamic networks. Concretely, these algorithms utilize “slice-by-slice” elim-
ination orders and dynamically generate the conditional probability tables of
the network. Hence, inference scales linearly with the number of time-slices T
while the required memory is constant and independent of T .

For notational convenience, we omit the observations e1:t in the remainder
of this text and refer to the forward message as PrpItq. Its different entries
(possible variable instantiations) are denoted by (i1t , i2t , ... iMt). In case all
variables are binary, we have M “ 2|I|.

2One distinguishes between forward an backward interfaces [3]. We focus on the former.
3In the Bayes Net Toolbox for Matlab, available at https://github.com/bayesnet/bnt

5

3. Local Structure in Static Bayesian Networks

Most inference algorithms for BNs, such as junction trees, only exploit con-
ditional independences and have time complexities that are exponential in the
treewidth of the BN. Algorithms based on knowledge compilation, however, are
also capable of exploiting local structure, allowing one to conduct inference more
efficiently. We first introduce different types of local structure and show how
these can be exploited.

3.1. Local Structure

Bayesian networks often exhibit abundant local structure in the form of
determinism and context-specific independence (CSI) [9]. Determinism is in-
troduced by 0 and 1 parameters in the network while CSI is often the result of
equal parameters. Exploiting local structure can lead to exponential speed gains
and allows one to perform inference in networks of high treewidth, where this
is otherwise impossible [4].

The Conditional Probability Table (CPT) for wire 4 in our running example
(see Figure 1d) contains the different types of local structure. When the logical
component is healthy (HAt “ J), the 1 parameter indicates that W4 t is deter-
ministically true (high) if all wires at the input of the component are true (high).
The 0 parameters indicate that W4 t is deterministically false (low) in all other
cases. When the logical component is faulty (HAt “ K), the equal parameters
p0.5q give rise to context-specific independence since the state of W4 t does not
depend anymore on the state of the wires at the input of the component, i.e.
PrpW4 t|W2 t,W3 t,HAt “ Kq “ PrpW4 t|HAt “ Kq

3.2. Knowledge Compilation

Knowledge compilation is a technique capable of exploiting different types
of local structure [4]. The approach we take can be summarized as performing
three steps: (1) conversion of the BN into a logical knowledge base and weighted
model counting problem, (2) compiling the knowledge base into a more tractable
target representation, and (3) performing inference in the target representation.

3.2.1. Conversion to Weighted Model Counting

In the first step, the BN is encoded into a knowledge base (KB) (i.e., a
sentence in propositional Boolean logic) whose satisfying assignments are called
models. An associated weight function w, which maps each propositional vari-
able to a real number, allows one to reduce the task of probabilistic inference
to weighted model counting [10]. The weight of a model is given by the product
of the weights of all variables consistent with the model. The sum of all mod-
els then corresponds to the probability of evidence in the BN. Computing the
marginal probability of a variable instantiation comes down to summing and
normalizing the weights of all models consistent with the instantiation.

We illustrate the conversion step on our running example by means of the
encoding proposed by Fierens et al. [11]. The propositional formula for the CPT

6

shown in Figure 1d contains one parameter variable (wpPFaulty| HA,tq “ 0.5) and
six indicator variables (wp¨q “ 1):

Normal t ôW2 t ^W3 t ^HAt

Faultyt ô HAt ^ PFaulty| HA,t

W4 t ô Normal t _ Faultyt

The first formula encodes the last entry of the CPT, associated with the
indicator variable Normal t. We can safely omit the corresponding parameter
variable since it represents a probability of one and does not change the weighted
model count. All entries in the CPT that have an equal probability of 0.5 are
compactly encoded into the second formula. With these entries we associate
the indicator variable Faultyt. The third formula expresses when W4 t is true.
All entries in the CPT with a 0 parameter can be dropped as they give rise to
models with a weight of 0. A model for this formula is, for example, given by
(W4 t, Normal t,Faultyt, HAt,PFaulty| HA,t, W2 t,W3 tq which has a corre-
sponding weight of 1 ¨ 1 ¨ 1 ¨ 1 ¨ 0.5 ¨ 1 ¨ 1 “ 0.5.

In general, the knowledge base KB for a BN can be obtained by encoding
each row of each CPT as a propositional formula and conjoining these formulas.
This requires an indicator variable for each value z of a random variable Z and
a parameter variable for each CPT parameter θz|u. The encoding of Fierens et
al. [11] assumes that all variables are Boolean. In the general case, any other
encoding can be used. For details, we refer to Darwiche [5].

3.2.2. Compilation and Inference

Once the network is encoded, the knowledge base KB is transformed into
a more tractable representation which allows for efficient marginal inference.
The language often used as target representation is d-DNNF (deterministic De-
composable Negation Normal Form). It is known to support weighted model
counting in polynomial time [12] and generalizes other well-known languages
such as OBDD and FBDD. The procedure consists of three steps:

1. Compile the knowledge base KB into a d-DNNF ∆ [13].

∆ “ CompilepKBq

2. Incorporate evidence e by setting to zero the weight of any indicator vari-
able that is not compatible with the evidence.

w1pZq “

"

wpZq Z R e

0 Z P e

3. Traverse the obtained d-DNNF to either:
(a) compute the weighted model count, which corresponds to the proba-
bility of the evidence in the BN, with an upward pass only:

Prpeq “ EvalÒp∆, w
1q

7

(b) compute the marginal probability PrpZ|eq, for all variables Z in par-
allel, with one upward and downward pass [5, Algorithm 34]:

PrpZ|eq “ EvalÖp∆, w
1q

In the literature, one often converts the obtained target representation (d-
DNNF) into an Arithmetic Circuit (AC) and traverses this circuit. Since this
step is not strictly necessary, we omit it and use both terms interchangeably.

Compiling a knowledge base into a d-DNNF is computationally hard but
has several advantages. Firstly, the size of the obtained circuit is not necessarily
exponential in the treewidth. Secondly, the circuit can be reused in the presence
of new evidence to compute marginal probabilities in polytime, without the need
to recompile it. Thirdly, a d-DNNF allows a set of polytime transformations
of which one is conditioning. This transformation, denoted p∆|vq, replaces the
variables V in ∆ by their assignment in v and propagates these values while
preserving the properties of the target representation [12].

4. The Structural Interface Algorithm

We propose the structural interface algorithm for efficient inference in DBNs.
It exploits conditional independence and repeated structure in the network in
a way similar to the interface algorithm [3]. The use of knowledge compilation,
however, allows us to additionally exploit local structure in the transition model.

We explore several approaches of integrating the interface algorithm with
knowledge compilation. They have different memory requirements and trade offs
between putting the burden on the compiler, a post-compilation (conditioning)
step or the inference step.Table 2 summarizes the complexity of the different
steps for each of the different interface encodings we present below.

ENC1 ENC2 ENC3 ENC4

Compilation Op2ω1.5TBN`2¨|I|q Op2ω1.5TBNq Op2ω1.5TBNq Op2ω1.5TBNq

Conditioning n\a 2 ¨ 2|I| ¨Op|∆|q n\a 2|I| ¨Op|∆|q
Evaluation 2 ¨Op|∆|q 2 ¨Op|∆|q 22¨|I|

¨Op|∆|q 2|I| ¨Op|∆|q

Table 2: Complexity of each step for the different interface encodings. Parameter ωN

represents the treewidth of network N . Circuit ∆ refers to the one constructed in the
previous step. For Conditioning and Evaluation, we report the asymptotic complexity
of one call (Op|∆|q), multiplied by the number of required calls (e.g. 2).

4.1. Exploiting Local Structure in the Transition Model

Our approach performs inference in a DBN by recursively computing the
forward message (see Equation 2) but uses knowledge compilation, rather than
junction trees, to compute the factor PrpIt|It´1, etq on the 1.5TBN. This does
not only involve encoding, then compiling, the 1.5TBN, but also require to
represent the joint distributions PrpIt´1q and PrpItq in the compiled circuit.

8

The 1.5TBN is encoded by means of a knowledge base KB1.5 (cf. Section 3.2.1).
Each CPT (for variables in the second slice) is turned into a corresponding set of
formulas. Now, we identify several approaches to represent PrpIt´1q and PrpItq
and to compute the forward message on a circuit representation.

4.1.1. Compiling the Interface into the Circuit (ENC1)

A joint distribution PrpIq can be naturally encoded into a knowledge base
KB I as discussed in Section 3.2.1. This requires 2|I| formulas and indicator
variables to be added, all in one-to-one correspondence to the rows of PrpIq.
For our running example, with variables HN t and HAt in the interface, KB It is
given by the following 4 formulas (and similar for KB It´1

):

State1t ô HN t ^ HAt pfor i1t q

State2t ô HN t ^ HAt pfor i2t q

State3t ô HN t ^ HAt pfor i3t q

State4t ô HN t ^ HAt pfor i4t q

This allow us to compute the forward message as follows:

pPrpi1t q, . . . ,Prpint qq “ EvalÖpCompilepKB It´1
^KB1.5 ^KB Itq, wq

where w is updated with wpStatejt´1 q “ Prpijt´1 q. The advantage of this en-
coding is that, for each time step, only two passes trough the circuit are needed
to compute the forward message (i.e., one call to EvalÖ). The disadvantage
is that the number of required formulas to encode PrpIq scales exponentially in
|I| (i.e. the number of interface variables).

4.1.2. Conditioning the Interface into the Circuit (ENC2)

The exponential aspect of KB I has an adverse effect on the heuristics used
by general-purpose compilation tools as it not only dwarfs KB1.5 in size, but
also represents a joint distribution without any local structure. A d-DNNF that
is logically equivalent with the one obtained by CompilepKB1.5^KB Iq can be
obtained, however, by only compiling KB1.5 with a general-purpose tool and
adding PrpIq to the resulting circuit by means of conditioning. Concretely, a
joint distribution over all variables in I can be added to a compiled circuit ∆ in
the following way:

Addip∆, Iq “
ł

ijPI

p∆|ijq ^ Statej ^ ij (3)

The result of Addip∆, Iq is a d-DNNF which allows us to compute the forward
message as follows:

pPrpi1t q, . . .Prpint qq “ EvalÖpAddipAddipCompilepKB1.5q, It´1q, Itq, wq

where w is updated with wpStatejt´1 q “ Prpijt´1 q. The advantage of incorpo-
rating PrpIq directly into the d-DNNF is that the heuristic of the compiler does

9

not have to deal with KB I and can focus on better compiling the much smaller
and more structured sentence KB1.5. Furthermore, this approach allows one to
share identical subcircuits, leading to an efficient computation of the forward
message with only two passes trough the obtained circuit. The disadvantage
is that the number of conditioning operations scales exponentially with |I|.

4.1.3. Introducing the Interface as Evidence (ENC3)

We can compute the forward message using only ∆1.5, which is obtained by
CompilepKB1.5q, without the need to explicitly encode PrpIt´1q and PrpItq.
This is done by repeatedly updating the weight function to incorporate each of
the combinations of instantiations of PrpIt´1q and PrpItq as evidence (see Step
2, section 3.2.2). Concretely, the probability of the j-th instantiation in the
forward message can be computed in the following way:

Prpijt q “
M
ÿ

k“0

EvalÒpCompilepKB1.5q, wk�jq ¨ Prpikt´1q

where wk�j incorporates the instantiations ikt´1 and ijt and M = 2|I| in case
all interface variables are binary. Note that CompilepKB1.5q only needs to
be performed once. The advantage of bypassing an explicit encoding of the
interfaces is that it lowers the memory requirements as the forward message is
directly computed on the circuit ∆1.5. The disadvantage is that computing the
forward message requires 22¨|I| passes trough the circuit. Moreover, 22¨|I| ¨ |∆1.5|

will be larger than 2 ¨ |∆| (the evaluation step of the previous two encodings)
because identical subcircuits are note shared.

4.1.4. Encoding for the Structural Interface Algorithm (ENC4)

The approach of compiling KB It´1
^KB1.5^KB It (ENC1) is similar to the

interface algorithm where one adds edges to the moral graph between all nodes
in It´1 and It [3]. Since the compilation step is the most complex step in the
knowledge compilation pipeline, and this approach potentially has to deal with
a more complex knowledge base, we do not prefer this encoding.

For the structural interface algorithm, we propose an hybrid encoding that
employs ENC2 as well as ENC3. Concretely, we explicitly introduce PrpIt´1q

by conditioning while PrpItq is implicitly introduced as evidence. This allows
us to compute the probability of the j-th instantiation in the forward message
as follows:

Prpijt q “ EvalÒpAddipCompilepKB1.5q, It´1q, w�jq (4)

where w�j is updated with wpStatejt´1 q “ Prpijt´1 q and incorporates the in-

stantiation ijt . For each time slice, 2|I| passes trough the circuit are required
to compute the forward message. The advantage of this encoding is that it
combines the advantages of ENC2 and ENC3. More precisely, the benefit of
evaluating the circuit multiple times (ENC3) is that the cost of compilation is

10

amortized over all queries. The benefit of conditioning (ENC2) is that subcir-
cuits and computations are shared. By using the hybrid approach, we get some
of both advantages, which we will empirically show to be a good trade-off.

4.2. Exploiting Repeated Structure in the Network

The use of knowledge compilation to compute the forward message does not
only allow us to exploit the local, but also the repeated structure in the network.
Since the structure of the transition model is time-invariant, there is no need
to repeat the process of encoding and compiling the 1.5TBN and introducing
PrpIt´1q. This allows us to split Equation 4 in two parts:

∆R “ AddipCompilepKB1.5q, It´1q, (5)

which is performed only once, and

Prpijt q “ EvalÒp∆R, wq (6)

which is performed for each ijt P It and for each t ă T . Hence, the one-time
cost of Equation 5 is amortized over 2|I| ¨ T queries. Note that for the standard
interface algorithm, the one-time cost of compiling the transition model into a
junction tree is amortized over T queries. This approach, however, does not
exploit any of the local structure in the transition model.

4.3. Simplifying the Circuit

Computing the forward message by means of Equation 6 requires an update
of the weight-function w before any new evaluation pass trough ∆R. Some
variables in the d-DNNF, however, are mapped to time-invariant weights that
never change. They can be combined and replaced by a smaller set of new
variables in case the following two conditions are met: (1) the variable is not
observed and, (2) not queried.

In general, all of the parameter variables and a subset of the indicator vari-
ables meet these two conditions. For example, variable W3 t, which models the
state of wire 3 in our running example, is a purely internal variable and never
queried or observed. Assume we have a d-DNNF which contains the following
sub-formula and weight function:

W4t ^ pW3t ^ PW4t |W3t ,tq with

"

wpW3tq “ a

wpPW4t |W3t ,tq “ b

This can be replaced by:

W4t ^ Pnew ,t with wpPnew ,tq “ a ¨ b

The effect of this transformation is that it reduces the number of unnecessary
computations in each pass trough the circuit. If we would not employ this
transformation, the multiplication a ¨ b will be performed T ¨ 2|I| times although
the result will always be the same. This transformation can be performed in a
deterministic manner by means of one bottom-up pass trough the d-DNNF. As
it only needs to be computed once, i.e. before the evaluation step, the cost is
amortized over T ¨ 2|I| queries.

11

5. Experiments

Our experiments address the following four questions:

Q1 How do different algorithms scale with an increasing number of time steps?

Q2 How do both of the interface algorithms scale in the presence of local struc-
ture in the transition model?

Q3 How does the structural interface algorithm scale in case local structure is
not fully exploited?

Q4 How do the different interface encodings compare?

We implemented our algorithm in ProbLog4. For compilation, we use both
the c2d5 and dsharp6 compilers, and retain the smallest circuit. Experiments
are run with a working memory of 8 GB and a timeout of 1 hour.

5.1. Models

We generate networks for the following three domains:

Digital Circuit 1. These networks model electronic digital circuits similar
to the one used as running example in this text (and adopted from Darwiche
[5]). A circuit contains logical AND-gates and OR-gates which all are randomly
connected to each other (without forming loops). For a subset of logical gates,
the input or output is observed and not connected to another gate. The interface
contains all variables that model the health state of the component. Gates can
share a health variable when, for example, they share a power line. We refer
to the networks as DC1-G-H, with G the number of gates and H the number of
health (interface) variables. The number of gates for which the input or output
is observed is 2 ¨ GH . Observations are generated randomly. For each domain
size, we randomly generate 3 networks and report average results.

Digital Circuit 2. These networks are a variant of the networks in DC1 but now
we have a separate health variable for each of the gates and the interface consists
of one multi-valued variable. This variable aggregates all health variables and
encodes, in an ordered way, which gate is most likely to be part of the failing
gates. The introduction of the multi-valued variable facilitates the encoding of
the interface, as compared to DC1, but offers an additional challenge for inference
as it directly depends on each of the health variables. We refer to the networks as
DC2-G with G the number of gates. For each domain size, we randomly generate
3 networks and report average results.

4Available at http://dtai.cs.kuleuven.be/problog/
5Available at http://reasoning.cs.ucla.edu/c2d/
6Available at https://bitbucket.org/haz/dsharp

12

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500

T
i
m
e

i
n

S
e
c
o
n
d
s

Number of Time Slices

unrolled_JT

unrolled_COMP

standard_IA

structural_IA

(a) DC1-20-5

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500

T
i
m
e

i
n

S
e
c
o
n
d
s

Number of Time Slices

unrolled_JT

unrolled_COMP

standard_IA

structural_IA

(b) DC2-12

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500

T
i
m
e

i
n

S
e
c
o
n
d
s

Number of Time Slices

unrolled_JT

unrolled_COMP

standard_IA

structural_IA

(c) MM-3-3

Figure 3: Total inference time for an increasing number of time slices.

Mastermind. We model the mastermind game, similar to the BNs used in
Chavira et al. [4]. Instead of modeling the game for a fixed number of rounds,
however, we represent the game as a DBN with one time slice per round. The
interface contains a variable for each of the pegs the game is played with. The
interface thus models the belief of the colors set by the opponent for each of the
pegs. We refer to the networks as MM-C-P, with C the number colors and P the
number of pegs (interface variables).

5.2. Algorithms

We make use of the following four algorithms:

• unrolled JT : The junction tree algorithm on the unrolled network for
which we used SMILE7.

• unrolled COMP : Compiling the unrolled network, using the encoding in-
troduced in section 3.2.1.

• standard IA : The standard interface algorithm8 where we experimented
with the with jtree dbn inf engine as well as with the smoother engine

but did not observe any significant difference.

• structural IA : The structural interface algorithm where the interface is
encoded using ENC4.

5.3. Results

We compare the four algorithms introduced above for an increasing number
of time-slices. The results are depicted in Figure 3 and allow us to answers (Q1).
On each of the three domains, both of the interface algorithms scale linear with
the number of time steps while this is not the case for inference in the unrolled
network. This shows that, especially for a large number of time-slices, the
general-purpose heuristics fail to find a good variable ordering. We do observe,
however, that unrolled JT is more efficient, compared to standard IA, when
the number of time-slices is rather small. The reason for this is that standard IA

7Available at http://genie.sis.pitt.edu/
8Available at https://github.com/bayesnet/bnt

13

1.5TBN KB1.5 d-DNNF Edges d-DNNF Time standard IA

Model Vars Max Card Avg Vars clauses ∆1.5 ∆R comp Rinf Tinf

Clust Card #edges #edges (s) (s) (s)

DC1-G-H ˆ1000 ˆ1000

20 - 5 34 16 2-2 2.0 146 373 12 3 0.1 0.002 1

30 - 5 46 21 2-2 2.0 216 597 31 6 0.2 0.003 4

40 - 5 58 ě27 2-2 2.0 282 801 61 11 0.3 0.005 -

60 - 6 82 ě29 2-2 2.0 416 1,214 372 57 2.0 0.03 -

70 - 7 94 ě28 2-2 2.0 482 1,413 1,235 145 6.8 0.1 -

112 - 7 142 ě29 2-2 2.0 770 2,343 6,870 959 42.3 0.7 -

80 - 8 106 ě32 2-2 2.0 548 1,612 3,059 333 18.0 0.3 -

104 - 8 133 ě29 2-2 2.0 704 2,105 9,886 1,090 61.7 1.2 -

90 - 9 118 ě29 2-2 2.0 614 1,811 9,051 851 56.0 1.5 -

DC2-G

12 30 16 2-13 2.7 157 615 26 7 0.3 0.003 1

16 38 20 2-17 2.8 209 963 95 16 0.7 0.007 9

20 46 ě22 2-21 2.8 261 1,375 310 38 2.2 0.02 -

24 54 ě26 2-25 2.9 313 1,851 643 106 5.0 0.05 -

28 62 ě30 2-29 2.9 365 2,391 3,050 376 23.1 0.2 -

32 70 ě34 2-33 2.9 417 2,995 7,300 668 57.1 0.4 -

MM-C-P

3 - 3 59 11 2-3 2.2 147 447 62 2 0.2 0.001 1

6 - 3 59 11 2-6 2.6 210 699 519 24 1.3 0.02 2

9 - 3 59 11 2-9 3.1 273 1,032 1,944 88 4.9 0.1 3

4 - 4 99 ě20 2-4 2.2 293 1,058 4,590 55 8.7 0.05 -

6 - 4 99 ě20 2-6 2.5 357 1,326 27,656 361 55.2 1.2 -

8 - 4 99 ě20 2-8 2.7 421 1,642 98,120 1,350 220.7 13.6 -

3 - 5 149 ě25 2-3 2.1 417 1,769 13,234 75 23.6 0.07 -

4 - 5 149 ě25 2-4 2.2 462 1,934 58,467 519 128.6 1.7 -

Table 3: Results for computing the forward message for 10 time-slices with
structural IA and standard IA. Max Clust denotes the biggest cluster in the junction
tree and (Avg) Card denotes the (average) cardinality of the variables in the transition
model. comp includes the compilation time, conditioning time and the time to sim-
plify the circuit (cf. Section 4.3). Rinf denotes the time needed with structural IA

to compute the forward message for one time slice. Tinf denotes the total inference
needed by standard IA.

has to deal with an extra constraint, being that all variables in the interface have
to be in the same clique, which initially causes some overhead. Furthermore,
unrolled JT outperforms unrolled COMP on each of the three domains despite
the local structure present in the networks. Hence, we can state that that no
guarantees can be provided when a general-purpose implementation is used to
perform inference in the unrolled network.

We compare standard IA and structural IA for the task of computing the
forward message for 10 time-slices. The results are depicted in Table 3 and serve
as an answer to Q2. The structural interface algorithm, which exploits local
structure, successfully performs inference on all of the networks while this is not
the case for the standard interface algorithm. Furthermore, this table indicates
that structural IA works well in case the transition model is complex while the
number of variables in the interface is rather limited. For example, DC1-90-9
requires more compilation and evaluation time than DC1-112-7, although the
latter contains more variables. This is explained by the exponential behaviour
of the interface.

We explore the effect of exploiting local structure by the CNF encoding
when compiling the network. The results are depicted in Table 4 and serve as
an answer to Q3. Concretely, we consider a CNF encoding that does not exploit
any local structure, a CNF encoding that only exploits determinism and a CNF
encoding that exploits determinism as well as equal parameters. We observe

14

No Local Structure Only Det Det & Equal Par standard IA

Model ∆R comp ∆R comp ∆R comp Tinf

#edges (s) #edges (s) #edges (s) (s)

DC1-G - H ˆ1000 ˆ1000 ˆ1000

20 - 5 4,262 10.4 906 2.6 17 0.1 1

30 - 5 193,594 588.6 19,789 48.6 36 0.2 4

DC2-G

12 - - 1,289 2.5 26 0.1 1

16 - - 2,039 4.1 95 0.4 9

MM-C-P

3 - 3 1,096 3.2 15 0.3 38 0.1 1

6 - 3 - - - - 441 4.5 2

Table 4: A comparison of different levels of exploiting local structure in the transi-
tion model. We use interface encoding ENC1 en do not simplify the circuit. Hence,
comp only includes compilation time. Tinf denotes the total inference needed by
standard IA to compute the forward message for 10 time-slices.

ENC1 ENC2 ENC3 ENC4

Model ∆R comp Rinf ∆R comp Rinf ∆R comp Rinf ∆R comp Rinf

#edges (s) (s) #edges (s) (s) #edges (s) (s) #edges (s) (s)

DC1-G-H ˆ1000 ˆ1000 ˆ1000 ˆ1000

20 - 5 5 0.2 0.004 15 0.2 0.01 1 0.09 0.02 3 0.1 0.002

30 - 5 7 0.2 0.006 18 0.3 0.02 4 0.2 0.02 6 0.2 0.003

40 - 5 13 0.4 0.01 24 0.5 0.02 10 0.3 0.05 11 0.3 0.005

60 - 6 63 2.3 0.05 116 2.5 0.1 54 1.9 0.8 57 2.0 0.03

70 - 7 171 8.4 0.1 389 9.3 0.4 136 6.7 6.6 145 6.8 0.1

112 - 7 975 45.6 0.8 1,222 44.9 1.0 950 42.2 48.7 959 42.3 0.7

80 - 8 416 24.1 0.4 1,386 28.2 1.4 314 17.9 56.4 333 18.0 0.3

104 - 8 1,172 73.7 1.0 2,160 71.8 2.0 1,070 62.0 212.8 1,090 61.7 1.2

90 - 9 1,140 86.3 1.0 5,317 99.6 5.7 807 55.7 - 851 56.0 1.5

DC2-G

12 9 0.2 0.007 10 0.3 0.009 8 0.2 0.01 7 0.3 0.003

16 18 0.6 0.02 22 0.9 0.02 17 0.6 0.04 16 0.7 0.007

20 42 1.9 0.03 48 2.4 0.04 40 1.8 0.1 38 2.2 0.02

24 113 4.6 0.09 124 5.5 0.1 110 4.4 0.4 106 5.0 0.05

28 387 22.5 0.3 403 23.9 0.3 382 22.2 1.7 376 23.1 0.2

32 684 56.2 0.5 707 58.1 0.6 677 55.5 3.7 668 57.1 0.4

MM-C-P

3 - 3 1 0.2 0.001 2 0.2 0.001 2 0.2 0.02 2 0.2 0.001

6 - 3 21 4.9 0.01 24 5.8 0.01 20 1.1 3.0 24 1.3 0.02

9 - 3 75 164.7 0.04 88 92.17 0.05 56 3.7 68.8 88 4.9 0.1

4 - 4 50 11.6 0.03 54 14.0 0.03 77 8.5 13.6 55 8.7 0.05

6 - 4 495 1024.5 0.4 360 275.3 0.2 396 53.3 - 361 55.2 1.2

8 - 4 - - - - - - 1,312 198.5 - 1,350 220.7 13.6

3 - 5 6 11.5 0.03 74 27.0 0.04 171 22.7 27.9 75 23.6 0.07

4 - 5 1,401 929.4 4.7 515 228.0 0.3 879 125.0 - 519 128.6 1.7

Table 5: A comparison of the different encodings for the interface. comp includes the
compilation time, conditioning time (if applicable) and the time to simplify the circuit
(cf. Section 4.3). Rinf denotes the time needed to compute the forward message for
one time slice.

that, in case no local structure is exploited, the transition model is much harder
to compile and results in very large circuits. Moreover, standard IA clearly
outperforms structural IA in case the latter does not exploit local structure.
Only exploiting determinism significantly simplifies the compilation process but,
for most networks, we can still benefit from also exploiting equal parameters.

We compare the four different interface encodings proposed in Section 4.
The results are shown in Table 5 and let us answer Q4. We first observe that
ENC4, i.e. the encoding we propose for the structural interface algorithm, is
the only encoding that successfully performs inference in each of the networks.
Second, the mastermind experiment illustrates that compiling the knowledge
base is harder when using ENC1, as was suggested by the complexity indicated
in Table 2. Third, the compilation step for ENC3 is the most efficient one, as

15

it does not compile the interface. Computing the forward message, however, is
in general much slower compared to the other encodings, as also indicated in
Table 2. Fourth, although the d-DNNF for ENC3 does not encode the interface,
its size is in general not smaller compared to the other encodings. The reason
for this is that by explicitly encoding the interface we actually do not increase
the number of models in the d-DNNF but rather add extra constraints on the
models already present. Hence, explicitly encoding the interface might increase
the total compilation time but significantly reduces the evaluation time.

6. Conclusions

In this paper, we proposed a new inference algorithm, the structural inter-
face algorithm, for dynamic Bayesian networks based on knowledge compilation.
This algorithm improves on the state-of-the-art because it (1) uses the repeated
nature of the model, (2) exploits local structure, and (3) reduces the size of the
resulting circuit. This approach can tackle dynamic models that are consider-
ably more complex than what can currently be dealt with by exact inference
techniques. We have experimentally shown this on two classes of problems,
namely finding failures in an electronic circuit and performing filtering in the
mastermind game.

Acknowledgements. This work was supported by IWT-SBO-100031 POM2.
JV is supported by IWT. GVdB is supported by FWO. The authors like to
thank Manfred Jaeger for supplying the mastermind models.

References

[1] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference, Morgan Kaufmann Publishers Inc., 1988.

[2] T. Dean, K. Kanazawa, A Model for Reasoning About Persistence and
Causation, Computational Intelligence 5 (2) (1989) 142–150.

[3] K. Murphy, Dynamic Bayesian Networks: Representation, Inference and
Learning, Ph.D. thesis, UC Berkeley, Computer Science Division (2002).

[4] M. Chavira, A. Darwiche, M. Jaeger, Compiling relational Bayesian net-
works for exact inference, International Journal of Approximate Reasoning
42 (1-2) (2006) 4–20.

[5] A. Darwiche, Modeling and Reasoning with Bayesian Networks, Cambridge
University Press, 2009.

[6] D. Koller, N. Friedman, Probabilistic graphical models: principles and tech-
niques, MIT press, 2009.

[7] A. Darwiche, Constant-space reasoning in dynamic Bayesian networks, In-
ternational Journal of Approximate Reasoning 26 (3) (2001) 161–178.

16

[8] L. R. Rabiner, A tutorial on hidden Markov models and selected applica-
tions in speech recognition, in: Proceedings of the IEEE, 1989, pp. 257–286.

[9] C. Boutilier, N. Friedman, M. Goldszmidt, D. Koller, Context-specific In-
dependence in Bayesian Networks, in: Proceedings of the Twelfth Interna-
tional Conference on Uncertainty in Artificial Intelligence (UAI), 1996, pp.
115–123.

[10] M. Chavira, A. Darwiche, On probabilistic inference by weighted model
counting, Artificial Intelligence 172 (6-7) (2008) 772–799.

[11] D. Fierens, G. Van den Broeck, J. Renkens, D. Shterionov, B. Gutmann,
I. Thon, G. Janssens, L. De Raedt, Inference and learning in probabilistic
logic programs using weighted Boolean formulas, Theory and Practice of
Logic Programming 15 (3) (2015) 358–401.

[12] A. Darwiche, P. Marquis, A Knowledge Compilation Map, Journal of Ar-
tificial Intelligence Research 17 (2002) 229–264.

[13] A. Darwiche, New Advances in Compiling CNF into Decomposable Nega-
tion Normal Form., in: Proceedings of European Conference on Artificial
Intelligence (ECAI), 2004, pp. 328–332.

17

