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Abstract

Probabilistic data is motivated by the need to model uncertainty in
large databases. Over the last twenty years or so, both the Database
community and the AI community have studied various aspects
of probabilistic relational data. This survey presents the main ap-
proaches developed in the literature, reconciling concepts developed
in parallel by the two research communities. The survey starts with an
extensive discussion of the main probabilistic data models and their
relationships, followed by a brief overview of model counting and
its relationship to probabilistic data. After that, the survey discusses
lifted probabilistic inference, which are a suite of techniques devel-
oped in parallel by the Database and AI communities for probabilis-
tic query evaluation. Then, it gives a short summary of query compi-
lation, presenting some theoretical results highlighting limitations of
various query evaluation techniques on probabilistic data. The survey
ends with a very brief discussion of some popular probabilistic data
sets, systems, and applications that build on this technology.
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1
Introduction

The goal of probabilistic databases is to manage large volumes of data
that is uncertain, and where the uncertainty is defined by a probabil-
ity space. The idea of adding probabilities to relational databases goes
back to the early days of relational databases [Gelenbe and Hébrail,
1986, Cavallo and Pittarelli, 1987, Barbará et al., 1992], motivated by
the need to represent NULL or unknown values for certain data items,
data entry mistakes, measurement errors in data, “don’t care” values,
or summary information [Gelenbe and Hébrail, 1986]. Today, the need
to manage uncertainty in large databases is even more pressing, as
structured data is often acquired automatically by extraction, integra-
tion, or inference from other large data sources. The best known exam-
ples of large-scale probabilistic datasets are probabilistic knowledge
bases such as Yago [Hoffart et al., 2013], Nell [Carlson et al., 2010],
DeepDive [Shin et al., 2015], Reverb [Fader et al., 2011], Microsoft’s
Probase [Wu et al., 2012] or Google’s Knowledge Vault [Dong et al.,
2014], which have millions to billions of uncertain tuples.

Query processing in databases systems is a mature field. Tech-
niques, tradeoffs, and complexities for query evaluation on all pos-
sible hardware architectures have been studied intensively [Graefe,
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1993, Chaudhuri, 1998, Kossmann, 2000, Abadi et al., 2013, Ngo et al.,
2013], and many commercial or open-source query engines exists to-
day that implement these algorithms. However, query processing on
probabilistic data is quite a different problem, since now, in addition to
traditional data processing we also need to do probabilistic inference.
A typical query consists of joins, projections with duplicate removal,
grouping and aggregation, and/or negation. When the input data is
probabilistic, each tuple in the query answer must be annotated with
a probability: computing this output probability is called probabilistic
inference, and is, in general, a challenging problem. For some simple
queries, probabilistic inference is very easy: for example, when we join
two input relations, we can simply multiply the probabilities of the tu-
ples from the two inputs, assuming they are independent events. This
straightforward approach was already used by Barbará et al. [1992].
But for more complex queries probabilistic inference is challenging.

The query evaluation problem over probabilistic databases has
been studied over the last twenty years [Fuhr and Rölleke, 1997, Lak-
shmanan et al., 1997, Dalvi and Suciu, 2004, Benjelloun et al., 2006a,
Antova et al., 2007, Olteanu et al., 2009]. In general, query evalua-
tion, or, better, the probabilistic inference sub-problem of query evalu-
ation, is equivalent to weighted model counting on a Boolean formula,
a problem well studied in the theory community, as well as the AI
and automated reasoning communities. While weighted model count-
ing is known to be #P-hard in general, it has been shown that, for
certain queries, probabilistic inference can be done efficiently. Even
better, such a query can be rewritten into a (more complex) query,
which computes probabilities directly using simple operations (sum,
product, and difference). Therefore, query evaluation, including prob-
abilistic inference, can be done entirely in one of today’s relational
database engines. Such a query can benefit immediately from decades
of advances in query processing, including indexes, query optimiza-
tion, parallel processing, etc. However, for other queries, computing
their output probability is #P-hard. In this case the probabilistic in-
ference task far dominates the query evaluation cost, and these hard
queries are typically evaluated using some approximate methods for
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weighted model counting. Dalvi and Suciu [2004] proved that, for a
simple class of queries, either the query can be computed in poly-
nomial time in the size of the database, by pushing the probabilistic
inference in the engine, or the query’s output probability is provably
#P-hard to compute. Thus, we have a dichotomy: every query is ei-
ther efficiently computable, or provably hard, and the distinction can
be made using static analysis on the query.

Probabilistic graphical models preceded probabilistic databases,
and were popularized in a very influential book by Pearl [1988]. In
that setting, the knowledge base is described by a graph, such as
a Bayesian or Markov network. Probabilistic inference on graphical
models is also #P-hard in the size of the graph. Soon the AI commu-
nity noticed that this graph often results from a concise relational rep-
resentation [Horsch and Poole, 1990, Poole, 1993, Jaeger, 1997, Ngo
and Haddawy, 1997, Getoor and Taskar, 2007]. Usually the relational
representation is much more compact than the resulting graph, raising
the natural question whether probabilistic inference can be performed
more efficiently by reasoning on the relational representation instead
of the grounded graphical model. This lead to the notion of lifted in-
ference [Poole, 2003], whose goal is to perform inference on the high-
level relational representation without having to ground the model.
Lifted inference techniques in AI and query processing on proba-
bilistic databases were developed independently, and their connection
was established only recently [Gribkoff et al., 2014b].

This is a survey on probabilistic databases and query evaluation.
The goals of this survey are the following.

1. Introduce the general independence-based data model of prob-
abilistic databases that has been foundational to this field, and
the tuple-independence formulation in particular.

2. Nevertheless, show that richer representations of probabilis-
tic data, including soft constraints and other dependencies be-
tween the data can be reduced to the simpler tuple-independent
data model. Indeed, many more knowledge representation for-
malisms are supported by probabilistic query evaluation algo-
rithms, including representations from statistical relational ma-
chine learning and probabilistic programming.
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3. Discuss how the semantics based on tuple independence is a
convenience for building highly efficient query processing al-
gorithms. The problem reduces to a basic reasoning task called
weighted model counting. We illustrate how probabilistic query
processing can benefit from the relational structure of the query,
even when the data is probabilistic.

4. Discuss theoretical properties of query evaluation under this
data model, identifying and delineating both tractable queries
and hard queries that are unlikely to support efficient evalua-
tion on probabilistic data.

5. Finally, provide a brief overview of practical applications and
systems built on top of this technology.

The survey is organized as follows. Chapter 2 defines the proba-
bilistic data model and presents the connection to statistical relational
models. Chapter 3 discusses weighted model counting and the con-
nection to query evaluation on probabilistic databases. Chapters 4 and
5 cover lifted inference, and query compilation respectively, showing
the limitations of weighted model counting algorithms for query eval-
uation on probabilistic databases. Chapter 6 discusses some systems
and applications of probabilistic databases.

The survey is designed to extend and complement the book
on probabilistic databases by Suciu et al. [2011]. It includes mate-
rial that has been developed since the publication of the book, and
covers deeper the connection between probabilistic databases and
weighted model counting. The discussion in Chapter 2 relating soft
constraints and complex correlations to tuple-independent probabilis-
tic databases is entirely new, as is most of the background on weighted
model counting in Chapter 3. The material on lifted inference in Chap-
ter 4 has been updated with several recent results: on non-repeating
relational algebra expressions, on negation and resolution, and on
symmetric databases. Chapter 5 on query compilation also includes
new results on the impossiblity of computing the probability of some
queries using DPLL-based algorithms, even though the queries are
tractable. This survey does not cover other uncertain data models,
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some of which model more complex data types, continuous variables,
or even probabilistic computation. However, several of these alterna-
tives and extensions will be reviewed in §2.7.

Notation Used Throughout the Survey

• A domain: D.

• A relational schema: R

• A single tuple: t

• All ground tuples (Herbrand base): Tup(R, D) or Tup

• Classical deterministic database; a set of tuples: ω or T

• A probabilistic database: D

• A single possible world: ω or T.

• A set of possible worlds: Ω.

• Marginal probability of an individual tuple: p(.)

• Joint probability distributions: P(.)

• Weight of an individual tuple: w(.)

• Weight of a world: W(.)

• A specific tuple/atom: Researcher(Bob, Vision, x)

• An attribute: Name, Expertise

• A constraint, first-order sentence or formula: ∆

• A constrained probabilistic database: C



2
Probabilistic Data Model

Probabilistic databases model uncertain data. For example, the value
of an attribute may be uncertain; or the presence/absence of an en-
tire tuple may be known only with some probability. These are called
attribute-level, and tuple-level uncertainty. For example, if we build
a large database of researchers obtained by extracting author names
from a large repository of journal articles, then we may obtain con-
flicting affiliations for a particular author; or we may not know with
certainty if a particular researcher should exist in the database or not.
A probabilistic database models these uncertainties using the possi-
ble worlds semantics: the state of the entire database is not known
with certainty, instead we have a probability distribution on all pos-
sible instances. This chapter describes the possible world and query
semantics that underlie the probabilistic data model, and explain how
they can capture both attribute-level and tuple-level uncertainties. We
discuss various dependence and independence assumptions, and re-
ductions between probabilistic database models.

203
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2.1 Possible Worlds Semantics

We fix a database schema R = (R1,R2, . . . ,R`) where each relation name
Rj has fixed arity rj ≥ 0. Fix a domain D of constants. A ground
tuple for relation Rj is an expression of the form Rj(a1, . . . , arj ), where
a1, . . . , arj are constants in the domain. We write Tup(R, D) for the set
of all ground tuples over the relations in R and domain D. A database
instance is a subset of tuples T ⊆ Tup(R, D). We drop R or D from
Tup(R, D) when they are clear from context.

A (traditional) database instance T completely specifies the state
of our knowledge about the world: for every grounded tuple we
know precisely whether the tuple belongs or does not belong to the
database, an assumption that is called the Closed World Assumption.
In contrast, an incomplete database models a scenario in which the state
of the database is not completely known. Instead, we talk about a set
of possible worlds Ω = {ω1, . . . , ωN} ⊆ 2Tup(R,D), where each possible
world ωi corresponds to a single database instance Ti (i.e., a subset
of tuples). The state of the world may be one of several possible in-
stances Ω. A probabilistic database further associates a probability with
each world: we do not know which one is the actual instance, we only
know the probability of each instance being the true state of the world.

Definition 2.1. A probabilistic database, D, is a probability space (Ω,P).
The space of outcomes is a set of possible worlds, Ω = {ω1, . . . , ωN},
where each ωi is a database instance, and P : Ω→ [0, 1] is a probability
function, i.e.,

∑
i P(ωi) = 1.

This is a very general and flexible definition. Each of the instances
ω1, . . . , ωN is possible, and we have the freedom to set their probabil-
ities arbitrarily, as long as they sum to one. For example, Figure 2.1
depicts four possible worlds, ω1, . . . , ω4, for a relation denoting re-
searcher affiliation, and three different probability functions, each of
which sums to one. Probability function Pa defines a probabilistic
database over these four possible worlds: Pa(ω1) + · · · + Pa(ω4) = 1.
Similarly, Pb or Pc induce different probabilistic databases over the
same four possible worlds.
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ω1
Researcher
Alice Pixar
Carol UPenn

Pa(ω1) = 0.10
Pb(ω1) = 0.14
Pc(ω1) = 0.20

ω2
Researcher
Alice Pixar
Carol INRIA

Pa(ω2) = 0.10
Pb(ω2) = 0.06
Pc(ω2) = 0.30

ω3
Researcher
Alice Brown
Carol UPenn

Pa(ω3) = 0.60
Pb(ω3) = 0.56
Pc(ω3) = 0.40

ω4
Researcher
Alice Brown
Carol INRIA

Pa(ω4) = 0.20
Pb(ω4) = 0.24
Pc(ω4) = 0.10

Figure 2.1: Four possible worlds ω1, . . . , ω4 of a schema with one relation (Researcher)
denoting research affiliations. Worlds are labeled with three different valid probabil-
ity functions, Pa, Pb and Pc. Worlds not shown have probability 0.

Readers familiar with incomplete databases will note that the col-
lection of possible worlds is precisely an incomplete database [Imielinski
and Lipski, 1984]. In other words, a probabilistic database is an incom-
plete databases plus a probability distribution.

2.2 Independence Assumptions

In practice, it is impossible to enumerate and assign a probability to
all possible worlds, as is done in Figure 2.1. The set of possible worlds
consists of all subsets of tuples, ω ⊆ Tup. The number of tuples in Tup
can easily be millions to billions, and the number of possible worlds
is exponentially larger. Therefore, we need a specification formalism
that allows us to describe the probabilistic database concisely. A com-
mon solution to this problem is to fix a probability distribution by
stating simple properties of P that are believed to hold and that al-
low for a concise specification of P. Next, we will describe two such
assumptions that are commonly used. They naturally model the two
types of uncertainty most often found in large datasets: tuple-level
and attribute-level uncertainty.

A first type of assumption is to state the marginal probability that
a single tuple is contained in the database. For example, we may be-
lieve that Alice works for Pixar with probability 0.2. Formally, this
event is Researcher(Alice, Pixar) ∈ ω, and abusing notation, we write
its marginal probability assumption as p(Researcher(Alice, Pixar)) =
0.2. Here, p(t) refers to the marginal probability of a single tuple t in
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the larger joint distribution P. Similarly, we may want to state that
p(Researcher(Carol, UPenn)) = 0.7. These assumptions do not hold for
Pc in Figure 2.1, because pc(Researcher(Alice, Pixar)) = 0.2 + 0.3 =
0.5. This eliminates probability function Pc from consideration en-
tirely. However, the stated assumptions do hold for both Pa and Pb.
Hence, while intuitive and useful, marginal probability assumptions
are insufficient to uniquely specify a probabilistic database.

A second type of assumption states that (subsets of) tuples are
marginally independent. Suppose that the set of all possible tuples Tup
is partitioned into k disjoint subsets T1,T2, . . . ,Tk. Intuitively, the in-
dependence assumption says that knowing a tuple from Ti is in the
possible world does not give us any information on whether a tuple
from Tj , j 6= i, is in the possible world. Formally, it means that the
probability of a possible world factorizes as

P(ω) = P(ω1 ∪ ω2 ∪ · · · ∪ ωk) =
k∏
i=1

PTi(ωi). (2.1)

Each ωi is the subset of partition Ti found in world ω (i.e, ωi = ω∩Ti),
and PTi denotes a joint distribution over the tuples in partition Ti, af-
ter all other tuples have been marginalized out. We will drop subscript
Ti when it is clear from context and write P(ω) =

∏k
i=1 P(ωi).

This type of marginal independence assumption further narrows
down the set of distributions under consideration. For example, if we
assume that Researcher(Alice, Pixar) and Researcher(Carol, UPenn)
are independent in Figure 2.1, we can eliminate Pa, where this as-
sumption is false, and retain Pb as the intended probability function
for this probabilistic database.

Next, we will discuss two more specific independence assump-
tions that, together with marginal probabilities of the first type, com-
pactly and uniquely specify a probabilistic database. These assump-
tions are most popular in the literature, since they correspond to
common types of uncertainty in data: block-independent disjoint and
tuple-independent probabilistic databases.
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2.2.1 Block-Independent Disjoint Databases

The most common type of uncertainty is when the value of an at-
tribute is not known precisely. This is also called attribute-level uncer-
tainty. The SQL standard uses NULL to record the fact that a value is
missing. When the value is unknown, but some information is known
about it, SQL offers no mechanism for representing the partial infor-
mation about that value. Quite often, we can describe a probability
distribution on the possible missing values; a probabilistic database
allows us to store that probability distribution.

Consider for example the database instance in Figure 2.2. The ta-
ble stores three researchers whose areas of expertise are known, but
whose affiliations are not known with precision. Instead, for each re-
searcher there is a probability distribution on the possible affiliations
where she/he might be. For Alice there are two possible affiliations,
for Bob there are three, and for Carol there are two. There are twelve
possible combinations, and each combination gives rise to a possible
world. Therefore, our probabilistic database is a probability distribu-
tion over twelve possible worlds.

Researcher
Name Expertise Affiliation

Alice Graphics Pixar 0.3
Brown 0.7

Bob Vision UPenn 0.3
PSU 0.3
Brown 0.4

Carol Databases UPenn 0.5
INRIA 0.5

Figure 2.2: Attribute-Level Uncertainty

In practice, a reasonable assumption is that the affiliations of these
three people are independent probabilistic events. In that case, the
probability of a possible world is the product of three probabilities,
one for each of the selected values. Figure 2.3 shows this distribution,
where we drop the Expertise attribute to reduce clutter.
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ω1
Alice Pixar
Bob UPenn
Carol UPenn

P(ω1) = 0.045
(0.3 · 0.3 · 0.5)

ω2
Alice Pixar
Bob UPenn
Carol INRIA

P(ω2) = 0.045
(0.3 · 0.3 · 0.5)

ω3
Alice Brown
Bob UPenn
Carol UPenn

P(ω3) = 0.105
(0.7 · 0.3 · 0.5)

ω4
Alice Brown
Bob UPenn
Carol INRIA

P(ω4) = 0.105
(0.7 · 0.3 · 0.5)

ω5
Alice Pixar
Bob PSU
Carol UPenn

P(ω5) = 0.045
(0.3 · 0.3 · 0.5)

ω6
Alice Pixar
Bob PSU
Carol INRIA

P(ω6) = 0.045
(0.3 · 0.3 · 0.5)

ω7
Alice Brown
Bob PSU
Carol UPenn

P(ω7) = 0.105
(0.7 · 0.3 · 0.5)

ω8
Alice Brown
Bob PSU
Carol INRIA

P(ω8) = 0.105
(0.7 · 0.3 · 0.5)

ω9
Alice Pixar
Bob Brown
Carol UPenn

P(ω9) = 0.06
(0.3 · 0.4 · 0.5)

ω10
Alice Pixar
Bob Brown
Carol INRIA

P(ω10) = 0.06
(0.3 · 0.4 · 0.5)

ω11
Alice Brown
Bob Brown
Carol UPenn

P(ω11) = 0.14
(0.7 · 0.4 · 0.5)

ω12
Alice Brown
Bob Brown
Carol INRIA

P(ω12) = 0.14
(0.7 · 0.4 · 0.5)

Figure 2.3: Possible worlds for the Probabilistic Database in Figure 2.2.

Attribute-level uncertainty occurs often in practice, and was used
in the earliest references to probabilistic databases. For example, Bar-
bará et al. [1992] allow attribute values to be associated with prob-
abilities, and also allow the attribute value be completely unspeci-
fied (NULL), with a given probability. Orion [Singh et al., 2008] goes
a step further and allows the value of an attribute to be a continuous
distribution, by storing the parameters of a probability density func-
tion from a predefined library (e.g., Binomial, Poisson, etc.).

Trio [Benjelloun et al., 2006a] defines an X-tuple to be a set of
tuples together with a probability distribution over the elements of
the set. For example, the set of tuples Researcher(Bob, Vision, UPenn),
Researcher(Bob, Vision, PSU), and Researcher(Bob, Vision, Brown) with
probabilities 0.3, 0.3, 0.4 respectively forms an X-tuple. In the marginal
independence assumption of Equation 2.1, the distribution P(ωi) be-
comes an X-tuple when we further assume that each possible world
contains at most one tuple from each Ti, or exactly one when the sum
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Researcher
Name Expertise Affiliation p
Alice Graphics Pixar 0.3
Alice Graphics Brown 0.7
Bob Vision UPenn 0.3
Bob Vision PSU 0.3
Bob Vision Brown 0.4
Carol Databases UPenn 0.5
Carol Databases INRIA 0.5

Figure 2.4: Block-Independent Disjoint (BID) table for the relation in Figure 2.2.

of all probabilities in each Ti is = 1. Thus, the semantics is that one
alternative is included independently for all X-tuples in the relation.
Together, a set of X-tuples for the same relation form an X-relation.
The relation in Figure 2.2 can be seen as an X-relation consisting of
three X-tuples. X-relations generalize attribute-level uncertainty, be-
cause they can define distributions on two or more attributes. In an
X-relation, the grouping of tuples into X-tuples needs to be specified
using lineage.

Ré and Suciu [2007] introduce Block-Independent Disjoint Tables or
BID tables, which are X-relations where the grouping of tuples is de-
fined by a set of attributes, called a key, and the probability is stored
explicitly as a separate, distinguished attribute p. For example, the re-
lation in Figure 2.2 can be represented by the BID table in Figure 2.4.
The key consists of the attributes Name and Expertise, which are un-
derlined in the table. They partition the tuples into blocks Ti: within
each block the tuples are disjoint, while across blocks the tuples are
independent, hence the name BID. Within each block the sum of all
probabilities must be ≤ 1. In any possible world, the pair of attributes
(Name,Expertise) forms a key in the traditional database sense.

2.2.2 Tuple-Independent Databases

A second kind of database uncertainty is tuple-level uncertainty,
where the existence of an entire tuple is unknown. For example, an
information extraction system crawls a large text corpus (e.g. a Web
crawl) and extracts entities or relationships between entities [Etzioni
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et al., 2008, Mitchell et al., 2015]. The extractions are performed using
statistical machine learning, and therefore inherently uncertain. Every
extracted tuple has a degree of confidence associated with it.

A tuple-independent relation is represented by a standard
database instance where each relation has a distinguished attribute
storing the marginal probability of that tuple. Formally, a tuple-
independent probabilistic database is a pair D = (T, p), where T is
a standard database (a set of tuples) and p : T → [0, 1] associates a
probability to each tuple in T. Any subset of tuples forms a possible
world, obtained by including randomly and independently each tuple
t ∈ T, with the probability specified in the database, p(t). Worlds that
contain tuples not found in T have probability zero. We denote by PD
the probability induced by the tuple-independent database D:

PD(ω) =


∏
t∈ω

p(t)
∏

t∈T−ω
(1− p(t)) if ω ⊆ T

0 otherwise
(2.2)

This data model captures the marginal independence assumption of
Equation 2.1 where each partition Ti consists of a single tuple t ∈ T.
We drop the subscript and simply write P(ω) when the probabilistic
database is clear from the context. In practice, we represent D by sim-
ply extending the schema of T to include the probability p as an extra
attribute.

For example, Figure 2.5a shows a hypothetical table extracted
from the Web, consisting of (CEO,Company) pairs. The extrac-
tor is not fully confident in its extractions, so that the tuple
Manager(David, PestBye) has a confidence level of only 60%, while the
tuple Manager(Elga, KwikEMart) has a confidence level of 90%. Any
subset of the uncertain tuples is a possible world, hence there are eight
possible worlds (not shown). Here, too, the simplest way to uniquely
define the probability function is to assume independence. In that case
the probability of any possible world is the product of the probabili-
ties of the tuples in the world, times the product of one minus the
probabilities of the tuples not in the world. For example, the probabil-
ity of the world {Manager(David, PestBye),Manager(Fred, Vulgari)}
is 0.6 · (1− 0.9) · 0.8 = 0.048.
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Manager
CEO Company p

David PestBye 0.6
Elga KwikEMart 0.9
Fred Vulgari 0.8

(a) Probabilities

Manager
CEO Company w

David PestBye 1.5
Elga KwikEMart 9.0
Fred Vulgari 4.0

(b) Weights

Figure 2.5: A tuple-independent Manager relation. For each tuple we can specify the
probability p as shown in (a), or the weight w as shown in (b).

2.2.3 Weights vs. Probabilities

An alternative, yet equivalent way to specify a tuple-independent re-
lation is to assign a weight w(t) to each tuple t. We refer to such
databases as tuple-independent weighted databases. Then, each possible
world has a weight WD defined as the product of the weights of all
tuples in that world:

WD(ω) =


∏
t∈ω

w(t) if ω ⊆ T

0 otherwise
(2.3)

Figure 2.5b illustrates a probabilistic database represented with
weights w instead of probabilities p.

To obtain the probability of a possible world from its weight, we
divide by a normalization factor Z:

PD(ω) = WD(ω)
Z

where Z =
∑
ω⊆T

WD(ω). (2.4)

We leave it to the reader as an exercise to check that Z is a simple
product, Z =

∏
t∈T(1 + w(t)), by virtue of tuple-independence.

A probabilistic database represented in terms of tuple probabili-
ties is equivalent to a probabilistic database represented in terms of
weights, in the following sense. Define the weight of each tuple t as
its odds, that is, w(t) = p(t)/(1 − p(t)). Then, it is easy to check that
Equations 2.2 and 2.4 are equivalent. Conversely, by setting probabil-
ities p(t) = w(t)/(1 + w(t)) we can turn weights into probabilities.



212 Probabilistic Data Model

The probabilistic databases in Figures 2.5a and 2.5b are indeed equiv-
alent.

Probabilities are a more natural and intuitive representation than
weights for tuple-independent probabilistic relations. We will explain
the rationale for considering weights in §2.5, when we introduce soft
constraints and Markov Logic Networks.

2.3 Query Semantics

Building on the possible world semantics, this section studies the se-
mantics of a query over probabilistic databases: given a query Q in
some query language, such as SQL, datalog, or relational calculus,
what should Q return on a probabilistic database? Query semantics
on a traditional database is defined by some sort of induction on the
structure of the query expression; for example, the value of a relational
algebra expression is defined bottom up. Our semantics over proba-
bilistic databases is different, in the sense that it ignores the query ex-
pression, and instead assumes only that the query already has a well-
defined semantics over deterministic databases. Our task will be to ex-
tend this semantics to probabilistic databases. In other words, assum-
ing we know exactly how to compute Q on a traditional database T,
we want to define the meaning of Q on a probabilistic database D.

It is convenient to assume that the semantics of a query Q over
traditional databases is a mapping from database instances (2Tup)
into d-dimensional vectors (Rd). Then, its semantics over probabilis-
tic databases is simply its expectation, which is a vector as well.

Definition 2.2. A query Q over a traditional database is a function
Q : 2Tup → Rd. The semantics of Q over a probabilistic database D =
(Ω,P) is the expectation ED[Q] =

∑
ω∈Ω PD(ω) ·Q(ω).

Note that this definition is query-language agnostic: it supports
relational calculus, algebra, or datalog. It only requires that the query
language is defined on traditional databases, and that query answers
are vectors. However, it is important to realize that this is only a def-
inition, and says nothing about how to actually compute the query
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efficiently over a probabilistic database. We will address the query eval-
uation problem in Chapters 3, 4, and 5, and see that there are important
algorithmic differences, depending on which query language is used.

We end this discussion with a brief review of standard query
expressions. A Conjunctive Query (CQ) is an existentially quantified
conjunction of positive relational atoms: the free (unquantified) vari-
ables x are sometimes called head variables. A Union of Conjunctive
Queries (UCQ) is a disjunction of conjunctive queries with the same
head variables. Formally,

CQ(x) = ∃y1 · · · ∃yk, R1(τ1) ∧ · · · ∧ R`(τ`)
UCQ(x) = CQ1(x) ∨ · · · ∨ CQm(x),

where each τj is a sequence of terms (logical variables or constants).

Example Query Semantics

Next, we illustrate with several examples how this broad definition of
query semantics applies to different types of queries.

Boolean Queries A Boolean query is a function Q : 2Tup → {0, 1}.
Hence, d = 1, and E[Q] is the probability that Q is true on a ran-
dom database instance. We will use the notations E[Q] and P(Q) inter-
changeably. Consider for example the following Boolean query, writ-
ten as a datalog rule.

Q1 : - Researcher(x, y, Brown).

The query asks: Is there any researcher affiliated with Brown? Given a
traditional (deterministic) database T, the answer to the query is true
or false, that is, 1 or 0. Given a probabilistic database, its answer is the
sum of probabilities of all possible worlds where the query is true. For
a simple example, the reader may verify that the query’s answer on
the BID database in Figure 2.2 is P(Q1 ) = 1− (1−0.7)(1−0.4) = 0.82.
Recall that we assume Alice’s affiliation to be independent of Bob’s.

Set-Valued Queries Typical relational queries return a set of tuples.
We will call these set-valued queries, to distinguish from Boolean or
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aggregate queries. Each query has an arity r, which is the number of
head variables involved in the answer. Assuming a finite domain D,
there are at most d = |D|r possible tuples in the answer. A set-valued
query can be seen as a function Q : 2Tup → {0, 1}d. For example, the
following query returns all expertises at Brown.

Q2 (y) : - Researcher(x, y, Brown).

The query has arity r = 1. Since there are only three distinct expertises
in the domain of the database in Figure 2.2, we can assume d = 3, and
the expected value vector E[Q2 ] is

Graphics 0.7
Vision 0.4
Databases 0.0

Aggregate Queries SQL queries with group-by and aggregates can
also be captured by Definition 2.2. For example, consider the aggre-
gate query: Count the number of researchers for each affiliation. In datalog,
this query is written as

Q3 (z, count(∗)) : - Researcher(x, y, z).

The answer vector has dimension d = 5, because there are five possi-
ble affiliations in Figure 2.2. The expected value vector E[Q3 ] is

Pixar 0.3
Brown 1.1
UPenn 0.8
PSU 0.3
INRIA 0.5

The second expected count, of 1.1 researchers at Brown, is easily
verified from Figure 2.3. The probability of all possible worlds where
Brown has exactly one researcher is 0.105 · 4 + 0.06 · 2 = 0.54. The
probability it has exactly two researchers is 2 · 0.14 = 0.28. This gives
an expected number of 0.54 · 1 + 0.28 · 2 = 1.1 researchers.
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2.4 Beyond Independence: Hard Constraints

In standard, deterministic databases, a hard constraint is an assertion
that must hold on any database instance. In probabilistic databases,
hard constraints are a convenient instrument to encode dependencies
between probabilistic tuples, by restricting possible worlds.

2.4.1 Types of Constraints

Typical constraints expressed in SQL are key constraints, foreign key
constraints, or conditions on attribute values. A general class of con-
straints studied in databases consists of sentences ∆ of the form

∀xϕ(x)⇒ ∃yψ(x,y),

where each of ϕ and ψ is a conjunction of positive atoms, that
is, a conjunction of relational atoms R(x1, x2, . . .) or equality pred-
icates x = y. Such a constraint is called a Generalized Dependency
(GD), or a Generalized Constraint. Two examples used in the lit-
erature are Local-As-View and Global-As-View. The GD is a Local-
As-View (LAV) if ϕ consists of a single relational atom and every
variable in x occurs in some relational atom in ψ. When the con-
straint has no existential quantifiers and ψ consists of a single rela-
tional atom, it is called a Global-As-View (GAV) constraint. Other two
standard examples used in the literature are equality-generating con-
straints and tuple-generating constraints. In an equality-generating
constraint, ψ consists only of equality predicates; in a tuple generat-
ing constraint, ψ consists only of relational atoms. We illustrate one
of each, over relations Researcher(Name,Expertise,Affiliation)
and University(UName,City):

∀x, y1, z1, y2, z2, Researcher(x, y1, z1) ∧ Researcher(x, y2, z2)
⇒ y1 = y2 ∧ z1 = z2

∀x, y, z, Researcher(x, y, z)⇒ ∃c University(z, c).

The first constraint is a key constraint, stating that Name is a key in
Researcher. The second constraint is an inclusion constraint, specifying
that every affiliation must be a university.
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2.4.2 Constrained Probabilistic Databases

To enforce constraints over all possible worlds, a constrained proba-
bilistic database sets the probability of worlds that violate ∆ to zero.

Definition 2.3. A constrained probabilistic database C = (D,∆) consists
of a probabilistic database D and a constraint ∆. It represents the prob-
ability distribution:

PC(ω) = PD(ω) ·∆(ω)/PD(∆). (2.5)

Here, ∆(ω) evaluates ∆ as a Boolean query on database ω, returning
either true (1) or false (0).

In other words, the probability of each world is its conditional
probability PD(ω|∆) in the unconstrained probabilistic database.
Query semantics are defined identically to the unconstrained case, as
the expectation of Q, now over the constrained distribution:

EC[Q] =
∑
ω∈Ω

PC(ω) ·Q(ω) = ED[Q ·∆]/PD(∆).

For Boolean queries specifically, we have that PC(Q) = PD(Q ∧
∆)/PD(∆) = PD(Q|∆).

A BID table satisfies its key constraint ∆ by definition. However,
it is not equivalent to a tuple-independent probabilistic table con-
strained by that same ∆. To see the difference, consider a BID ta-
ble Researcher1(Name,Affiliation) and a tuple-independent table
for the same relation Researcher2(Name,Affiliation), with identi-
cal probabilities, but without Name being a key.

Researcher1
Name Affiliation p

Alice Pixar 0.5
Alice Brown 0.5

Researcher2
Name Affiliation p

Alice Pixar 0.5
Alice Brown 0.5

The BID table Researcher1 represents two possible worlds with
non-zero probability, each with probability 0.5. The independent ta-
ble Researcher2 represents four possible worlds (one for each sub-
set), each with probability 0.25. Conditioned on the key constraint
∆ = (∀x, y1, y2,Researcher2(x, y1) ∧ Researcher2(x, y2)⇒ y1 = y2) on
Name, the tuple-independent probabilistic database has three possible
worlds (including the empty world) with probability 1/3 each.
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2.4.3 Queries on Constraints

We identify two types of queries that become natural when a proba-
bilistic database is subject to constraints.

Consistency Degree Each constraint ∆ is also a Boolean query, be-
ing true or false in every traditional database, and having a probability
in every probabilistic database. Constraints play a simple role in prob-
abilistic databases as a metric of quality. Consistent possible worlds
satisfy the constraint, and inconsistent worlds violate it. Our seman-
tics for Boolean queries supports asking for the probability P(∆) on
a probabilistic database. It represents the degree to which a random
world is consistent. If the probabilistic database is tuple-independent,
or BID, then this probability is astronomically small, since a constraint
is a universally quantified sentence and its probability in a random
world is very small. For example, consider a key constraint ∆ over a
tuple-independent relation. Suppose that the key attribute has n val-
ues, K1, K2, . . . , Kn, and for each value Ki there are two conflicting tu-
ples with that key, both with probability p. Since these tuples are in-
dependent, the probability that a random world satisfies the key con-
straint is P(∆) = (1 − p2)n. For typical values p = 0.5 and n = 106,
we have that P(∆) = 10−125000. Nevertheless, consistency queries
can be useful to estimate the relative degree of consistency between
databases and constraints.

Most-Probable Database Given a belief in the correctness of each
tuple, in the form of a probabilistic database D, and given key or de-
pendency constraints ∆, a natural task in database repair is to recover
the true database where all constraints are satisfied. The most-probable
database (MPD) query solves this task [Gribkoff et al., 2014c]. It finds
the most-probable world ω, according to PD, where the constraints
are satisfied, or equivalently, in PC for C = (D,∆). Formally,

MPDD(∆) = arg max
ω∈Ω

PD(ω) ·∆(ω) = arg max
ω∈Ω

PC(ω). (2.6)

The MPD query can be used to answer most-probable explanation (MPE)
or maximum a posteriori probability (MAP) queries in more expressive
relational data models.
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Next, we discuss an application of constrained probabilistic
databases: to encode soft constraints and Markov Logic Networks.

2.5 Beyond Independence: Soft Constraints

Most probabilistic models used in probabilistic databases are limited
to independent tuples, or disjoint and independent tuples. This sim-
plifies the study of probabilistic inference, since query evaluation is
simply weighted model counting, as we explain in the next chapter.
However, most applications require a richer probability model where
the random variables corresponding to the tuples in the database are
correlated in complex ways. It turns out that such correlations can be
captured in probabilistic databases through soft constraints, using the
semantics of Markov Logic Networks (MLN). We describe MLNs here,
and show how they can be used as soft constraints over probabilis-
tic databases. Then, in the next section we show how soft constraints
can be rephrased as conditional probabilities over tuple-independent
databases, allowing us to both model complex correlations, and still
have a simple definition of the query’s semantics in terms of weighted
model counting. The takeaway of this section is that query evaluation
on complex probabilistic dependencies is equivalent to computing
the conditional probability over a tuple-independent database, whose
conditional is given by a constraint (to be formally defined in §2.6.2).

2.5.1 Markov Logic Networks

Markov Logic Networks (MLNs), introduced by Richardson and
Domingos [2006], are the simplest of a class of statistical relational
models [Getoor and Taskar, 2007, De Raedt et al., 2016], which aim to
represent a probability distribution over relational databases. We give
here a brief overview and refer the reader to Domingos and Lowd
[2009] for more details on MLNs. Our definitions are a slight depar-
ture from those in Richardson and Domingos [2006] or Domingos and
Lowd [2009], as we will explain in §2.5.3.

An MLN is a collection of soft constraints, consisting of a first-
order formula, and a weight. Before giving the formal definition, we
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illustrate MLNs with an example. Consider the following two soft
constraints.

3.5 Smoker(x) ∧ Friend(x, y)⇒ Smoker(y)
1.3 Smoker(x)⇒ Cancer(x)

The first constraint says that, typically, friends of smokers are also
smokers, while the second constraint says that smokers are at risk
of developing cancer. The weight of each constraint indicates how
strongly that constraint should hold in a possible world: the higher
the weight, the more confident we are in the constraint.

Formally, an MLN, M , is a set of pairs

M = {(w1,∆1(x1)), (w2,∆2(x2)), . . .}

where each ∆i(xi) is a first-order formula whose free (unquantified)
variables are xi. We refer to each ∆i(xi) as a constraint and to each
pair (wi,∆i(xi)) as a soft constraint.

Semantics

A first-order sentence is a first-order formula without free variables,
that is, one where each logical variable is associated with a univer-
sal or existential quantifier. For a given finite domain D, a first-order
formula ∆(x) can be seen as representing a set of first-order sen-
tences {δ1, . . . , δd}, obtained by substituting the free variables x with
constants from the domain D. We will refer to these sentences as the
groundings of ∆(x). For example, a grounding of the first constraint
above is δ = Smoker(Alice) ∧ Friend(Alice, Bob) ⇒ Smoker(Bob). We
use the term grounding with some abuse, since, in general, δ may be
a sentence with quantified variables. For example, if ∆(x) = (R(x) ⇒
∃y S(x, y)), then one of its groundings is the sentence δ = (R(5) ⇒
∃yS(5, y)). The grounding of an MLN M over domain D is defined as
follows.

ground(M ) = {(wi, δ) | (wi,∆i(x)) ∈ M and δ is a grounding of ∆i(x)}

Next, consider a single possible world ω ⊆ Tup. Recall that the
notation ω |= δ means that the sentence δ is true in ω.
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The MLN semantics define the weight of the world ω as

WM (ω) =
∏

(w,δ)∈ground(M): ω|=δ
w. (2.7)

In other words, the weight of a world ω is the product of weights of
all grounded constraints that are true in ω.

The MLN defines the following probability distribution over the
set of possible worlds:

PM (ω) = WM (ω)/Z where Z =
∑

ω⊆Tup
WM (ω) (2.8)

To get some intuition behind soft constraints and their associated
weights, we state the following simple facts, and invite the reader to
verify them:

• A soft constraint with weight w = 1 means don’t care. More pre-
cisely, if (1,∆(x)) is a soft constraint in the MLN, then the prob-
ability distribution remains unchanged if we remove this soft
constraint from the MLN.

• A soft constraint (0,∆(x)) enforces the hard constraint¬∃x∆(x).

• Increasing the weight makes a constraint more likely. Formally,
fix one grounded constraint (w, δ). Suppose we increase the
weight of δ from w to w′ > w, while keeping all other weights
unchanged. Then, for any world ω that satisfies δ, its probability
will increase, and for any ω that does not satisfy δ, its probability
will decrease.

• Constraints (w,∆(x)) and (1/w,¬∆(x)) are equivalent. For-
mally, if we replace one soft constraint (w,∆(x)) in the MLN by
(1/w,¬∆(x)), the new MLN defines a different weight function
WM , yet exactly the same probability distribution PM .

• However, comparing weights of different soft constraints does
not tell us anything about their probabilities. More precisely, if
(w, δ) and (w′, δ′) are two grounded constraints and w < w′,
this does not imply, in general, that P(δ) ≤ P(δ′). (We invite
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the reader to find an example where P(δ) > P(δ′).) MLNs give
great flexibility in expressing dependencies, yet also a risk of be-
ing uninterpretable, because weighted constraints can partially
undo each other.

2.5.2 Weighted Databases with Soft Constraints

MLNs can be used as, and are equivalent to soft constraints in prob-
abilistic databases. Given a probabilistic database, the addition of an
MLN affects the probabilities of the possible worlds, by favoring those
that satisfy the soft constraints. The formal semantics of a probabilis-
tic database with soft constraints can be obtained by viewing the
database itself as a set of soft constraints, and then applying the MLN
semantics of Equation 2.8.

Tuple-Indep.
Probabilistic

Database

Constrained
Tuple-Indep.
Probabilistic

Database

Tuple-Indep.
Weighted
Database

Constrained
Tuple-Indep.

Weighted
Database

MLN

§2.6

§2.2.3

§2.2.3

§2.4.2§2.4.2

§2.5.2

Figure 2.6: Reductions between MLNs and various probabilistic database models.

This reduction is illustrated in the upper half of Figure 2.6 (the
lower half will be explained in §2.6). Take a tuple-independent prob-
abilistic database Dp = (T, p). As discussed in §2.2.3, this database
is easily transformed into a tuple-independent weighted database
Dw = (T, w), by setting the weight of each tuple to its odds (see Fig-
ure 2.5 for an example). Next, Dw is transformed into the MLN

{(w(t), t) | t ∈ T} ∪ {(0, t) | t ∈ Tup−T}. (2.9)

In other words, we create one soft constraint for every tuple in the
database, and one soft constraint with weight 0 for every tuple not in
the database. The probability distribution on possible worlds defined
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by the tuple-independent database (Equation 2.4) is the same as the
probability distribution defined by the associated MLN (Equation 2.8).

Definition 2.4. A weighted database with soft constraints is a pair
(D,M ) where D is a weighted tuple-independent database and M is a
Markov Logic Network. It represents the probability distribution de-
fined by the union of two MLNs: (1) the soft constraints encoded in D
(Equation 2.9), and (2) the soft constraints in M .

Manager
CEO Company w
David PestBye u11
David KwikEMart u12
Elga KwikEMart u22

Smoker
Person w
David r1
Elga r2
Fred r3

M = {(v,Manager(x, y)⇒ Smoker(x))}

Figure 2.7: A weighted database with one soft constraint.

For example, consider the weighted tuple-independent proba-
bilistic database in Figure 2.7, over domain D = {David, Elga,
Fred, PestBye, KwikEMart}. Ignore the MLN in the figure for the
moment. The tuple-independent database has 230 possible worlds
(since there are 30 grounded tuples: 25 for Manager and 5 for
Smoker), but only 26 possible worlds have a non-zero weight. Re-
call that the weight of each world is the product of the weights
of its tuples. For example, the empty world has weight 1, the
world consisting of all six tuples has weight u11u12u22r1r2r3, and the
world ω1 = {Manager(David, KwikEMart),Manager(Elga, KwikEMart),
Smoker(Fred)} has weight W(ω1) = u12u22r3. The normalization fac-
tor of the database is

Z =
∑
ω

W(ω) = (1 + u11)(1 + u12)(1 + u22)(1 + r1)(1 + r2)(1 + r3).

Let us now add the soft constraint (v,Manager(x, y)⇒ Smoker(x))
to our distribution. It is a soft inclusion constraint saying typically, val-
ues for CEO that occur in Manager also occur in Smoker. To see how the
constraint changes the weights of the possible worlds, we first need
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to ground the MLN over the domain D. We obtain 25 grounded con-
straints in ground(M ):

{(v,Manager(David, David)⇒ Smoker(David)),
(v,Manager(David, Elga)⇒ Smoker(David)),
. . . ,

(v,Manager(PestBye, KwikEMart)⇒ Smoker(PestBye)),
(v,Manager(KwikEMart, KwikEMart)⇒ Smoker(KwikEMart))}.

The weight of each world is now computed by first multiplying the
weights of all its tuples (as before), and next multiplying the weights
of all grounded constraints that are true in that world. For example,
the possible world ω1 defined above satisfies 23 grounded constraints.
These are all groundings, except for Manager(David, KwikEMart) ⇒
Smoker(David) and Manager(Elga, KwikEMart) ⇒ Smoker(Elga),
which are both violated in world ω1. Therefore the weight of ω1 is
W(ω1) = u12u22r3v

23. We invite the reader to check that the normal-
ization factor Z =

∑
ω W(ω) no longer has a simple closed form (for

non-trivial constraints), and this makes it much harder to compute the
probability of a world.

Finally, note that in this probability distribution, the tuples are
no longer independent. For example, the presence of the tuple
Manager(David, PestBye) in a possible world increases the proba-
bility of Smoker(David), which in turn increases the probability of
Manager(David, KwikEMart).

2.5.3 Discussion

The soft constraints in MLNs create complex correlations between the
tuples in a probabilistic database. In MLNs we can also define hard
constraints, by giving them a weight of w = 0 or w = ∞. In the first
case we simply assert that the constraint is false, since all worlds satis-
fying that constraint have weight 0. In the second case, the weight of a
world that satisfies the constraint becomes∞, and then its probability
is no longer well defined, since both numerator and denominator of
Equation 2.8 are∞. There are two workarounds that lead to the same
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result: the first is to set w to be a finite quantity, then let w → ∞ in
Equation 2.8; the second is to restrict the set of possible worlds to only
those that satisfy all hard constraints, and remove the weights∞ from
the product in Equation 2.7. We invite the reader to check that the two
definitions are equivalent.

Our semantics of MLNs differ slightly from the original defi-
nition in Richardson and Domingos [2006]. In that definition, an
MLN is a set of pairs of weights and sentences, (w,∆), where ∆
is a sentence (closed formula). The grounding of the formula is ob-
tained by essentially treating all universally quantified variables as
free variables. For example, the constraint in Figure 2.7 is written as
(w,∀x∀y,Manager(x, y)⇒ Smoker(x)), then the constraint is grounded
in n2 possible ways over a domain of size n, by essentially treating x
and y as free variables. There are two problems with the original defi-
nition. The first is that existential quantifiers are not handled. Second,
sentences that are semantically equivalent may lead to different in-
terpretations. For example, ∆1 = ∀x∀yResearcher(x) ∧ Smoker(y) and
∆2 = ∀xResearcher(x) ∧ Smoker(x) are logically equivalent sentences,
yet the first has n2 groundings while the second has n groundings,
leading to rather different probability distributions. We corrected this
inconsistency by requiring the formula to be given with explicit free
variables. The soft constraints now become ∆1(x, y) = Researcher(x)∧
Smoker(y) and ∆2(x) = Researcher(x)∧Smoker(x), which are no longer
equivalent.

The reader may wonder why MLNs use weights instead of
probabilities. We have argued earlier that weights and probabilities
are interchangeable for the purpose of defining tuple-independent
databases; however, they are no longer interchangeable for soft con-
straints. Given a choice, we would prefer to specify probabilities:
weights have no intuitive semantics, except for the simple fact that,
if we increase the weight of one soft constraint while keeping all other
weights fixed, then we also increase its marginal probability. One may
wonder what happens if we defined soft constraints using marginal
probabilities instead of weights. For example, consider a collection of
soft constraints defined as pairs (p,∆), where p is interpreted as the



2.6. From Soft Constraints to Independence 225

marginal probability of ∆. Then it is difficult to define a probability
distribution over all possible worlds that is consistent with all these
marginal probabilities (i.e., the probability of ∆ is indeed p, as speci-
fied). Such a distribution may not be unique, or may not exist at all if
the probabilities are inconsistent. For example, the two soft constraints
(p1, Smoker(x)) and (p2, Smoker(x) ∧ Researcher(x)) are inconsistent
when p1 < p2 because in any probability distribution, P(Smoker(x)) ≥
P(Smoker(x) ∧ Researcher(x)). In contrast, a collection of soft con-
straints with non-zero finite weights is always consistent. For exam-
ple the MLN {(w1, Smoker(x)), (w2,Smoker(x)∧Researcher(x))} is con-
sistent: the world {Smoker(David)} has weight w1, while the world
{Smoker(David),Researcher(David)} has weight w1w2.

MLNs have been applied to several machine learning tasks. Ap-
plications of MLNs described in the literature typically require only
a dozen constraints or less (see references in Domingos and Lowd
[2009]). WebKB webpage classification models consist of a dozen or
so templates [Lowd and Domingos, 2007, Mihalkova and Mooney,
2007], which during learning are instantiated to around a thousand
constraints: a template is instantiated by substituting some of its vari-
ables with constants, and by associating a different weight with each
instantiation. Large knowledge bases [Shin et al., 2015] require sig-
nificantly more constraints. At the other extreme, the Sherlock sys-
tem [Schoenmackers et al., 2010] learns over 30,000 soft Horn clause
constraints using Web extractions (also see Chen and Wang [2014]).

2.6 From Soft Constraints to Independence

As outlined in §2.4.2, any query on a constrained probabilistic
database C can be converted into a pair of queries on an uncon-
strained probabilistic database D, because EC[Q] = ED[Q·∆]/PD(∆).
Moreover, we will show that any Markov Logic Network, or, more
generally, any weighted database with soft constraints, can be con-
verted into a constrained tuple-independent database. Together, these
conversions form a reduction from MLNs and soft constraints, into the
basic tuple-independent model. This process is depicted in Figure 2.6.
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Briefly, probabilities defined by the MLN are equal to the conditional
probability over a tuple-independent database. We first illustrate this
reduction on a simple example, and then give the formal translation.

2.6.1 Example Reduction

Consider the database with a soft constraint in Figure 2.7. Recall that
it has a single soft constraint (v,Φ(x, y)), where:

Φ(x, y) = (Manager(x, y)⇒ Smoker(x))

We write WM and PM for the weight and probability distribution de-
fined by this probabilistic database with the soft MLN constraint.

We extend the two probabilistic relations in Figure 2.7 with a third
weighted relation, A(x, y), where all 25 ground tuples have weight v.
The three relations Manager,Smoker,A, without any constraints, define
a tuple-independent weighted database D. We write WD and PD for
the associated weight and probability. Thus, WD(ω) is the product of
the weights of all tuples in ω.

Consider the following hard constraint:

∆ = ∀x∀y(A(x, y)⇔ Φ(x, y))
= ∀x∀y(A(x, y)⇔ (¬Manager(x, y) ∨ Smoker(x))) (2.10)

Intuitively, ∆ asserts that A is the set of pairs (i, j) for which the
grounding Φ(i, j) holds. Let ω be any world of the MLN, and ω′ be its

extension with A
def= {(i, j) | ¬Managerω(i, j) ∨ Smokerω(i)}. In other

words, ω′ is the unique extension of ω for which ∆ holds. Then, the
following is easy to check:

WM (ω) =WD(ω′)

Indeed, the weight factors in WM (ω) that correspond to grounded
MLN constraints become weight factors in WD(ω′) that correspond
to tuples in A. Moreover, the constrained probabilistic database C =
(D,∆) assigns zero probability to all worlds ω′ of the larger schema
that are not the extensions of a world ω in the MLN. This implies that,
for any Boolean query Q,

PM (Q) = PC(Q) = PD(Q|∆). (2.11)



2.6. From Soft Constraints to Independence 227

In other words, the probability defined by the MLN coincides with
the conditional probability in a tuple-independent database. To sum-
marize, we compute PM (Q) by first constructing a new probabilistic
relation A(x, y), populating it with all grounded tuples A(i, j) over the
given domain, setting their weights to v, then computing the condi-
tional probability P(Q|∆) in the tuple-independent database. The lat-
ter, of course, can be expressed as a ratio P(Q ∧∆)/P(∆).

This simple technique was discussed in Van den Broeck et al.
[2011]; however it has the disadvantage that the hard constraint ∆
is an equivalence statement, which is difficult to handle by the lifted
inference techniques that we discuss in Chapter 4. A more efficient
conversion from MLNs to probabilistic database was first introduced
by Jha and Suciu [2012], and simplifies the hard constraint ∆. We illus-
trate it on our example. As before, add a new relational symbol A(x, y),
and set the weights of all grounded tuples A(i, j) to v−1. Then, define
the hard constraint:

∆ =∀x∀y(¬A(x, y) ∨ ¬Manager(x, y) ∨ Smoker(x)) (2.12)

Then Equation 2.11 continues to hold. In other words we have re-
placed the double implication A(x, y)⇔ (¬Manager(x, y)∨Smoker(x))
with a one-sided implication A(x, y)⇒ (¬Manager(x, y) ∨ Smoker(x)).
To see why Equation 2.11 still holds, consider a world ω for the MLN,
and consider one grounding of our constraint: δ = (¬Manager(i, j) ∨
Smoker(i)). There are two cases. First, if ω satisfies δ, then δ contributes
a factor v to WM (ω). On the other hand, ∆ imposes no constraint on
whether A contains or does not contain (i, j), thus, there are two exten-
sions of ω that satisfy ∆: one that does not include (i, j), and the other
that does include (i, j): the sum of their weights is 1 + (v−1) = v. Sec-
ond, if ω does not satisfy δ, then δ contributes the factor 1 to WM (ω);
on the other hand, ∆ implies (i, j) 6∈ A, so the only possible extension
is to not include (i, j), which means that, in the probabilistic database,
the tuple (i, j) also contributes a factor of 1.
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2.6.2 General Reduction

We now describe the general translation of a weighted database D
with soft constraints M to a tuple-independent weighted database.
First, create a new relations Ai(xi) for each soft constraint (wi,Φ(xi))
in M ; populate Ai with all grounded tuples in the given domain, and
assign to each of them the weight wi − 1. Finally, define:

∆ =
∧
i

∀xi(¬Ai(xi) ∨ Φi(xi)) (2.13)

Then, for any query Q, we have PM (Q) = P(Q|∆), where the latter
probability is in a tuple-independent probabilistic database.

Discussion

We end our treatment of soft constraints with two observations. Recall
that a clause is a disjunction of literals, L1∨L2∨ . . ., where each literal
is either a positive relational atom R(x1, x2, . . .) or a negated relational
atom ¬R(x1, x2, . . .). Our first observation is that, if the soft constraint
Φ(x) is a clause, then its corresponding sentence in the hard constraint
∆ is also a clause ¬A(x)∨Φ(x). In many applications of MLNs, the soft
constraint are Horn clauses, B1 ∧ B2 ∧ . . . ⇒ C, and in that case the
hard constraint ∆ is a Horn clause as well: A ∧ B1 ∧ B2 ∧ . . . ⇒ C. In
other words, the formula for the hard constraint is no more complex
than the original MLN constraint.

Second, the weight of the ground tuples in each new relation Ai is
wi − 1. When wi < 1, then the tuples in Ai have a negative weight,
which, in turn, corresponds to a probability that is either < 0 or > 1.
This is inconsistent with the traditional definition of a probability, and
requires a discussion. One simple way to try to avoid this is to replace
every soft constraint (wi,Φi) where wi < 1 with (1/wi,¬Φi), but the
new constraint ¬Φi is in general more complex than Φi; for example
if Φi is a clause, then ¬Φi is a conjunctive term. However, in many
applications we do not need to avoid negative weights. The marginal
probability of any event Q over the tuple-independent probabilistic
database is still well defined, even if some tuple probabilities are < 0
or > 1. All exact probabilistic inference methods work unchanged
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in this case. Approximate methods, however, are affected, for exam-
ple, we can no longer sample tuples from the relation Ai. However,
collapsed sampling continues to work as long as we avoid sampling
from the relations with negative weights. Finally, we notice that, cer-
tain lifted inference methods (discussed in Chapter 4) work best on
formulas without negations. If all soft constraints in the MLN are pos-
itive formulas, then we can ensure that the hard constraint ∆ is also a
positive statement by replacing ¬Ai with Ai and setting the weight of
Ai to 1/(wi − 1) instead of wi − 1.

2.7 Related Data Models

Numerous models have been proposed to represent relational uncer-
tainty. We give a brief overview of several such models, in databases,
probabilistic graphical models, as well as alternative query types.

2.7.1 Database Models

We review incomplete databases, models of other distributions and
semi-structured data, and open-world probabilistic databases.

Incomplete Databases An elegant and powerful framework for
representing uncertainty in databases are incomplete databases, in-
troduced by Imielinski and Lipski [1984]. An incomplete database
is defined to be a set of possible worlds; this is like a probabilistic
database, but without probabilities. Thus, in an incomplete database
the database can be in one of several states, and there is no prefer-
ence given to one state over the other. One can define a probabilistic
database as an incomplete database plus a probability distribution: for
an excellent discussion of their connection we refer to Green and Tan-
nen [2006]. Three representation formalisms have been proposed for
incomplete databases: Codd-tables, v-tables, and c-tables. A v-table is
a relation where the attribute values can be either constants or vari-
ables: the incomplete database is obtained by substituting each vari-
able, independently, with a value from the domain. A Codd-table is
a v-table where all variables are distinct. A c-table is a v-table where
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each tuple is annotated with a condition, which is a Boolean combina-
tion of equalities involving variables and constants. Standard relations
with NULL values are Codd-tables where each NULL is a distinct
variable; by analogy, the variables in a v-table are sometimes called
marked nulls. It was recently shown that SQL’s semantics interprets
NULLs incorrectly [Libkin, 2015].

Other Distributions and Semi-Structured Data Several applica-
tions of probabilistic databases require storing and manipulating con-
tinuous random variables. This can be achieved by allowing each at-
tribute to store the parameters of a PDF (probability density function),
from an existing library, for example single or multi-valued Gaussian
distributions [Deshpande et al., 2004, Singh et al., 2008]. For exam-
ple, Temperature may be a measured quantity and represented as a
Gaussian by specifying the mean and the standard deviation. A query
may check if the temperature is greater than or less than a certain
value, or compare temperatures from two measurements.

There is an extensive literature on probabilistic extensions of semi-
structured databases. This includes work on probabilistic XML [Nier-
man and Jagadish, 2002, Hung et al., 2003, Senellart and Abiteboul,
2007, Kimelfeld and Sagiv, 2007] and probabilistic RDF [Udrea et al.,
2006]. Fuzzy databases [Petry, 2012] capture imprecise data through
fuzzy sets instead of probability distributions.

Open-World Probabilistic Databases Our probabilistic database
semantics states that all tuples in the database are possibly true,
thereby making an open-world assumption [Reiter, 1978]. Neverthe-
less, it states that all other tuples in Tup that are missing from the
database must have zero probability (cf. Equation 2.2). They may
never occur in any possible world, which is still a closed-world as-
sumption. Ceylan et al. [2016] relax this assumption by stating that
missing tuples have an unknown (low) probability bounded above
by a known constant. This open-world assumption matches the way
information extraction systems build probabilistic knowledge bases:
only some facts have been extracted from the text corpus, and all other
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facts have an unknown probability. It also alleviates the need to store
every tuple encountered during extraction. This modified assumption
turns the probabilistic data model into a credal one [Cozman, 2000]
based on interval probabilities [Halpern, 2003].

2.7.2 Models of Probabilistic Dependencies

Most of the work on probabilistic databases is restricted to simple dis-
tributions where the tuples are independent, or disjoint-independent.
This simplifies the query semantics, because it reduces it to weighted
model counting (see Chapter 3). In contrast, statistical models consid-
ered in artificial intelligence and machine learning (e.g., MLNs) have
more expressive power and can directly represent richer distributions
that capture dependencies between the tuples. It has been suggested
that this is a limitation of probabilistic databases [Russell, 2015]. The
reduction in §2.6 showed that this is not the case for MLNs, in the
sense that tuple-independent probabilistic database queries can cap-
ture dependencies by conditioning on constraints. Thus, the simple
data model used in probabilistic databases is not a restriction at all,
but separates the specification of the uncertainties in the data from the
correlations in the data, the latter being captured through constraints.
See also the discussion in Suciu et al. [2011] on the design of proba-
bilistic databases and the connection to database normalization.

Next, we further illustrate this ability by encoding a Bayesian net-
work into a tuple-independent database. Afterwards, we briefly re-
view complex probabilistic data models that go beyond MLNs.

Bayesian Networks and Graphical Models Probabilistic graphi-
cal models, such as Bayesian networks [Pearl, 1988, Darwiche, 2009],
are the standard probabilistic model for non-relational data. Fig-
ure 2.8 depicts a simple Bayesian network over three dependent ran-
dom variables. Even though this representation appears distant from
tuple-independent probabilistic databases, any discrete Bayesian net-
works is easily reduced to a conditional probability query on a tuple-
independent database. The first step of this reduction is shown in Fig-
ure 2.9, where the distribution of interest is captured by a set of soft
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M(D, P) M(D, K)

S(D)

(a) Bayes net structure

P(M(D, P)) = 0.4

P(M(D, K)|M(D, P)) =
{

0.1 if M(D, P)
0.3 if ¬M(D, P)

P(S(D)|M(D, P),M(D, K)) =
{

0.8 if M(D, K) ∨M(D, P)
0.5 otherwise

(b) Conditional probabilities

Figure 2.8: A simple Bayesian network for the dependencies between random vari-
ables Manager(David, PestBye), Manager(David, KwikEMart), and Smoker(David).

Manager
CEO Company w
David PestBye 0.4
David KwikEMart 1

Smoker
Person w
David 1

M = {(0.1,M(D, K) ∧ M(D, P)), (0.9,¬M(D, K) ∧ M(D, P)),
(0.3,M(D, K) ∧ ¬M(D, P)), (0.7,¬M(D, K) ∧ ¬M(D, P)),
(0.8, S(D) ∧ [M(D, K) ∨M(D, P)]), (0.2,¬S(D) ∧ [M(D, K) ∨M(D, P)]),
(0.5,¬[M(D, K) ∨M(D, P)])}.

Figure 2.9: A tuple-independent weighted database with soft constraints. The repre-
sented distribution is equivalent to the Bayesian network distribution in Figure 2.8.
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constraints (i.e., an MLN) on top of a weighted tuple-independent
database. By further applying the reduction from soft constraints to
conditional queries in §2.6, we can effectively capture the depen-
dencies in the Bayesian network within the tuple-independent data
model. This type of reduction, from graphical models to a constraint
on independent variables, is known as a weighted model counting en-
coding in graphical models [Chavira and Darwiche, 2005, 2008, Sang
et al., 2004]. The computational aspects of weighted model counting
will be the topic of Chapter 3. It naturally exploits structure in the
distribution, such as equal parameters and determinism, and attains
state-of-the-art performance [Darwiche et al., 2008, Choi et al., 2013].

Statistical Relational Models and Probabilistic Programming
The machine learning and knowledge representation communi-
ties have developed models that are very related to probabilistic
databases. The goal of these statistical relational models [Getoor and
Taskar, 2007] is to have a concise high-level description of a large
graphical models with repeated structure. Given a relational database
containing the known tuples, the statistical relational model induces
a classical graphical model over the uncertain tuples. Just like prob-
abilistic databases, the possible worlds of these models are classical
relational databases. A large number of such template languages has
been proposed, including plate models [Buntine, 1994], RBNs [Jaeger,
1997], PRMs [Friedman et al., 1999, Getoor et al., 2001], BLPs [Kerst-
ing and De Raedt, 2001], parfactors [Poole, 2003], LBNs [Fierens et al.,
2005], PSL [Kimmig et al., 2012], and MLNs; collectively referred to as
the alphabet soup of statistical relational learning.

A related line of research in artificial intelligence seeks to extend
first-order logic and logic programming with probabilities. Based on
the seminal work of Nilsson [1986], Halpern [1990], and Bacchus
[1991], a rich collection of probabilistic logic programming languages was
developed, including PHA/ICL [Poole, 1993, 1997], SLPs [Muggle-
ton, 1996], PRISM [Sato and Kameya, 1997], ProbLog [De Raedt et al.,
2007], ProPPR [Wang et al., 2013], and GDatalog [Barany et al., 2016].
Most of these languages are based on the distribution semantics [Sato,
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1995]. In fact, many can be seen as executing datalog or logic program
queries on a tuple-independent probabilistic database following the
semantics of §2.3. Moreover, the LPAD/CP-Logic languages also sup-
port disjoint-independent sets of tuples [Vennekens et al., 2004, 2009].

More recently, probabilistic programming languages have taken
up the role of representing complex distributions over structured
data [Milch et al., 2007, Goodman et al., 2008, Pfeffer, 2009, McCallum
et al., 2009]. Probabilistic logic programming languages are one pop-
ular approach; others extend functional or even imperative languages
with probabilistic constructs. Several proposals aim to augment de-
scription logics with probabilities [Heinsohn, 1994, Lukasiewicz,
2008]. There has also been substantial interest in continuous-variable
extensions of probabilistic logic programs [Nitti et al., 2016].

Intricate connections exist between all these languages. For ex-
ample, MLNs can be regarded as a maximum-entropy probabilistic
logic [Kern-Isberner and Lukasiewicz, 2004] in the tradition of Nilsson
[Paskin, 2002]. Some probabilistic logic programs can reduce to sim-
pler queries on tuple-independent probabilistic databases [Van den
Broeck et al., 2014]. These are beyond the scope of this survey.

2.7.3 Alternative Query Semantics

Two classes of queries go beyond the expectation semantics of §2.3.

Meta-Queries The probabilistic database system Trio [Benjelloun
et al., 2006b] supports queries where the probability can be tested and
manipulated explicitly. For example, in Trio we could ask the follow-
ing query on the relation Researcher in Figure 2.2: retrieve all affiliations
that have expertise in both databases and vision with probability > 0.8. This
query is a departure from our definition of a query as a random vari-
able over the possible worlds, since the query has no meaning over
a single world, only over the entire probability distribution. Similar
queries are implemented in ProbLog, and called Meta-Calls [De Raedt
and Kimmig, 2015]. The formal semantics of such queries is more com-
plex than for the queries considered in this survey, we refer the reader
to Fagin et al. [1990] and also to the discussion by Moore et al. [2009].
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Other variations to the query semantics have been considered in
the literature. Li and Deshpande [2009] propose consensus answers,
which are answers that minimize the distance to all possible answers,
i.e. they are a consensus over the possible answers. Sensitivity analysis
for query answers was discussed by Kanagal et al. [2011].

Top-k Queries Recall that a set-valued query returns a set of an-
swers, and are by far the most common SQL queries in practice. If
the database is probabilistic, each of these answers is uncertain, and
it is reasonable to require that the answers be sorted in decreasing or-
der of their confidence and, moreover, restrict the answers to just the
top k, where k is, say, k ≈ 10 · · · 20. This opens up the possibility for
optimizations, since the system does not have to compute the proba-
bilities all answers that are not in the top k. Ré et al. [2007] describe
an approach to improve the query performance by focusing the prob-
abilistic inference to just the top k answers. It uses as a black box any
approximation algorithm for computing the output probability, and
runs this algorithm one step at a time on each candidate output tuple,
and drops an tuple from the list of candidates when its current confi-
dence interval is strictly dominated by current confidence intervals of
at least k other tuples.

A different top-k problem studies queries that have a particular
score attribute that the system has to use to sort the answers. For ex-
ample, the query may retrieve a list of hotels, and order them in in-
creasing order of the price; or in decreasing order of their average re-
view score; or by some other deterministic criterion. When the data
is deterministic, then it is clear how to sort the output, namely by the
score. When the data is probabilistic we need a sorting criterion that
accounts for both the score and the confidence. For example, should
a hotel with very good reviews but low confidence be listed before,
or after a hotel with average reviews but much higher confidence?
Several semantics have been discussed in the literature, we refer the
reader to Zhang and Chomicki [2008] for a survey and critique. Li
et al. [2011] proposed a solution based on learning ranking function
based on user inputs.



3
Weighted Model Counting

Model counting, and its generalization to weighted model counting
(WMC), are some of the most fundamental problems in computer sci-
ence. Several open-source tools exists for these tasks. Our interest in
them stems from the fact that evaluation of Boolean queries on a prob-
abilistic databases can be reduced to WMC, and, therefore, tools and
theory for WMC can be deployed to perform and analyze query eval-
uation. In this chapter we give a brief background on WMC and de-
scribe its connection to query evaluation on probabilistic databases.

3.1 Three Variants of Model Counting

Let F be a Boolean formula over variables from the set X =
{X1, X2, . . . , Xn}. A model for F is a satisfying assignment, in other
words a function θ : X→ {0, 1} s.t. F evaluates to true: θ(F ) = 1. With
some abuse, we will interchangeably use 0/1 and false/true. While
we find it convenient to write θ(F ) = 1 for satisfaction of Boolean for-
mulas, note that it is equivalent to writing θ |= F , seeing θ as a possible
world. A monotone Boolean formula is one that can be written without
using the negation symbol. It is easily satisfied by the assignment that
sets all variables to true.

236
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X1 X2 X3 F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Figure 3.1: Truth table for the formula F = (X1 ∨X2) ∧ (X1 ∨X3) ∧ (X2 ∨X3).

Problem 1: Model Counting

The number of models of F is denoted #F = |{θ | θ(F ) = 1}|, and the
model counting problem is given a Boolean formula F , compute #F . For
example, if F = (X1 ∨X2)∧ (X1 ∨X3)∧ (X2 ∨X3) then #F = 4, as is
clear from its truth table in Figure 3.1.

In general, the model counting problem is computationally hard.
An easy way to see this is to observe that any oracle for computing #F
can be used to check ifF is satisfiable, by simply testing if #F ≥ 1, and
since the satisfiability problem (SAT) is NP-hard, the counting prob-
lem must also be hard. Recall that the class NP is the class of decision
problems that can be solved by a polynomial time non-deterministic
Turing machine; SAT is NP-complete. The model counting problem is
not a decision problem, and therefore is not in NP. The model count-
ing problem belongs to the class #P, defined as the class of functions
f for which there exists a polynomial time non-deterministic Turing
Machine such that, for any input x, the number of accepting compu-
tations of the Turing Machine is f(x). Valiant [1979b,a] introduced the
class #P and proved that the model counting problem is #P-complete.

Rather surprisingly, even if one restricts the class of Boolean for-
mulas to apparently simple formulas, the model counting problem re-
mains #P-hard. A particular class that is of special interest to proba-
bilistic databases is that of Positive Partitioned 2CNF (PP2CNF) formu-
las. A PP2CNF is a Boolean formula of the form F =

∧
(i,j)∈E(Xi∨Yj),
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where X = {X1, . . . , Xn}, Y = {Y1, . . . , Yn} are two disjoint sets of
variables, and E ⊆ [n] × [n]. The satisfiability problem for PP2CNF is
trivial, because any PP2CNF formula is trivially satisfied by setting all
variables to true. Therefore, it is quite surprising that Provan and Ball
[1983] proved that model counting is hard:

Theorem 3.1 (PP2CNF). The model counting problem for PP2CNF
formulas is #P-hard.

The dual of a Boolean formula F (X1, . . . , Xn) is defined as F ∗ =
¬F (¬X1, . . . ,¬Xn). Equivalently, it is obtained from F by replacing
∧,∨ with ∨,∧ respectively. The model counting problems for F and
F ∗ are equivalent, since #F = 2n − #F ∗ and, therefore, the result
by Provan and Ball [1983] immediately applies to PP2DNF formulas,
which are formulas of the form

∨
(i,j)∈E Xi ∧ Yj .

Problem 2: Probability Computation

In probabilistic databases we are interested in computing the proba-
bility of a Boolean formula, which turns out to be related to model
counting. Let p : X → [0, 1] be a probability function. Equivalently,
we denote it as a sequence (pi)i=1,n, where, for each i = 1, n, the num-
ber pi ∈ [0, 1] denotes p(Xi). We define a probability space whose set
of outcomes is the set of assignments θ, as follows. For each variable
Xi, set randomly θ(Xi) = 1 with probability pi, or θ(Xi) = 0 with
probability 1 − pi. Repeated this independently for each variable Xi,
i = 1, n. This defines a probability space on the set of assignments θ.
Concretely, the probability P(θ) of an assignment θ, and the marginal
probability P(F ) of a Boolean formula F are given by:

P(θ) =
∏

i:θ(Xi)=0
(1− pi)×

∏
i:θ(Xi)=1

pi P(F ) =
∑

θ:θ(F )=1
P(θ)

The probability computation problem is: given a Boolean formula F and
rational numbers pi ∈ [0, 1], i = 1, n, compute P(F ). In the special
case when p1 = · · · = pn = 1/2, the probability is P(F ) = #F/2n,
and therefore the probability computation problem generalizes model
counting, and is at least as hard.
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Expansion and Independence Properties

We review some simple properties of the probability of a Boolean for-
mula. Shannon’s expansion formula is:

P(F ) = (1− p(X)) ·P(F [X = 0]) + p(X) ·P(F [X = 1])

where X is any variable, and F [X = v] replaces X in F by value v. By
repeatedly applying the Shannon expansion one can compute P(F ) in
time ≤ 2n. A more efficient way is to apply the independence rule.

Lemma 3.2. If F1, F2 do not share any common variables (Vars(F1)∩
Vars(F2) = ∅) then they are independent probabilistic events, and

P(F1 ∧ F2) = P(F1) ·P(F2)
P(F1 ∨ F2) = 1− (1−P(F1)) · (1−P(F2)).

One has to be careful when reasoning about independence: the
converse, namely that the equalities above imply the absence of a
common variable, fails in general, and only holds under certain con-
ditions. The lifted inference techniques discussed in Chapter 4 will re-
quire necessary and sufficient criteria for independence, which is why
we are interested in precisely characterizing it. In general, F1, F2 may
share some common variables, and at the same time be independent
probabilistic events for particular values of the probabilities pi. A con-
crete example1 is F1 = (X∨Y )∧(¬X∨Z) and F2 = (X∨U)∧(¬X∨W ),
where all Boolean variables have probability 1/2; then P(F1 ∧ F2) =
P(F1)P(F2) = 1/2. Thus, we have an example of two formulas F1, F2
that have a common variable X , and are also independent. Therefore,
in general, independence does not imply disjoint sets of variables.

On the other hand, if F1, F2 are independent for every choice of
probabilities pi ∈ [0, 1], i = 1, n, then F1, F2 have no common vari-
ables; this provides a weak converse to Lemma 3.2. Indeed, if they
shared at least one common variable X , then P(F1 ∧ F2) is a linear

1We invite the reader to verify the following more general statement. If F1, F2
share a single common variable X , and P(F1[X = 0]) = P(F1[X = 1]), and
P(F2[X = 0]) = P(F2[X = 1]), then P(F1 ∧ F2) = P(F1)P(F2). To check, it suf-
fices to apply Shannon expansion on X .
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polynomial in p = p(X), while P(F1)P(F2) is a polynomial of degree
2 in p, and they cannot be identical for all values of p ∈ [0, 1].

Finally, if F1, F2 are monotone Boolean formulas then the converse
of Lemma 3.2 holds in the following sense: if there exist probability
values pi ∈ (0, 1) such that P(F1 ∧ F2) = P(F1)P(F2) then F1, F2 do
not share any common variables, see Miklau and Suciu [2007].

Problem 3: Weighted Model Counting

The third problem discussed here is a variant of the probability com-
putation problem that is closer in spirit to model counting. Let w :
X → R be a function that associates a weight w(X) to each variable
X . As with probabilities, we denote wi = w(Xi) and use the sequence
(wi)ni=1 to present the function w. The weight of an assignment w(θ)
is the product of the weights of the variables set to true,2 and the
weighted model count of a Boolean formula, WMC(F ), is the sum of
weights of its models, formally:

w(θ) =
∏

i:θ(Xi)=1
wi WMC(F ) =

∑
θ:θ(F )=1

w(θ)

The Weighted Model Counting (WMC) Problem is the following: given
a Boolean formula F and weights wi for the Boolean variables Xi, com-
pute WMC(F ). In the special case when w1 = · · · = wn = 1 then
WMC(F ) = #F , and therefore the WMC problem is also a gen-
eralization of the model counting problem. In fact, the WMC prob-
lem is equivalent to the probability computation problem, in the fol-
lowing sense. If we set every weight wi to be the odds of the prob-

ability pi, wi
def= pi/(1 − pi) for all i, then P(F ) = WMC(F )/Z

where Z def=
∏
i(1 + wi) is the normalization factor. Or, equivalently,

WMC(F ) = P(F )/
∏
i(1− pi).

2 It is also common to associate weights w̄i with assigning false to Xi (or equiv-
alently, to associate a weight with all literals) [Chavira and Darwiche, 2008]. The
weight of a model then becomes w(θ) =

∏
i:θ(Xi)=1 wi

∏
i:θ(Xi)=0 w̄i. These defini-

tions are interchangeable by normalization as long as wi + w̄i 6= 0.
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3.2 Relationships Between the Three Problems

To summarize, we discussed three related problems on a Boolean
formula: the model counting, the probability computation, and the
weighted model counting problem. Their relationship is captured by
the following:

Proposition 3.1. (1) Model counting is a special case of weighted

model counting: if w(Xi)
def= 1 for all i, then WMC(F ) = #F . (2)

Weighted model counting and probability computation are virtually

the same: if wi
def= pi/(1− pi) for all i, then P(F ) = WMC(F )/Z where

Z
def=
∏
i(1 + wi) is the normalization factor.

For a simple illustration, consider the Boolean formula

F =(X1 ∨X2) ∧ (X1 ∨X3) ∧ (X2 ∨X3)

whose truth table is shown in Figure 3.1. The following are easily
checked:

#F =4
WMC(F ) =w2w3 + w1w3 + w1w2 + w1w2w3

P(F ) =(1− p1)p2p3 + p1(1− p2)p3 + p1p2(1− p3) + p1p2p3

Notice that we did not state that the probability computation prob-
lem is equivalent to weighted model counting, and this raises a nat-
ural question: is the probability computation problem harder than
model counting? We end this section by answering this question: the
short answer is both yes and no.

On the one hand, there exist classes of Boolean formulas for which
the model counting problem is in PTIME while the probability compu-
tation problem is #P-hard. A consequence of this subtle distinction is
explained in §4.6, where we show that some queries can be evaluated
in PTIME over symmetric databases, where many pi are identical, but
their complexity is #P-hard over general probabilistic databases. For

example, consider the family of formulas Fn
def=
∧
i,j∈[n](Xi ∨Zij ∨ Yj):

thus, for every n there is a single formula with n2 + 2n Boolean vari-
ables. We show that computing #Fn is easy, yet P(Fn) is #P-hard. To



242 Weighted Model Counting

compute #Fn, suppose we assign k variables Xi = 0 and ` variables
Yj = 0, and assign the other variablesXi, Yj to 1. Then k` variables Zij
must be set to 1, while the other n2−k` variables Zij can be either 0 or
1; therefore #Fn =

∑
k,`

(n
k

)(n
`

)
2n2−k` and can obviously be computed

in PTIME. On the other hand, if we are allowed to set the probabilities
of the variables freely, then computing P(Fn) is #P-hard, by reduction
from a PP2CNF formula: set p(Xi) = p(Yj) = 1/2 forall i, j, and set
p(Zij) = 0 for (i, j) ∈ E, and p(Zij) = 1 for (i, j) 6∈ E.

On the other hand, for any Boolean formula F and rational num-
bers pi ∈ [0, 1], one can reduce the probability computation problem
P(F ) to the model counting problem #G of some other formula G,
which depends both on F and the numbers pi (or to the ratio of two
model counts). A consequence is that, if we have an efficient algorithm
for model counting for all formulas, then we can use it to compute
probabilities of all formulas. We briefly describe here the reduction,
adapting from Chakraborty et al. [2015]. For any m Boolean variables
Y1, . . . , Ym and number k ≤ 2m, we defineC<k the Boolean formula as-
serting that the number whose binary representation is YmYm−1 · · ·Y1

is < k: C<k
def= ¬Ymopm(¬Ym−1opm−1 · · · (¬Y1op11) · · · ), where opj

is ∧ or ∨, depending on whether the i’th bit of k − 1 is 0 or 1 re-
spectively. For example, if k = 6 then 5 in binary is 0101 and C<6 =
¬Y4 ∧ (¬Y3 ∨ (¬Y2 ∧ (¬Y1 ∨ 1))) asserts that Y4Y3Y2Y1 < 6. Let F be
a Boolean formula over variables Xi, i = 1, n, and let 0 < pi < 1
be their probabilities given as rational numbers. Assume first that all
denominators are powers of 2, pi = ki/2mi . Create mi fresh variables
Yi1, Yi2, . . . , Yimi , substitute in F every variable Xi with C<ki , and de-
note G the resulting formula. If we set the probability of each Boolean
variable Yij to 1/2, then P(C<ki) = ki/2mi = pi, and one can check that
P(F ) = P(G), and the latter is #G/2m where m =

∑
mi is the total

number of variables inG. If the denominators of pi are not powers of 2,
then, assuming pi = ki/ni, letmi be such that ni < 2mi . DefineG as be-
fore, obtained by substituting C<ki for Xi in F . Let C≥2mi−ni+ki be the
formula asserting that the string Yimi · · ·Yi1 is ≥ 2mi −ni + ki, and de-
note H =

∧
i(C<ki ∨ C≥ki). Intuitively, H restricts the code Yimi · · ·Yi1

to be either < ki or ≥ 2mi − ni + ki, and therefore P(C<ki |H) = pi,
P(¬C<ki |H) = 1 − pi, implying that P(F ) = P(G|H). The latter is
equal to #(G ∧H)/#H , proving the claim.
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3.3 First-Order Model Counting

Fix a first-order sentence Q and a finite domain D. By expanding Q

over the domain D we obtain a Boolean formula, called the lineage,
or provenance, or grounding of Q. The first-order model counting prob-
lem is the model counting problem for the grounded Boolean formula;
similarly one can consider the probability computation problem, and
the weighted model counting problem, for the grounded Boolean for-
mula obtained from Q and D. In probabilistic databases, the domain
is the active domain of a probabilistic database D, the query is the
user’s query, and the probabilities are defined by D. In this section we
review the First-Order Model Counting problem, and its variations to
probability computation and weighted model counting.

Recall that Tup(D) denotes the set of grounded atoms over the
domain D. We view each grounded tuple as a Boolean variable, and
consider Boolean formulas over the variables Tup(D), for example
R(a, b) ∧ S(b, c) ∨R(a, c) ∧ ¬S(c, a).

Definition 3.1. Given first-order sentence Q and a domain D, the lin-
eage or grounding of Q over D is a Boolean formula denoted FQ,D de-
fined inductively on the structure of Q:

• If Q is a grounded atom R(a, b, . . .) then FQ,D = Q.

• If Q is a grounded equality predicate a = a then FQ,D = true.

• IfQ is a grounded equality predicate a = b, for distinct constants
a, b, then FQ,D = false.

• If Q is Q1 ∨Q2 then FQ,D = FQ1,D ∨ FQ2,D

• If Q is Q1 ∧Q2 then FQ,D = FQ1,D ∧ FQ2,D

• If Q is ¬Q1, then FQ,D is ¬FQ1,D.

• IF Q is ∃xQ1, then FQ,D =
∨
a∈D FQ1[a/x],D.

• IF Q is ∀xQ1, then FQ,D =
∧
a∈D FQ1[a/x],D.
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Described succinctly, the lineage is obtained by replacing ∃ with∨
, replacing ∀ with

∧
, and leaving all other Boolean operations un-

changed. We abbreviate FQ,D with FQ whenD is understood from the
context.

The definition of lineage given above is purely syntactic, in other
words FQ,D is a Boolean expression, of size is O(|D|k) where k is the
number of logical variables occurring in the sentence Q. This means
that, for a fixed Q, the size of the lineage is polynomial in the size of
the domain.

Alternatively, we give an equivalent, semantic definition of the
lineage, by defining the Boolean formula FQ,D on all possible valu-
ations θ : Tup(D) → {0, 1}. Recall that a (standard) database is a fi-
nite structure ω ⊆ Tup(D); using standard terminology in first-order
logic, and in databases, we say that Q is true in ω, and write ω |= Q,
or Q(ω) = true, if the sentence holds in ω. We denote the character-
istic function associated to ω by θω : Tup(D)→ {0, 1}; in other words,

θω(t) def= 1 if t ∈ ω, and θω(t) def= 0 if t 6∈ ω. The following theorem
gives a semantic definition of FQ,D, by specifying which assignments
θ make it true. We invite the reader to check that this is equivalent to
the syntactic definition given above.

Theorem 3.3. Fix a domain D and a first-order sentence Q. Then, for
any database ω ⊆ Tup(D): ω |= Q iff θω(FQ,D) = 1.

Example 3.1. For a simple illustration, consider the formula:

Q =∀d(Rain(d)⇒ Cloudy(d))

Then the lineage over the domain D = [7] is:

FQ,[7] = (Rain(1)⇒ Cloudy(1)) ∧ · · · ∧ (Rain(7)⇒ Cloudy(7))

Consider the database ω = {Rain(2),Cloudy(1),Cloudy(2)}. Then ω |=
Q, and it can be easily checked that FQ,[7] is also true under the as-
signment θω defined by ω, namely θω assigns Rain(2) = Cloudy(1) =
Cloudy(2) = 1 and assigns all other Boolean variables to 0.

In the first-order model counting problem (FOMC) we are given
Q,D, and the problem is to compute the number of models #FQ,D.
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Equivalently, this is the number of databases (or first order structures)
ω ⊆ Tup(D) for which ω |= Q. In the Weighted FOMC problem, we
are given, in addition, a function w : Tup(D) → R, and the problem
is to compute WMC(FQ,D). Finally, in the first-order probability compu-
tation problem we are given a function p : Tup(D) → [0, 1] and ask
for P(FQ,D).

Consider now a probabilistic database D. Recall that D can be seen
as a deterministic database T and a function p : T → [0, 1]. Extend p

to all tuples, p : Tup(D) → [0, 1], by setting p(t) = 0 forall t 6∈ T.
Theorem 3.3 immediately implies the following.

Proposition 3.2. The probability of the lineage of a query Q is identi-
cal to the probabilistic database query probability: P(FQ,D) = PD(Q).

Thus, the query evaluation problem in probabilistic databases can
be reduced to computing the probability of a Boolean formula, namely
the lineage of the query over the active domain of the database. We
call this the grounded query evaluation approach; it is also called inten-
sional query evaluation [Suciu et al., 2011]. An alternative approach is
lifted inference (or extensional query evaluation), which we will discuss in
Chapter 4. Lifted inference is much more efficient, but, as we shall see,
works only for a subset of queries. All probabilistic database systems
use lineage-based query evaluation, at least as a backup when lifted
inference fails.

We end this section with a discussion on how to compute the lin-
eage expression FQ,D.

Specializing the Lineage to a Database The fundamental property
of the lineage expression FQ,D is given by Theorem 3.3: a set of tuples
ω satisfies the sentenceQ iff the valuation θω satisfies FQ,D. In practice,
we are always given a a concrete database T, and the set of tuples are
always a subset, ω ⊆ T. In that case it is redundant to use Boolean
variables for tuples that are not in the database T. Instead, we simplify
FQ,D by substituting with false all Boolean variables corresponding
to tuples that are not in T, and denote FQ,T the resulting expression.
This is called the lineage of Q over the database T. By specializing the
lineage to only the tuples in T we can significantly reduce its size.
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For a simple example, consider the relational database schema

Researcher(Name,Expertise,Affiliation)
University(UName,City)

The following conjunctive query checks if there exists any researcher
with expertise in Vision affiliated with some university in Seattle:

Q =∃x∃y Researcher(x, Vision, y) ∧ University(y, Seattle)

If the database T has an active domain D of size n, then there are
n3 +n2 Boolean variables, one for each ground tuple Researcher(a, b, c)
and one for each ground tuple University(c, d), and the lineage FQ,D is
a DNF formula with O(n3) terms. However, if Name, UName are keys
and Affiliation is a foreign key, then the database T contains only
2n tuples, and therefore the lineage over the database FQ,T is much
smaller. For example, it may be the following Boolean expression:

Researcher(Alice, Vision, UPenn) ∧ University(UPenn, Philadelphia)
∨ Researcher(Bob, Vision, Brown) ∧ University(Brown, Providence)
∨ Researcher(Carol, Vision, UCLA) ∧ University(UCLA, LosAngeles)

Lineage of a Set-Valued Query So far we have defined the lineage
only for a sentence Q, or, equivalently, for a Boolean query. We now
extend the definition to a set-valued query. In this case the lineage is
defined as a set of lineages, one for each possible output tuple. For
example, consider the following query, returning all expertises of re-
searchers affiliated with some university in Seattle:

Q(z) : - Researcher(x, z, y),University(y, Seattle).

Then we have to compute the lineage separately for each value z
in the active domain of the Expertise attribute. When z = Vision
then the lineage is given above; when z = Graphics, or Databases, or
some other expertise, then the lineage is a similar Boolean formula.

Computing Lineage in the Database Engine The provenance
computation system Perm by Glavic and Alonso [2009] developed a
practical method for pushing the provenance (lineage) computation
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inside the database engine, using query rewriting. We describe here
the main idea, for conjunctive queries. In this case, the conjunctive
query has the from select distinct attributes in SQL, and
it is rewritten into a query of the of the form select * order by

attributes; each group with the same values of attributes rep-
resents one DNF expression, where each minterm is given by one row
in the answer, and consists of the conjunction of the tuples in that row.
For example, the query Q above written in SQL is:

select distinct r.expertise

from Researcher r, University u

where r.affiliation = u.uname

and u.city = "Seattle"

The lineage is a DNF formula whose terms are given by the rows
returned by the following query:

select *
from Researcher r, University u

where r.affiliation = u.uname

and u.city = "Seattle"

order by r.expertise

The only change is replacing the select distinct clause with
select * and adding an order by clause, so that we can eas-
ily read the provenance expressions associated to each output tu-
ple r.expertise. Namely, for each fixed expertise e, the set of an-
swers with r.expertise = e define one DNF expression, and
each row n,e,u,c in the answer represents a prime implicant
Researcher(n, e, u) ∧ University(u, c).

The Lineage of a Constraint When the sentence Q is a constraint
rather than a Boolean query, then it has universal quantifiers and
negations, which require a more careful construction of the SQL query
computing the lineage. We illustrate the main idea on the following
constraint, asserting that all Vision experts are affiliated with some
university in Seattle:

∀x∀y (Researcher(x, Vision, y)⇒ University(y, Seattle))
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We first write it in CNF clausal form:

∀x∀y (¬Researcher(x, Vision, y) ∨ University(y, Seattle))

The lineage is a CNF expression, and we wish to design a SQL
query that computes the clauses of this expression. We need to
be careful, however, since the expression ¬Researcher(x, Vision, y) ∨
University(y, Seattle) is domain dependent, hence we can no longer
simply write it as a select * query. For any name n and university
u, denote the following ground tuples:

Rnu
def=Researcher(n, Vision, u)

Uu
def=University(u, Seattle)

The lineage over the entire active domain is
∧
n,u∈D(¬Rnu ∨ Uu). To

specialize it to a particular database T we need to consider three cases:

• Rnu 6∈ T, Uu ∈ T, then (¬Rnu ∨ Uu) ≡ true, and the clause gets
removed.

• Rnu ∈ T, Uu 6∈ T, then (¬Rnu ∨ Uu) ≡ ¬Rnu, and the clause
becomes a unit clause.

• Rnu ∈ T, Uu ∈ T, then the clause remains unchanged,¬Rnu∨Uu.

Therefore, we need to compute two SQL queries, corresponding to
cases 2 and 3 above:

select distinct r.Name, r.affiliation

from Researcher r

where r.expertise = ’Vision’

and not exists (select * from University u

where u.city = ’Seattle’

and r.affiliation = u.uname);

select * from Researcher r, University u

where u.city = ’Seattle’

and r.expertise = ’Vision’

and r.affiliation = u.uname
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The answers to the first SQL query are interpreted as unit clauses
¬Rnu, and the answers to the second SQL query are interpreted as
clauses with two literals ¬Rnu ∨ Uu. These query rewritings do not
assume any key or foreign key constraints in the database. If UName
is a key in University and Affiliation is a foreign key, then the first
SQL query above simplifies: it suffices to lookup the unique city of the
researcher’s affiliation, and check that it is not Seattle:

select distinct r.Name, r.affiliation

from Researcher r, University u

where u.city != ’Seattle’

and r.expertise = ’Vision’

and r.affiliation = u.uname

3.4 Algorithms and Complexity for Exact Model Counting

Consider the model counting problem: given a Boolean formula F ,
compute #F . In this section we study the exact model counting prob-
lem; we discuss approximations in the next section. Valiant has estab-
lished that model counting is #P-hard, even for 2CNF or 2DNF for-
mulas. In this paper we are concerned with formulas that can arise
as groundings of a fixed first-order (FO) sentence, in other words we
are interested in first-order model counting. In that case, if we fix the
FO sentence Q, the complexity can be either #P-hard or in PTIME, de-
pending on Q.

We start by showing that weighted model counting is #P-hard
even if we fix the FO sentence Q. In other words, in general, first-
order model counting for a fixedQ does not become easier than model
counting, even for relatively simple sentences Q.

Theorem 3.4. Consider the conjunctive query H0

H0 =∃x∃y R(x) ∧ S(x, y) ∧ T (y).

Then, computing P(H0) over a tuple-independent probabilistic
database is #P-hard in the size of the input database.

Proof. We show hardness of H0 by reduction from PP2DNF. Given
a PP2DNF instance F =

∨
(i,j)∈E Xi ∧ Yj where E ⊆ [n] × [n],



250 Weighted Model Counting

define a database T where R = T = [n], S = E, and set the
probabilities as follows: p(R(i)) = p(T (i)) = 1/2 forall i ∈ [n],
p(S(i, j)) = 1 forall (i, j) ∈ E. Then the lineage of H0 on T is
FH0,T =

∨
(i,j)∈E R(i) ∧ S(i, j) ∧ T (j), and its probability is equal to

the probability of
∨

(i,j)∈E R(i) ∧ T (j), which is F up to variable re-
naming, proving that P(H0) = P(FH0,T) = P(F ).

This result generalizes to constraints instead of queries. Consider
the constraint

∆ =∀x∀y(R(x) ∧ S(x, y)⇒ T (y)).

From Theorem 3.4, one can easily show that computing the probability
P(∆) is #P-hard in the size of the input database, even if the input
database is tuple-independent.

The DPLL Family of Algorithms Exact model counting algo-
rithms are based on extensions of the DPLL family of algorithms intro-
duced by Davis and Putnam [1960] and Davis et al. [1962] that were
originally designed for satisfiability search. We review them briefly
here, and refer to Gomes et al. [2009] for a survey.

A DPLL algorithm chooses a Boolean variableX , uses the Shannon
expansion formula #F = #F [X = 0]+#F [X = 1], and computes the
number of models of the two residual formulas #F [X = 0], #F [X =
1]. The DPLL algorithm was initially developed for the Satisfiability
Problem. In that case, it suffices to check if one of the two residual
formulas #F [X = 0] or #F [X = 1] is satisfiable: if the first one is
satisfiable, then there is no need to check the second one. When we
adapt it to model counting, the DPLL algorithm must perform a full
traversal of the search space.

In addition to the basic Shannon expansion step, modern DPLL-
based algorithms implement two extensions. The first consists of
caching intermediate results, to avoid repeated computations of equiva-
lent residual formulas. Before computing #F the algorithm checks if
F is in the cache; if it is in the cache then the algorithm returns #F
immediately; otherwise, it computes #F using a Shannon expansion,
then stores the result in the cache.
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The second optimization consists of checking if the clauses of the
CNF formula F can be partitioned into two sets F1, F2 with no com-
mon variables, F = F1∧F2, in which case they return #F = #F1 ·#F2.
The search space for both F1 and F2 is significantly smaller, since each
has only a subset of the variables. This leads to the following algo-
rithm template, which call a DPLL-based algorithm:

Base case If F is truereturn 1; if F is false, return 0.

Cache Read Lookup the pair (F,#F ) in the cache: if found, re-
turn #F .

Components If it is possible to write F = F1 ∧ F2 where F1, F2 do
not share any common Boolean variables, then compute #F =
#F1 ·#F2.

Shannon expansion Otherwise, choose a variable X and compute
#F = #F [X = 0] + #F [X = 1].

Cache Write Store the pair (F,#F ) in the cache, and return #F .

We leave it as a simple exercise to adapt this algorithm from model
counting to weighted model counting and probability computation.

Concrete implementations differ in their choice of variable order,
and the way they trade off the cost and benefit of the cache and com-
ponents optimizations. We discuss briefly each of these three choices.
First, for the variable order, while different heuristics have various
tradeoffs, one simple heuristics that always improves the runtime is
the unit clause rule: if there is a clause consisting of a single literal,
i.e. the clause is X (or ¬X), then choose X as the next variable to ex-
pand, because in that case we do not need to compute #F [X = 0] (or
#F [X = 1]). For example, if F = (¬X) ∧ F1, then #F = #F [X = 0].
Second, the design and implementation of the cache is non-trivial.
Theoretically, checking if a formula F is in the cache is an co-NP-
hard problem, since we need to check, for every formula F ′ in the
cache, whether F is equivalent to F ′. In practice, this test is replaced
with testing whether the representations of F and F ′ are syntactically
identical. Finally, checking for components also involves a trade-off
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between the cost of the test (which amounts to computing connected
components) and its potential benefit. To alleviate this cost, and guide
the choice of which variable to expand, one can compute a decompo-
sition tree before running the DPLL algorithm [Darwiche, 2000].

3.5 Algorithms for Approximate Model Counting

Let F be a Boolean formula, and ε, δ be two numbers. We say
that a randomized algorithm returning a quantity C̃ is an (δ, ε)-
approximation of #F if

P(|C̃ −#F | > δ ·#F ) < ε

where the probability is taken over the random choices of the algo-
rithm. The meaning of C̃ is that of an estimated value of the exact
count C = #F . We say that the algorithm is an approximation algorithm
for model counting, and define its complexity in terms of the size of
the input formula F , and the quantities 1/ε, 1/δ. When the algorithm
runs in polynomial time in all three parameters, then call it a Poly-
nomial Time Approximation Scheme (FPTRAS). These definitions for
model counting carry over naturally to the probability computation
problem, or to the weighted model counting problem, and we omit
the straightforward definition.

We will describe below an approximation algorithm based on
Monte Carlo simulations. In general, this algorithm is not an FP-
TRAS. Karp and Luby [1983] have shown that DNF formulas ad-
mit an FPTRAS consisting of a modified Monte Carlo simulation.
Roth [1996] and Vadhan [2001] proved essentially that no FPTRAS
can exists for CNF formulas. More precisely, they proved the follow-
ing result (building on previous results by Jerrum, Valiant, Vazirani
and later by Sinclair): for any fixed ε > 0, given a bipartite graph
E ⊆ [n] × [n], it is NP-hard to approximate #F within a factor nε,
where F =

∧
(i,j)∈E(Xi ∨Xj).

These results directly apply to probabilistic databases.

Theorem 3.5. The following statements hold for tuple-independent
probabilistic databases:



3.5. Algorithms for Approximate Model Counting 253

• For any Union of Conjunctive Queries Q, the problem given a
tuple-independent probabilistic database D, compute PD(Q) admits
an FPTRAS.

• Consider the constraint ∆ = ∀x∀y(R(x)∧S(x, y)⇒ R(y)). Then,
for any ε > 0, the problem given a tuple-independent probabilis-
tic database D, approximate PD(∆) within a relative factor nε is
NP-hard. Here n is the size of the domain of the probabilistic
database. In particular, PD(∆) does not admit an FPTRAS.

Proof. For any UCQ Q, the lineage FQ,T is a DNF, hence the first part
follows from Karp and Luby [1983]. By setting P(S(i, j)) = 0 when
(i, j) ∈ E and P(S(i, j)) = 1 when (i, j) 6∈ E, the lineage of ∆ is,
essentially,

∧
(i,j)∈E(R(i) ∨ R(j)), hence the second part follows from

Vadhan [2001].

The Monte Carlo Algorithm

We will describe the basic Monte Carlo algorithm for approximate
probability computation. The input consists of a Boolean formula F ,
and a probability function p : X → [0, 1]. The algorithm repeatedly
chooses a random assignment θ, with probability p(θ), then returns
the fraction of trials where θ(F ) = true:

Repeat for i = 1, N : Compute a random assignment θ by setting ran-
domly and independently for each variable X , θ(X) = 0 with
probability 1 − p(X), or θ(X) = 1 with probabilities p(X). De-
note Yi = θ(F ) ∈ {0, 1}.

Return: p̃ =
∑
i Yi/N .

The question that remains is how many stepsN do we need to run
the algorithm in order to achieve a desired precision, with a desired
confidence. To answer this we need the Chernoff/Hoeffding bound:

Theorem 3.6 (Chernoff/Hoeffding [1963]). Let Y1, Y2, . . . , YN be i.i.d.
random variables with values in {0, 1} and with mean y. Let ỹ =
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∑
i Yi/N . Then:

∀γ, 1 > γ > y : P(ỹ ≥ γ) ≤exp (−N ·D(γ||y)) (3.1)

∀γ, 0 < γ < y : P(ỹ ≤ γ) ≤exp (−N ·D(γ||y)) (3.2)

where, forall 0 < γ < 1, 0 < y < 1, the function

D(γ||y) def=γ · ln(γ
y

) + (1− γ) · ln(1− γ
1− y )

is the binary relative entropy.

Equation 3.2) follows immediately from Equation 3.1) by replacing
Yi, y, γ with 1−Yi, 1−y, 1−γ, and the fact thatD(1−γ||1−y) = D(γ||y).
The original proof of Equation 3.1) by Hoeffding [1963] uses the mo-
ment generating function; an alternative, elementary proof is given by
Impagliazzo and Kabanets [2010]. Before applying these inequalities
to the Monte Carlo algorithm, we simplify the relative entropy func-
tion by using two lower bounds. First, ∀δ, if 0 < (1 + δ)y < 1 then

D((1 + δ)y||y) ≥ y · h(δ), where h(δ) def= (1 + δ) ln(1 + δ) − δ. Second,
when δ is small enough, we have3 h(δ) ≥ δ2/3 forall 0 ≤ δ ≤ 1/2 and
h(δ) ≥ δ2/2 forall δ ≤ 0.

Denoting the true probability of a Boolean formula p def= P(F ), the
estimate p̂ after N steps of the Monte Carlo algorithm satisfies:

0 < δ ≤ 1/2 : P(p̃ ≥ (1 + δ) · p) ≤ exp (−N ·D((1 + δ)p||p))

≤ exp

(
−Npδ

2

3

)
0 ≤ δ < 1 : P(p̃ ≤ (1− δ) · p) ≤ exp (−N ·D((1− δ)p||p))

≤ exp

(
−Npδ

2

2

)
3The first inequality follows by expanding D(y(1 + δ)||y) = y(1 + δ) ln(1 + δ) +

[1− y(1− δ)] ln[(1− y(1− δ))/(1− y)], then writing the second term as −[1− y(1−
δ)] ln[(1 − y)/(1 − y(1 − δ))] = −[1 − y(1 − δ)] ln[1 + (yδ/(1 − y(1 − δ)))] ≥ −yδ,
because ln(1 + z) ≤ z forall z. The second inequality follows from Taylor expansion

up to the second term: denote f(δ) def= h(δ) − δ2/3, then f(0) = f ′(0) = 0, f ′′(δ) =
1/(1 + δ)− 2/3 which is ≥ 0 for δ ≤ 1/2, proving f(δ) ≥ 0.
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where the probability is over the random choices of the algorithm.
Notice that the probability of being off by more than a relative factor δ
decreases exponentially in N , but only at a rate permitted by the fac-
tor δ2 · p/3. Thus, we need to run the algorithm for N = Θ( 1

δ2p) steps
to ensure this probability is low enough. This works well if p is not too
small. When we evaluate a Union of Conjunctive Queries (UCQ) over
a probabilistic databases, then p is the probability of some output tu-
ple to a query, and is usually reasonably large, because the lineage is a
DNF formula where every minterm has a small number of variables;
for example, if the query joins three tables, then every minterm in the
DNF formula is the conjunction of three Boolean variables, and this
implies that p = Θ(1), i.e. is independent of the size of the probabilis-
tic database. In this case the naive Monte Carlo simulation algorithm
requires only N = Θ( 1

δ2 ) steps, and works quite well in practice.

Sampling Beyond UCQ For a general DNF formula, pmay be expo-
nentially small, for example if F = X1 ∧X2 ∧ · · · ∧Xn, then p = 1/2n,
and one needs to replace the naive Monte Carlo algorithm with the
FPTRAS described by Karp and Luby [1983], but UCQ queries do not
have such lineage expressions. When approximating the model count
of an arbitrary constraint, Theorem 3.5 suggests that no relative ap-
proximation guarantees can be obtained. However, given access to an
NP-oracle, Ermon et al. [2013] and Chakraborty et al. [2014] compute
(δ, ε)-approximations. The desired guarantees can be attained in prac-
tice using efficient SAT or optimization solvers. Another approach is
to perform Markov Chain Monte Carlo sampling for inference, which
can be sped up significantly when the weighted model counting prob-
lem is constructed from a relational data model [Jampani et al., 2008,
Wick et al., 2010, Van den Broeck and Niepert, 2015].

Dissociation

Gatterbauer and Suciu [2014] describe an approximation method
called dissociation, which gives guaranteed upper and lower bounds
on the probability of a Boolean formula. Fix a formulaF with variables
X. A dissociation, F ′, is obtained, intuitively, by choosing a variableX
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that occurs only positively in F , then replacing different occurrences
of X with fresh variables X1, X2, . . . Formally, denote Y = X − {X},
X′ = Y ∪ {X1, X2, . . .}, and let θ : X′ → X be the substitution
θ(Xi) = X forall i, and θ(Y ) = Y for Y ∈ Y. A Boolean formula
F ′ with the property F ′[θ] = F is called a dissociation of F . Given a
probability function p : X → [0, 1], we write p′ : X′ → [0, 1] for some
extension to the variables X1, X2, . . .

Theorem 3.7. (1) Suppose the dissociation is conjunctive, meaning
that we can write F ′ =

∧
i F
′
i such that Xi occurs only in F ′i (and in no

other F ′j , for j 6= i). If p′(Xi) ≤ p(X), forall i, then P(F ′) ≤ P(F ); if∏
i p
′(Xi) ≥ p(X), then P(F ′) ≥ P(F ).

(2) Suppose the dissociation is disjunctive, meaning that we can
write F ′ =

∨
i F
′
i such that Xi occurs only in F ′i . If p′(Xi) ≥ p(X) forall

i, then P(F ′) ≥ P(F ); if
∏
i p
′(Xi) ≤ p(X), then P(F ′) ≤ P(F ).

For example, we can use the theorem to compute a lower bound
on a CNF formula F as follows. If F can be decomposed into
F1 ∧ F2 where F1, F2 do not share variables, then compute P(F ) as
P(F1)P(F2). Otherwise, choose a variable X and dissociate it, by giv-
ing two fresh names X1, X2 in F1, F2 respectively; set their proba-

bilities to p(X1) = p(X2) def= p(X). This dissociation is conjunctive,
since each clause had at most one copy of X . Repeat this with other
variables, until the dissociated formulas F ′1, F

′
2 no longer share any

common variables, in which case P(F ′) = P(F ′1)P(F ′2): this proba-
bility is a lower bound on P(F ). For a simple illustration, consider
F = (Y ∨X) ∧ (X ∨ Z). We dissociate it on the variable X obtaining

F ′ = (Y ∨X1) ∧ (X2 ∨ Z). By setting p(X1) = p(X2) def= p(X) we ob-
tain the lower bound P(F ) ≥ P(F ′) = [1 − (1 − p(Y ))(1 − p(X))] ·
[1 − (1 − p(Z))(1 − p(X))]; by setting p(X1) = p(X2) def=

√
p(X) we

obtain the upper bound P(F ) ≤ P(F ′) = [1− (1−p(Y ))(1−
√
p(X))] ·

[1− (1− p(Z))(1−
√
p(X))]. We invite the reader to compute the exact

probability P(F ) and check that both inequalities hold.
The notion of dissociation (or relaxation) is also commonly used

to simplify probability computation in probabilistic graphical models
[Dechter and Rish, 2003, Choi and Darwiche, 2010]. It has deep con-
nections to message-passing inference [Choi and Darwiche, 2006].
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Approximate DPLL

Olteanu et al. [2010] describe a simple heuristics that terminates the
DPLL early, and returns lower and upper bounds on the probability
rather than the exact probability. When it terminates, it approximates
the probability of the unprocessed residual formula by using these
bounds:

max
i=1

P(Fi) ≤P(
∨
i=1

Fi) ≤
∑
i=1

P(Fi)∑
i=1

P(Fi)− (n− 1) ≤P(
∧
i=1

Fi) ≤ min
i=1

P(Fi)

During a Shannon expansion step, on a variables X , P(F ) = (1 −
p)P(F0) + pP(F1), it propagates the lower/upper bounds of F0, F1 to
lower/upper bounds of F by setting the lower bound L = (1−p)L0 +
pL1 and the upper bound U = (1−p)U0+pU1. Thus, at each step of the
DPLL search procedure, this modified algorithm can provide a lower
and upper bound on the true probability of F , and the search can be
stopped as soon as these two bounds are within a desired precision.

A related technique is used in probabilistic logic programming:
unfold the query to a finite depth, and assume that the remaining re-
cursions either all succeed, or all fail, to obtain an upper and lower
bound [Poole, 1993, De Raedt et al., 2007, Vlasselaer et al., 2015].



4
Lifted Query Processing

Lifted query processing on probabilistic databases, in short lifted in-
ference, is a generic term given to a variety of techniques to com-
pute the query probability without first grounding the query on the
database. These techniques have been developed in parallel in the
AI literature, and in the database literature. The notion of comput-
ing the probability directly from the first-order sentence was intro-
duced by Poole [2003], and the actual term lifted inference was coined
by de Salvo Braz et al. [2005]. In the database literature, the idea of ex-
tensional query evaluation can be traced to early work by Barbará et al.
[1992] and Fuhr [1993]; the term extensional semantics seems to occur
first in Fuhr and Rölleke [1997], and is derived from the extensional
semantics discussed by Pearl [1988].

All lifted inference techniques described in the literature run in
polynomial time in the size of the probabilistic database and there-
fore they cannot work in general, since the query evaluation problem
is #P-hard in general. Instead, lifted inference works only for certain
classes of queries and/or databases. There is no formal definition of
the term lifted inference. Van den Broeck [2011] proposes a definition
that captures one common feature of all exact lifted inference meth-
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ods: it defines lifted inference to be any method that runs in poly-
nomial time in the size of the domain (or database). However, there
is a second feature shared by all lifted inference methods, which has
eluded a formal definition, namely they all use the structure of the
first-order formula to guide the lifted inference. In other words, lifted
inference techniques start by examining the first-order formula, and
making a plan on how to proceed in the evaluation, before the data
is touched, if at all. For that reason, lifted inference is quite similar
to traditional query evaluation techniques on deterministic databases,
which also construct a relational plan first, then evaluate the query by
following the plan. In fact, most lifted inference techniques can be de-
scribed in a similar way: first construct a query plan, then evaluate the
plan on the probabilistic database; moreover the evaluation can often
be pushed inside the database engine.

The lifted inference techniques exploit some simple properties in
probability theory: independence of events, the inclusion/exclusion
formula, and de Finetti’s theorem for symmetric probability spaces.
Compare this with the DPLL family of model counting algorithms for
Boolean formulas, which exploit only the Shannon expansion and the
independence formulas; we will show in the next chapter that lifted
inference algorithms are provably more powerful than grounded in-
ference based on the DPLL family of algorithms.

In this chapter we start by describing lifted inference as query
plans, then discuss a complete set of lifted rules for Unions of Con-
junctive Queries, or, more generally, unate first-order logic with a
single type of quantifier (∀ or ∃). Readers interested in more details
about this part (Sections 4.1-4.4) are referred to the book by Suciu
et al. [2011], and to Dalvi and Suciu [2012] for the proof of the di-
chotomy theorem. Then, we discuss extensions to queries with nega-
tions, and extensions that work on a larger class of queries but restrict
the database.
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4.1 Extensional Operators and Safe Plans

In this section we consider set-valued queries (§2.3), whose answer is
a relation (set of tuples); Boolean queries are a special case. By Def-
inition 2.2, the semantics of a set-valued query over a probabilistic
database is a set of tuples annotated with probabilities. We will as-
sume that all input relations are tuple-independent, or BID tables.

A query plan is an algebraic expression where each operator is one
of: join, selection, projection, union, difference, and aggregate. Almost
all database systems today process a query by first converting it into
a query plan, then evaluating the plan over the database.

Extensional Operators

A query plan can be extended to compute probabilities. Assume that
each intermediate relation in the query plan has an attribute p rep-
resenting the probability that the tuple appears in that intermediate
relation. Then, each relational operator is extended as follows; these
operators are called extensional operators:

• For a join operator R on S, compute p assuming that every pair
of tuples that join are independent. In other words, for every
pair of joining tuples, its probability attribute p is computed as
R.p ∗ S.p.

• For a selection operator, σ(R), simply propagate the probability
attribute for all tuples that satisfy the selection criterion.

• For a projection ΠA(R), compute p assuming that all tuples that
are combined into a single tuple during duplicate elimination
are independent events. In other words, the probability attribute
of an output tuple is 1− (1− t1.p)(1− t2.p) · · · where t1, t2, . . . ∈
R are all tuples that have a common value of the attribute(s)
A. A variant of the projection operator is to assume that these
tuples are disjoint probabilistic events, and in that case return
t1.p+ t2.p+ · · · We call the former an independent project and the
latter a disjoint project.
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• For a union R ∪ S, compute p assuming that the tuples in R and
S are independent. In other words, the output probability of a
tuple is either R.p, if it occurs only in R, or S.p if it occurs only
in S, or 1− (1−R.p)(1− S.p) if it occurs in both.

• For a difference operatorR−S, compute p assuming their tuples
are independent events. In other words the output probability is
either R.p if the tuple occurs only in R, or R.p ∗ (1 − S.p) if it
occurs in both.

An extensional query plan is a standard query plan with operators
on, σ,Π,∪,−, where each operator is interpreted as an extensional op-
erator. Each projection operator Π needs to be annotated to indicate
whether it is an independent project, or a disjoint project; by default
we assume it is an independent project. When evaluated over a prob-
abilistic database D, the plan returns a probability for each query an-
swer: this is called extensional query evaluation. These output probabil-
ities may or may not be the correct output probabilities according to
Definition 2.2; when they are correct for any probabilistic database,
then we call the plan a safe plan. We discuss safe plans next.

Safe Plans

Fix a relational schema for a probabilistic database, which specifies
for each table name whether it is a tuple-independent table or a BID
table; in the latter case the schema also specifies the key(s) defining
the groups of disjoint tuples (cf. §2.2.1).

Definition 4.1. LetQ be a set-valued query. A safe plan for a queryQ is
an extensional query plan that computes correct output probabilities
(according to Definition 2.2), on any input probabilistic database.

We illustrate with an example.

Example 4.1. Assume both relationsR,S are tuple-independent, and
consider the query:

Q(z):-R(z,x) ∧ S(x,y)
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The equivalent SQL query is

select distinct R.z from R, S where R.x = S.x

Figure 4.1a shows a small tuple-independent probabilistic database.
The only possible answer to this query is {c}, since the attribute z has a
single value c in the relationR. Thus, in any possible world the answer
to the query is either {c} or ∅. Our goal is to compute the probability
that c is in the answer, and, for that, at least one of the following two
events must hold:

• The tuple (c, a1) occurs in R, and at least one of the tuples
(a1, b1), (a1, b2) occurs in S: the probability of this event is p1(1−
(1− q1)(1− q2)).

• Tue tuple (c, a2) occurs in R, and at least one of the tuples
(a2, b3), (a2, b4), (a2, b5) occurs in S: the probability of this event
is p2(1− (1− q3)(1− q4)(1− q5)).

Since these two events are independent (they refer to disjoint sets
of independent tuples), the probability that c is in the answer is:

1− [1− p1(1− (1− q1)(1− q2))] · [1− p2(1− (1− q3)(1− q4)(1− q5))]

To compute the query on a traditional database, any modern query
engine would produce a query plan like that in Figure 4.1b: it first joins
R and S on the attribute x, then projects the result on the attribute z.
We assume that the project operator includes duplicate elimination.
If we extend each operator to manipulate explicitly the probability at-
tribute p, then we obtain the intermediate result and final result shown
in the figure (the actual tuples are dropped and only the probabilities
are shown, to reduce clutter). As we can see the final result is wrong.
The reason is that duplicate elimination incorrectly assumed that all
tuples that have z = c are independent: in fact the first two such tu-
ples depend on (c, a1) and the next three depend on (c, a2) (see the
repeated probabilities p1, p1 and p2, p2, p2 in the figure). Thus, the plan
in Figure 4.1b is not safe.

In contrast, the plan in Figure 4.1c is safe, because it computes the
output probabilities correctly; the figure shows the computation only
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R : z x p

c a1 p1
c a2 p2
c a3 p3

S : x y p

a1 b1 q1
a1 b2 q2
a2 b3 q3
a2 b4 q4
a2 b5 q5

(a) Probabilistic database

p1 q1 

p1 q2 

p2 q3 

p2 q4 

p2 q5 ⋈x 

Πz 

S(x,y) R(z,x) 

1-(1-p1q1)(1-p1q2)(1-p2q3)(1-p2q4)(1-p2q5) 

(b) Unsafe plan

⋈x
 

Πz 

S(x,y) R(z,x) 

Πx 

1-(1-q1)(1-q2) 

1-(1-q4)(1-q5) (1-q6) 

1-{1-p1[1-(1-q1)(1-q2)]}* 
     {1-p2[1-(1-q4)(1-q5) (1-q6)]} 

p1(1-(1-q1)(1-q2)) 

p2(1-(1-q4)(1-q5) (1-q6)) 

(c) Safe plan

Figure 4.1: Example query plans. Intermediate partial results show the probabilities.
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on our toy database, but the plan is correct on any input database. It
starts by projecting out the redundant attribute y in S(x, y) and doing
duplicate elimination, before joining the result with R, then contin-
ues like the previous plan. The two plans (b) and (c) are equivalent
over deterministic databases, but when the join and projection opera-
tors are extended to manipulate probabilities, then they are no longer
equivalent. Notice that a SQL engine would normally not choose (c)
over (b), because the extra cost of the duplicate elimination is not jus-
tified. Over probabilistic databases, however, the two plans are dif-
ferent, and the latter returns the correct probability, as shown in the
figure. We invite the reader to verify that this plan returns the correct
output probabilities for any tuple independent probabilistic relations
R and S.

A safe query plan can be executed directly in the database engine,
which is often much more efficient than a custom implementation.
For example, the MayBMS system by Antova et al. [2007], Olteanu
et al. [2009] modified the postgres source code converting each opera-
tor into an extensional operator. A more portable, slightly less efficient
alternative, is to encode the safe plan back into SQL, with aggregate
operators for manipulating the probability attributes, and have them
executed on any standard database engine. Safe plans, when they ex-
ists, are almost as efficient as traditional query plans on deterministic
databases.

Not every query has a safe plan. For example, H0 = ∃x∃yR(x) ∧
S(x, y) ∧ T (y) has no safe plan: neither P1

def= Π∅(Πy(R(x) onx

S(x, y)) ony T (y)) nor P2
def= Π∅(R(x) onx Πx(S(x, y) ony T (y))) is safe.

This is to be expected, since we have shown in Theorem 3.4 that the
complexity of computing P (H0) is #P-hard.

Unsafe Plans

If we evaluate an extensional, unsafe plan, are the resulting probabili-
ties of any use? Somewhat surprisingly, Gatterbauer and Suciu [2015]
show that every extensional plan for a conjunctive query without self-
joins returns an upper bound on the true probabilities. In other words,
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even if the plan is unsafe, it always returns an upper bound on the true
probability. This follows from Theorem 3.7 (2) by observing that every
extensional plan computes the exact probability of some dissociation
of the lineage. Indeed, any projection operator treats repeated copies
of the same tuple as distinct random variables, which means that it
dissociates the random variable associated to the tuple. For example,
both plans P1 and P2 above return upper bounds on the probability of
H0, and obviously can be computed in polynomial time in the size of
the input database. In general, by considering all plans for the query,
and taking the minimum of their probabilities one obtains an even
tighter upper bound on the true probabilities than a single plan. Some
plans are redundant and can be eliminated from the enumeration of
all plans, because they are dominated by tighter plans. For example,

H0 admits a third plan, P3
def= Π∅(R(x) on S(x, y) on T (y)), but Theo-

rem 3.7 (2) implies that eval(P1) ≤ eval(P3) and eval(P2) ≤ eval(P3),
because the lineage of P3 is a dissociation of the lineage of both P1
and P2; hence P3 is dominated by P1 and P2 and does not need to
be considered when computing the minimum of all probabilities. The
technique described in Gatterbauer and Suciu [2015] is quite effective
for conjunctive queries without self-joins, but it is open whether it can
be extended to more general queries.

To summarize, some queries admit safe plans and can be com-
puted as efficiently as queries over standard databases; others do not
admit safe plans. The practical question is: which queries admit safe
plans? And if a query admits a safe plan, how can we find it? We ad-
dress this issue in the rest of this chapter.

4.2 Lifted Inference Rules

We describe here an alternative formalism for lifted query evalua-
tion, by using rules. This formalism is equivalent to safe query plans,
but simpler to describe rigorously and prove properties about. In
this section and in the remainder of this chapter, unless otherwise
stated we will assume that the input probabilistic database is tuple-
independent, and that all queries are Boolean queries and are ex-
pressed as a first-order sentence.
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Call two Boolean formulas F1, F2 independent if, for any probability
function p : X → [0, 1], p(F1 ∧ F2) = p(F1)p(F2). We have seen in
§3.1 that F1, F2 are independent iff they depend on disjoint sets of
variables. Similarly, given two FO sentencesQ1, Q2 we say thatQ1, Q2
are independent if, for any finite domain D, the lineage expressions
FQ1,D and FQ2,D are independent. If Q is a formula with a single free
variable x, then we call x a separator variable if for any two distinct
constants a, b the two queries Q[a/x] and Q[b/x] are independent. If
Q = ∃xQ1 or Q = ∀xQ1, then, with some abuse, we say that x is a
separator variable in Q to mean that it is a separator variable in Q1.

We can now describe the lifted inference rules. Let D = (T, p)
a tuple-independent probabilistic database, where T is an ordinary
database and p : T → [0, 1]. Denote D the domain of the database.
We extend the probability function to p : Tup(D) → [0, 1] by setting
p(t) = 0 when t 6∈ T. Then for every first-order sentence Q:

Ground Tuple If Q = t (a ground tuple) then P(Q) = p(t).

Negation If Q = ¬Q1 then P(Q) = 1−P(Q1).

Join If Q = Q1 ∧ Q2 and Q1, Q2 are independent, then P(Q) =
P(Q1)P(Q2).

Union If Q = Q1 ∨ Q2 and Q1, Q2 are independent, then P(Q) =
1− (1−P(Q1)) · (1−P(Q2)).

Universal Quantifier If Q = ∀xQ1 and x is a separator variable in Q1
then P(Q) =

∏
a∈DQ1[a/x].

Existential Quantifier If Q = ∃xQ1 and x is a separator variable in
Q1 then P(Q) = 1−

∏
a∈D(1−Q1[a/x]).

Inclusion/Exclusion 1 If Q = Q1 ∨Q2 then P(Q) = P(Q1) + P(Q2)−
P(Q1 ∧Q2).

Inclusion/Exclusion 2 If Q = Q1 ∧Q2 then P(Q) = P(Q1) + P(Q2)−
P(Q1 ∨Q2).
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All rules are simple applications of independence, except for the
last two, which are simple applications of the inclusion/exclusion
principle. We invite the reader to check that the rules are correct
(sound) w.r.t. the standard query probability (Definition 2.2). For ex-
ample, the universal quantifier rule is correct, because the lineage of
Q = ∀xQ1 is the Boolean formula FQ,D =

∧
a∈D FQ1[a/x],D. Since x is

a separator variable, for any two constants a, b ∈ D the two formu-
las FQ1[a/x],D and FQ1[b/x],D are independent, hence they have disjoint
sets of variables. This implies that {FQ1[a/x],D | a ∈ D} is a set of inde-
pendent events, since any two have disjoint sets of Boolean variables,
and this implies P(FQ,D) =

∏
a∈D P(FQ1[a/x],D).

To convert these rules into an algorithm, we need to discuss how
to check independence of two sentences Q1, Q2 and how to check
whether x is a separator variable. These problems are hard in gen-
eral, as we explain in §4.4. In the lifted inference algorithm, we use
instead the following syntactic conditions, which are sufficient but, in
general, not necessary.

Definition 4.2. (1) Two sentences Q1, Q2 are syntactically indepen-
dent if they use disjoint sets of relational symbols. (2) Let Q be a
formula with one free variable x. We say that x is a syntactic sepa-
rator variable if for every relational symbol R there exists a number
iR ∈ [arity(R)] such that every atom in Q that refers to R contains x
on position iR; in particular every atom must contain x.

The following is easily verified.

Lemma 4.1. If Q1, Q2 are syntactically independent then they are in-
dependent. If x is a syntactic separator variable for Q, then it is a sep-
arator variable.

For example Q1 = ∃xR(x) is syntactically independent of Q2 =
∃y∃zS(y, z), and x is a syntactic separator variable for the formula
R(x) ∧ (∃yS(x, y)) ∨ T (x) ∧ (∃zS(x, z)) (every atom contains x and
both S-atoms contain x on the same position 1).

The lifted inference rules represent a non-deterministic algorithm
for computing P(Q), for any FO sentence Q. Start from Q, and repeat-
edly apply the lifted inference rules, reducing P(Q) to simpler queries
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P(Q′), until we reach ground atoms, and then return the probability
of the ground atom, which is obtained directly from the database. If
we reach a sentence Q′ where no rule applies, then we are stuck, and
lifted inference failed on our query.

We illustrate with a simple example, computing the probability of
the constraint Γ = ∀x∀y(S(x, y)⇒ R(x)):

P(∀x∀y(S(x, y)⇒ R(x))) =
∏
a∈D

P(∀y(S(a, y)⇒ R(a)))

=
∏
a∈D

P(∀y(¬S(a, y) ∨R(a)))

=
∏
a∈D

P((∀y¬S(a, y)) ∨R(a))

=
∏
a∈D

1− (1−P((∀y¬S(a, y)))(1− p(R(a))))

=
∏
a∈D

1− (1−
∏
b∈D

(1− p(S(a, b)))(1− p(R(a))))

In the last expression all probabilities are for ground atoms, and these
can be obtained using the function p, or, in practice, looked up in an
attribute of the relation. We invite the reader to check that in both steps
where we applied the universal quantifier rule, the variable that we
eliminated was a syntactic separator variable.

When the rules succeed, then we compute P(Q) in polynomial
time in the size of the input domain: more precisely in time O(nk)
where n is the size of the domain and k is total number of variables.
Therefore, the lifted inference rules will not work on queries whose
complexity is #P-hard. For example, the query H0 = ∃x∃yR(x) ∧
S(x, y) ∧ T (y) is #P-hard (by Theorem 3.4). It is easy to check that no
lifted inference rule applies here: the query is not the conjunction of
two sentences, so we cannot apply the join-rule, and neither x nor y
is a separator variable (because none of them occurs in all atoms). In
general, it will be the case that for some first-order sentences the lifted
inference rules will not be able to compute the query.

An important question is to characterize the class of queries whose
probability can be computed using only the lifted inference rules. We
say that such a query is liftable. A query can be computed using lifted
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inference rules iff it admits a safe query plan, and therefore we also call
such a query a safe query. When Q is liftable, then P(Q) can be com-
puted in polynomial time in the size of the database. If the converse
also holds, then the rules are complete. We describe below some frag-
ments of first-order sentences for which the rules are complete: more
precisely, if the rules fail to compute the probability of some query Q,
then P(Q) is provably #P-hard in the size of the input database.

4.3 Hierarchical Queries

Definition 4.3. Let Q be first-order formula. For each variable x de-
note at(x) the set of atoms that contain the variable x. We say that Q
is hierarchical if forall x, y one of the following holds: at(x) ⊆ at(y) or
at(x) ⊇ at(y) or at(x) ∩ at(y) = ∅.

The definition is syntactic. It is quite possible to have two equiv-
alent FO sentences, one hierarchical the other non-hierarchical: for
example, ∃x∃y∃zR(x, y) ∧ S(x, z) is hierarchical and is equivalent to
∃x∃y∃z∃uR(x, y)∧S(x, z)∧S(u, z) which is non-hierarchical, because
the two sets at(x) = {R(x, y), S(x, z)} and at(z) = {S(x, z), S(u, z)}
overlap without one being contained in the other. Some queries are
not equivalent to any hierarchical sentence: for example the query
H0 = ∃x∃yR(x) ∧ S(x, y) ∧ T (y) is non-hierarchical, because at(x) =
{R(x), S(x, y)}, at(y) = {(S(x, y), T (y)}, and the reader may check
that no equivalent conjunctive query is hierarchical.

Recall the definition of a Boolean conjunctive query: it is a sentence
of the form

Q =∃x1∃x2 · · · ∃xkR1(t1) ∧R2(t2) ∧ · · · ∧R`(t`)

where each Rj(tj) is a relational atoms. Conjunctive queries corre-
spond to FO∃,∧. We say that Q is without self-joins if all relational sym-
bols R1, . . . , R` are distinct. Other terms used in the literature for con-
junctive queries without self-joins are simple conjunctive queries, or a
non-repeating conjunctive queries.
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The dual of a conjunctive query without self-joins is a positive
clause without repeated symbols:

Γ =∀x1∀x2 · · · ∀xk(R1(t1) ∨R2(t2) ∨ · · · ∨R`(t`))

where the relational symbols R1, . . . , R` are distinct.

Theorem 4.2 (Small Dichotomy Theorem). Dalvi and Suciu [2007b]
Let Q be a conjunctive query without self-joins. Then:

• If Q is hierarchical, then P(Q) is in polynomial time, and can
be computed using only the lifted inference rules for join and
existential quantifier.

• If Q is not hierarchical, then P(Q) is #P-hard in the size of the
database.

A similar statement holds for positive clauses without repeated
relational symbols.

Proof. Suppose Q is hierarchical. Let x be any variable for which at(x)
is maximal. Case 1: at(x) consists of all atoms in Q. Then we can write
Q = ∃xQ1 where x is a separator variable, and we can apply the ∃-
lifted inference rule P(Q) = 1− (1−

∏
a∈DQ1[a/x]); the claim follows

by induction, sinceQ[a/x] is also hierarchical, for any constant a. Case
2: there exists some atom not in at(x). Then the atoms in at(x) and
those not in at(x) do not share any logical variable: if they shared a
variable y then at(x) ∩ at(y) 6= ∅, and therefore at(y) ⊆ at(x) (by
maximality of x), which contradicts the fact y occurs in some atom
that is not in at(x). Then we can write the query as Q = Q1 ∧ Q2
where both Q1 and Q2 are existentially quantified sentences. Since the
query has no self-joins, we can apply the join rules and write P(Q) =
P(Q1) · P(Q2); the claim follows by induction since both Q1, Q2 are
hierarchical.

SupposeQ is not hierarchical. We prove that it is #P hard by reduc-
tion from H0 = ∃x∃yR(x) ∧ S(x, y) ∧ T (y), which is #P-hard by Theo-
rem 3.4. Consider a probabilistic database instance over three relations
R(x), S(x, y), T (y), where we want to compute P(H0). Consider any
non-hierarchical queryQ. By definition,Q contains two variables x′, y′
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s.t. at(x′), at(y′) are overlapping but none contains the other. Thus,
Q has three atoms R′ ∈ at(x′) − at(y′), S′ ∈ at(x′) ∩ at(y′), T ′ ∈
at(y′)−at(x′). The three atoms areR′(x′, . . .)∧S′(x′, y′, . . .)∧T ′(y′, . . .),
i.e. R′ contains the variable x′ and possibly others, but does not con-
tain the variable y′, similarly for T ′, while S′ contains both x′, y′. Given
the input probabilistic databaseR(x), S(x, y), T (y), we construct an in-
stance for R′(x′, . . .) by extending R(x) with the extra attributes and
filling them with some fixed constant; similarly, construct S′, T ′ from
S, T , where the extended attributes are filled with the same constant.
The new relations R′, S′, T ′ are therefore in 1-1 correspondence with
R,S, T : they have the same cardinalities, and corresponding tuples
have the same probabilities. For all other relations in Q, define their
instance to be the cartesian product of the domain, and set their prob-
abilities to be 1. It is easy to check that P(Q) = P(H0), proving that the
query evaluation problem for H0 can be reduced to that for Q; hence
Q is #P-hard.

The theorem establishes a dichotomy for the class of conjunctive
queries without self-joins: every query is either liftable (and thus in
polynomial time) or provably #P-hard, and the separation is given
precisely by hierarchical queries. The same holds for positive clauses
without repeated relational symbols. For example, ∀x∀y∀z(R(x, y) ∨
S(x, z)∨T (x)) is hierarchical, hence in PTIME, while ∀x∀y∀z(R(x, y)∨
S(y, z) ∨ T (z)) is non-hierarchical, hence #P-hard. In fact, the di-
chotomy result also holds immediately for any clause without re-
peated relational symbols (not necessarily positive); we chose to state
Theorem 4.2 only for positive sentences for historical reasons. Next,
we will describe a non-trivial extension of the dichotomy theorem, to
a larger class of first-order sentences.

4.4 The Dichotomy Theorem

In this section we state a more general dichotomy theorem, which ap-
plies to a larger fragment of first-order logic. Without loss of general-
ity, in this section we assume that the formulas use only the connec-
tives ¬,∃,∀,∨,∧ (for example Q1 ⇒ Q2 can be rewritten as ¬Q1 ∨Q2)
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and that all occurrences of the ¬ operator are pushed down to the
atoms, using De Morgan’s laws. We will consider various fragments
of FO. If S ⊆ {¬, ∃, ∀,∨,∧}, then FOS denotes the fragment of FO
restricted to the operations in S. For example, FO∃,∧ is equivalent
to Conjunctive Queries (CQ), FO∃,∨,∧ is the positive, existential frag-
ment of FO, and equivalent to Unions of Conjunctive Queries (UCQ),
while FO∀,∨,∧ is positive universal fragment of FO, and FO¬,∃,∀,∨,∧ is
the full first-order logic, which we denote FO.

Call a first-order formula unate if every relational symbol occurs
either only positively, or only negated. For example, the first sentence
below is unate, the second is not:

Γ1 =∀x∀y(¬R(x) ∨ ¬S(x, y)) ∧ (¬S(x, y) ∨ T (y)) // unate

Γ2 =∀x∀y(¬R(x) ∨ S(x, y)) ∧ (¬S(x, y) ∨ T (y)) // non unate

We denote FO¬un,∃,∀,∨,∧ the unate fragment of first-order logic;
similarly FO¬un,∃,∨,∧ and FO¬un,∃,∀,∨,∧ are the existential and univer-
sal fragment of unate first-order logic respectively.

The dichotomy theorem that we state below says that every query
in FO¬un,∃,∨,∧ is in polynomial time when the lifted inference rules in
§4.2 succeed, or is provably #P-hard when those rules fail, and simi-
larly for FO¬un,∀,∨,∧. The practical significance of this result is that the
inference rules are complete: there is no need to search for more rules,
since all queries than can be possibly computed in PTIME are already
handled by the existing rules.

The Independence Test

However, we need some preparation in order for this result to hold.
Consider the join-rule: if Q = Q1 ∧ Q2 and Q1, Q2 are indepen-
dent, then P(Q) = P(Q1)P(Q2). In the algorithm we replaced the
test “Q1, Q2 are independent” with “Q1, Q2 are syntactically indepen-
dent”, which is sufficient, but not necessary. Obviously, if Q1, Q2 are
independent but not syntactically independent then the inference rule
fails, and the dichotomy theorem cannot hold as stated: the query may
be in PTIME (assuming both P(Q1) and P(Q2) are in PTIME) but we
cannot apply the lifted inference rule because we are unable to check
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independence. To prove a dichotomy result, we need a necessary and
sufficient test for independence, and the same for a separator variable.

Checking independence is hard in general. If Q1, Q2 are two sen-
tences in FO, then checking if they are independent is undecidable in
general, by Trakhtenbrot’s undecidability theorem for finite satisfia-
bility1. Miklau and Suciu [2007] showed that, if Q1, Q2 are restricted
to Conjunctive Queries, then checking independence is Πp

2-complete.
These observations carry over to the test of whether x is a separator
variable.

It turns out that one can rewrite the query into a form in which
syntactic independence is both necessary and sufficient for indepen-
dence, and similarly for a separator variable.

Definition 4.4. (1) An FO sentence Q is shattered if it does not contain
any constants. (2) An FO sentence Q is ranked if there exists a total
order σ on its variables such that whenever xi, xj occur in the same
atom and xi occurs before xj , then xi strictly precedes xj in the order
σ; in particular, no atom contains the same variable twice.

We briefly review the notion of a minimal query, c.f. Abiteboul et al.
[1995]. A conjunctive query Q is called minimal if no equivalent query
with fewer atoms exists; for example ∃x∃yR(x)∧R(y) is not minimal,
since it is equivalent to ∃xR(x). Every conjunctive query Q is equiv-
alent to a minimal query, which is unique up to isomorphism, and is
also called the core of Q. A Union of Conjunctive Query

∨
iQi is mini-

mal if eachQi is minimal, and whenever a logical implicationQi ⇒ Qj
holds, then i = j. Intuitively, if Qi ⇒ Qj holds then Qi is redundant
in the UCQ and can be dropped. Every UCQ query is equivalent to
a minimal UCQ query, which is unique up to isomorphism. We call
a sentence in FO¬un,∃,∨,∧ minimal if it is minimal when viewed as a
UCQ, by replacing each negated atom with a positive atom. Similarly,
we call a sentence in FO¬un,∀,∨,∧ minimal if its dual (obtained by re-
placing ∀,∧,∨with ∃,∨,∧ respectively) is minimal.

1Trakthenbrot’s theorem says that the problem given a FO sentence φ, does φ have
a finite model? is undecidable. Consider two sentences Q1 = ∃xR(x) and Q2 =
φ ∧ ∃xR(x): they are independent iff φ is not satisfiable, and hence checking inde-
pendence is undecidable.
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We invite the reader to check the following to lemmas:

Lemma 4.3. (1) If Q1, Q2 are two shattered, ranked and minimal sen-
tences in FO¬un,∃,∨,∧ (or FO¬un,∀,∨,∧), then syntactic independence is
equivalent to independence. (2) If Q is in FO¬un,∃,∨,∧ (or FO¬un,∀,∨,∧)
is shattered, ranked, and minimal, and has a single free variable x,
then x is a syntactic separator variable iff it is a separator variable.

Lemma 4.4. For any sentence Q in FO¬un,∃,∨,∧ (or FO¬un,∀,∨,∧) the
query evaluation problem P(Q) can be reduced in polynomial time to
the query evaluation problem P(Q′) of a shattered and ranked query
Q′.

Given these facts, the lifted inference rules need to be amended
as follows. To compute a query Q we start shattering and ranking
Q. This only needs to be done once, before we apply the lifted infer-
ence rules. Next, we apply the lifted inference rules: when we check
whether Q1, Q2 are independent (or whether x is a separator variable
in Q), then we minimize the queries first, then apply the syntactic in-
dependence (or syntactic separation) test.

We illustrate the shattering and ranking in Lemma 4.4 on two ex-
amples. The reader is invited to generalize from here (and prove the
two lemmas above), or to check further details in Suciu et al. [2011].

Example 4.2. Let

Q1 =∃x∃y(R(a, y) ∧R(x, b))

where a, b are two constants in the domain. There is no separator vari-
able since none of the two variables occurs in both atoms. Writing Q1
as a conjunction of ∃yR(a, y) and ∃xR(x, b)) doesn’t help either, since
these queries are dependent (their lineages both depend on the tuple
R(a, b)). Instead, we rewrite the query into a shattered query Q′1 as
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follows. We split the relation R into four relations:

R∗∗
def={(x, y) | (x, y) ∈ R, x 6= a, y 6= b}

Ra∗
def={y | (a, y) ∈ R, y 6= b}

R∗b
def={x | (x, b) ∈ R, x 6= a}

Rab
def={() | (a, b) ∈ R}

and rewrite the query as:

Q′1 =(∃xR∗b(x) ∧ ∃yRa∗(y)) ∨Rab()

The new query is shattered, i.e. does not contain any constants. It is
easily verified that Q1 and Q′1 are equivalent, hence P(Q1) = P(Q′1).
To compute P(Q′1) we notice that ∃xR∗b(x) ∧ ∃yRa∗(y) is syntacti-
cally independent of Rab(), and furthermore ∃xR∗b(x) and ∃yRa∗(y)
are syntactically independent, hence:

P(Q′1) =1− [1−P(∃xR∗b(x))P(∃yRa∗(y))] · [1− p(R(a, b))]

Example 4.3. Consider now the following query

Q2 =∃x∃y(S(x, y) ∧ S(y, x))

This query is not ranked, because x, y occur in opposite orders in
S(x, y) and in S(y, x). No lifted inference rule applies; for example x is
not a separator variable since it occurs on different positions in the two
atoms (and one may verify that the queries ∃y(S(a, y) ∧ S(y, a)) and
∃y(S(b, y)∧S(y, b)) are dependent, since their lineage expressions both
depend on the ground atoms S(a, b) and S(b, a)). Instead, we rewrite
the query as follows. First, we partition the relation S into three new
relations:

S<
def={(x, y) | (x, y) ∈ S, x < y}

S=
def={x | (x, x) ∈ S}

S>
def={(y, x) | (x, y) ∈ S, x > y}

and rewrite the query as:

Q′2 =∃x∃y(S<(x, y) ∧ S>(x, y)) ∨ ∃xS=(x)
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The rewritten query Q′2 is ranked (using the variable order x, y) and is
equivalent to Q2, hence P(Q2) = P(Q′2) and

P(Q′2) =1− (1−P(∃x∃y(S<(x, y) ∧ S>(x, y))))(1−P(∃xS=(x)))

The reader may continue the calculation by noting that x is a separator
variable in ∃y(S<(x, y) ∧ S>(x, y)).

We end this section on some historical notes on checking indepen-
dence for FO formulas. For any atom A, denote ground(A) the set of
its groundings. The term “shattered” was introduced by de Salvo Braz
et al. [2005] who called a sentence shattered if for any pair of atoms
A1, A2, their sets of grounded atoms are either identical or disjoint,
ground(A1) = ground(A2) or ground(A1) ∩ ground(A2) = ∅. No-
tice that our use of the term “shattered” in Definition 4.4 is differ-
ent. If for all atoms A1 in Q1 and A2 in Q2 we have ground(A1) ∩
ground(A2) = ∅, then clearly Q1, Q2 are independent. Miklau and Su-
ciu [2007] showed that the converse fails in general: there exists sen-
tences Q1, Q2 that are independent yet have common groundings. For
example, considerQ1 = ∃x∃y∃z∃u(R(x, y, z, z, u)∧R(x, x, x, y, y)) and
Q2 = R(a, a, b, b, c), where a, b, c are three distinct constants. On one
hand the tuple t = R(a, a, b, b, c) occurs as grounding for both queries
(since t ∈ ground(R(x, y, z, z, u))). On the other hand, we claim that
Q1, Q2 are independent. Indeed, the only term in the DNF lineage
FQ1,D that contains the tuple t is t = R(a, a, b, b, c) ∧ R(a, a, a, a, a),
and it is absorbed by the term R(a, a, a, a, a) ∧R(a, a, a, a, a).

The Dichotomy Theroem

Recall that we assume all input relations to be tuple-independent.

Theorem 4.5. LetQ be any query in FO¬un,∃,∨,∧. Assume w.l.o.g. that
Q is shattered, and ranked. Then:

• If the lifted inference rules succeed on Q then computing P(Q)
is in polynomial time in the size of the input database; in this
case we say that Q is liftable.
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• If the lifted inference rules fail on Q, then computing P(Q) is
provably #P-hard in the size of the input database; in this case
we say that Q is not liftable.

The proof of the first item is straightforward. The proof of the sec-
ond item is significantly harder, and can be found in Dalvi and Suciu
[2012].

We illustrate a simple liftable query that requires the use of the in-
clusion/exclusion formula. Consider the following conjunctive query:

Q =∃x∃y∃u∃v(R(x) ∧ S(x, y) ∧ T (u) ∧ S(u, v))

The query can be written as a conjunction of two sentenceQ = Q1∧Q2
where:

Q1 =∃x∃yR(x) ∧ S(x, y) Q2 =∃u∃vT (u) ∧ S(u, v)

Notice that, although the query is hierarchical, Theorem 4.2 does not
apply, because the query has self-joins. In particular, we cannot apply
the Join rule: P(Q1 ∧ Q2) 6= P(Q1)P(Q2) because Q1, Q2 are depen-
dent, since they share the relation symbol S. Instead we apply inclu-
sion/exclusion, and write P(Q) = P(Q1) + P(Q2)−P(Q1 ∨Q2). The
probabilities of Q1 and Q2 can be computed easily since both are hi-
erarchical queries without self-joins. We discuss how to compute the
probability ofQ1∨Q2. We first rename uwith x inQ2, then use the fact
that the existential quantifier commutes with disjunction, therefore:

Q1 ∨Q2 =∃x[(R(x) ∧ ∃yS(x, y)) ∨ (T (x) ∧ ∃vS(x, v))]

Now x is a separator variable, because it occurs in all atoms, and it
occurs on the first position of both S-atoms. Therefore, we apply the ∃
rule, then simplify the first-order formula by applying the distributiv-
ity law

P(Q1 ∨Q2) =1−
∏
a∈D

(1−P((R(a) ∧ ∃yS(a, y)) ∨ (T (a) ∧ ∃vS(a, v))))

=1−
∏
a∈D

(1−P((R(a) ∨ T (a)) ∧ ∃yS(a, y)))

=1−
∏
a∈D

(1−P((R(a) ∨ T (a)))P(∃yS(a, y)))
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and from here it is easy to compute the remaining probability expres-
sions.

Which queries are not liftable? The dichotomy theorem gives us
a procedure to check liftability, namely apply the rules and see if
they fail, but this does not given any intuition of how the non-liftable
queries look like. In general, no other characterization of liftable/non-
liftable queries is known, and the query complexity for checking
whether the query is in PTIME or #P-hard is open. A good represen-
tative list (but still incomplete) of non-liftable queries are the queries
Hk below:

H0 =∃x0∃y0R(x0) ∧ S(x0, y0) ∧ T (y0)
H1 =∃x0∃y0R(x0) ∧ S1(x0, y0) ∨ ∃x1∃y1S1(x1, y1) ∧ T (y1)
H2 =∃x0∃y0R(x0) ∧ S1(x0, y0) ∨ ∃x1∃y1S1(x1, y1) ∧ S2(x1, y1)

∨ ∃x2∃y2S2(x2, y2) ∧ T (y2)
H3 =∃x0∃y0R(x0) ∧ S1(x0, y0) ∨ ∃x1∃y1S1(x1, y1) ∧ S2(x1, y1)

∨ ∃x2∃y2S2(x2, y2) ∧ S3(x2, y2) ∨ ∃x3∃y3S3(x3, y3) ∧ T (y3)
H4 = · · ·

It is easy to check (and we invite the reader to verify) that no lifted
inference rule applies to Hk, for any k ≥ 0. In fact, Dalvi and Suciu
[2012] prove that for every k ≥ 0, the probability computation prob-
lem P(Hk) is #P-hard in the size of the database. Notice that all queries
Hk for k ≥ 1 are hierarchical (H0 is, of course, non-hierarchical). We
will return to these queries in Chapter 5.

4.5 Negation

In this section we examine queries beyond FO¬un,∃,∨,∧ or FO¬un,∀,∨,∧.
One can apply the lifted inference rules to any sentence (Boolean
query) in FO, and when they succeed, then the query is computable in
polynomial time. The question is what can we say when the rules fail
on some query Q: is this because Q is hard, or because the rules are
insufficient to handle such queries? We note that checking indepen-
dence is undecidable in FO, and the same can be shown for checking
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whether a variable is a separator variable, so it only makes sense to
ask this question for fragments of FO where the independence test
is decidable. Queries in FO¬un,∃,∨,∧ and FO¬un,∀,∨,∧ admit a unique
canonical form and, hence, independence is decidable; here we exam-
ine other such languages.

Two extensions of unate queries have been considered in the liter-
ature. Fink and Olteanu [2014] studied non-repeating relational algebra
expressions. These are expressions in the relational algebra, i.e. using
the operators selection, projection, join, union, and difference, where
no relational symbol is allowed to occur more than once. Such expres-
sions are still unate (since every symbol occurs at most once), but the
unrestricted use of the difference operator results in arbitrary combi-
nations of ∃ and ∀ quantifiers. They established the following result:

Theorem 4.6. Let Q be a non-repeating relational algebra expression.

• If Q is hierarchical, then P(Q) can be computed in polynomial
time.

• If Q is non hierarchical, then P(Q) is #P-hard in the size of the
database.

The formal definition of a hierarchical query is an extension of that
for first-order sentences, but it is rather subtle because of the need
to define precisely what a variable is, and when does it “occur” in a
relation name. For example, in an expression like S−R×T , assuming
S binary and R, T are unary, the first attribute of S “occurs” in R, and
the second attribute “occurs” in T . The theorem gives a dichotomy
for non-repeating relational algebra expressions; we refer the reader
to Fink and Olteanu [2014] for details.

A second extension was to FO¬,∀,∨,∧ and FO¬,∃,∨,∧, and is dis-
cussed by Gribkoff et al. [2014a]. Unlike unate formulas, a relational
symbol may occur both positively and negatively; the only restriction
being that the query expression can use only one type of quantifier.
While a full characterization of the complexity remains open for these
two languages, the authors have shown that the rules need to be ex-
tended with resolution in order to be complete. To illustrate, consider
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the following constraint:

Γ =∀x∀y(R(x) ∨ S(x, y)) ∧ (¬S(x, y) ∨ T (y))

None of the lifted inference rules apply to this query. In fact, if we
remove the negation operator, then we obtain a constraint that is the
dual of H1, which we have seen is #P-hard. This means that any infer-
ence rules that compute this query must use in an essential way both
atoms S(x, y) and ¬S(x, y).

Resolution is the logical inference method that takes two clauses
of the form (A1∨A2∨· · ·∨L), (¬L∨B1∨B2∨ . . .) and adds the clause
(A1∨A2∨· · ·∨B1∨B2∨· · · ). In other words, writingA = ¬(A1∧A2 · · · )
and B = (B1 ∨ B2 ∨ · · · ), resolution takes (A ⇒ L) and (L ⇒ B) and
produces (A⇒ B).

Resolution may help the lifted inference rules get unstuck. Contin-
uing our example, after applying resolution to Γ we obtain the new
clause (R(x) ∨ T (y)):

Γ =∀x∀y(R(x) ∨ S(x, y)) ∧ (¬S(x, y) ∨ T (y)) ∧ (R(x) ∨ T (y))
=∀x∀y(R(x) ∨ S(x, y)) ∧ (¬S(x, y) ∨ T (y))

∧R(x)
∨
∀x∀y(R(x) ∨ S(x, y)) ∧ (¬S(x, y) ∨ T (y)) ∧ T (y)

=∀x∀y[(¬S(x, y) ∨ T (y)) ∧R(x)]∨
∀x∀y[(R(x) ∨ S(x, y)) ∧ T (y)]

=∀x∀y(¬S(x, y) ∨ T (y)) ∧ ∀xR(x)∨
∀x∀y(R(x) ∨ S(x, y)) ∧ ∀yT (y)

Hence,

P(Γ) = P(∀x∀y(¬S(x, y) ∨ T (y)) ∧ ∀xR(x))
+ P(∀x∀y(R(x) ∨ S(x, y)) ∧ ∀yT (y))
−P(∀x∀y(¬S(x, y) ∨ T (y)) ∧ ∀xR(x)

∧ ∀x∀y(R(x) ∨ S(x, y)) ∧ ∀yT (y))
= P(∀x∀y(¬S(x, y) ∨ T (y))) ·P(∀xR(x))

+ P(∀x∀y(R(x) ∨ S(x, y))) ·P(∀yT (y))
−P(∀xR(x) ∧ ∀yT (y)).
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We applied inclusion/exclusion to compute P(Γ) and used sim-
ple equivalences of first-order sentences. The remaining probabil-
ity expressions can be computed easily using a few lifted inference
rules.

We end with a remark on the complexity of applying the lifted in-
ference rules. Most rules have preconditions, e.g. the query must be of
a certain pattern, or a variable must be a separator variable, etc. To ap-
ply a lifted inference rule to a queryQwe must first find an equivalent
expression Q′ ≡ Q such that Q′ satisfies the conditions of some rule.
For Unions of Conjunctive Queries, query equivalence is decidable
and NP-complete; in fact it suffices to first compute the minimal query
Q′ equivalent to Q (which is uniquely defined up to isomorphism),
then apply the rules to the minimized query (and the same holds for
FO¬un,∃,∨,∧ and FO¬un,∀,∨,∧). Resolution is just another tool in our
toolbox for proving query equivalence, needed for queries that make
true use of negation. In general, however, it is undecidable whether
to FO queries are equivalent, by Trakhtenbrot’s theorem, see Libkin
[2004]. This means that it is unlikely to extend the lifted inference rules
to the entire FO.

4.6 Symmetric Databases

A symmetric probabilistic relation is a tuple-independent relation
where every ground tuple over the domain has the same probability.
A symmetric probabilistic database is a database where each relation
is a symmetric probabilistic relation. Notice that the probability may
differ between relations, but will be the same for all tuples belonging
to the same relation.

Symmetric databases were motivated by Markov Logic Networks,
where the weights are associated to formulas rather than data. When
an MLN is converted to a tuple-independent database, as described in
§2.6, then the newly introduced relations A are symmetric.

When the database is symmetric then we can use de Finetti’s ex-
changeability theorem in addition the rules in §4.2. Stated in our set-
ting, the theorem says the following.
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Fix a Boolean query Q, and suppose R1, R2, . . . , R` are all unary
relations occurring in Q. Suppose the domain has size n. Fix relational
instances for all ` unary relations, Ri ⊆ [n] for i ∈ [`], and, for each
subset S ⊆ [`] define:

CS =
⋂
i∈S

Ri ∩
⋂
i 6∈S

R̄i

We call the 2` unary relations CS the cells defined by the relations Ri.
Consider the conditional probability P(Q|R1, . . . , R`). By de Finetti’s
exchangeability theorem, this probability depends only on the cardi-
nalities of the cells, denoted kS = |CS |, thus we obtain:

P(Q|R1, . . . , R`) =P(Q|(kS)S⊆[`]) (4.1)

We invite the reader to pause and reflect about this statement. In par-
ticular, note that the statement is false if one of the relations Ri is not
unary: for example if Ri is binary, then a particular instance of Ri rep-
resents a graph, and the probability ofQ depends not just on the num-
ber of edges ki, but also on the entire degree sequence, and on much
more [Grohe, 2017, pp.105]. Thus, de Finetti’s theorem allows us to
prove Equation 4.1 only when all relationsRi are unary. From here we
derive:

P(Q) =
∑

kS=0,n,S⊆[`]

∏
S⊆[`]

(
n

kS

) ∏
i∈[`]

p
k{i}
i (1− pi)n−k{i}P(Q|(kS)S⊆[`])

where pi is the probability of a tuple in Ri (the same for all tuples
in Ri). Since the number of relations is constant, so is the number of
cells, and the sum has only polynomially many terms, hence P(Q) is
reduced to the problem of computing P(Q|(kS)S⊆[`]) forall k1, k2, . . .

Sometimes the latter is computable in PTIME, even if computing P(Q)
is #P-hard over general (asymmetric) databases.

Example 4.4. Consider H0 = ∀x∀y(R(x) ∨ S(x, y) ∨ T (y)). Consider
a symmetric database over a domain of size n, where every tuple in
R has probability pR, and similarly tuples in S, T have probabilities
pS , pT respectively. Fix two relation instancesR, T ⊆ [n], denote kR, kT
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their cardinalities. Then

P (H0|kR, kT ) = pn
2−kRkT
S

P (H0) =
∑

kR,kT=0,n

(
n

kR

)(
n

kT

)
pkRR · (1− pR)n−kR

· pkTT (1− pT )n−kT · pn
2−kRkT
S

The first line holds because the clause (R(x)∨S(x, y)∨T (y)) is already
satisfied by the kRkT tuples x ∈ R, y ∈ T , thus S must contain all
remaining n2 − kRkT tuples. In this simple example the conditional
probability depends only on the cardinalities kR, kT , and there was no
need to consider all four cells R ∩ T,R ∩ T̄ , R̄ ∩ T, R̄ ∩ T̄ .

The language FOk consists of all FO sentences restricted to k log-
ical variables, see Libkin [2004]. For example, the query H0 above is
in FO2. For another example, ∃x∃y∃z∃u(R(x, y) ∧ S(y, z) ∧ T (z, u))
uses four variables, but is equivalent to ∃x∃yR(x, y) ∧ (∃xS(y, x) ∧
(∃yT (x, y))), hence it is in FO2. Van den Broeck et al. [2014] prove
that every query in FO2 can be computed in PTIME over symmetric
databases. For example, all queries Hk described earlier can be com-
puted in PTIME over symmetric databases. The proof uses, in essence,
de Finetti’s exchangeability theorem, Equation 4.1 above, then shows
that if all remaining relations are binary, then the conditional proba-
bility can be computed in PTIME. We refer to Niepert and Van den
Broeck [2014] for a more detailed discussion of finite exchangeability
as it applies to lifted inference.

Clearly, if a query is liftable, according to the rules in §4.2, then it
is also computable in PTIME on symmetric databases. The result by
Van den Broeck et al. [2014] shows that some #P-hard queries can be
computed in PTIME if the input database is restricted to be symmetric,
by applying de Finetti’s theorem to the unary relations. This raises
two questions. Are all queries in FO be computable in PTIME over
symmetric databases? And is de Finetti’s theorem on unary relations
the only new rule that we need over symmetric databases?

Gribkoff et al. [2014a] answer both questions negatively. First, they
prove that there exists a sentence in FO3 for which computing the
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probability on a symmetric database is #P1-complete. They also prove
that there exists a conjunctive query whose complexity over symmet-
ric databases is #P1-complete. The class #P1 consists of all problems in
#P over a unary alphabet, and is a complexity class that is difficult to
study. Only a few hard problems are known for this class, and none is
“natural”; the hard queries described in Gribkoff et al. [2014a] are not
“natural”. For many natural queries, their complexity over symmetric
databases is open, for example we do not know the complexity of the
query ∃x∃y∃z(R(x, y) ∧ S(y, z) ∧ T (z, x)) over symmetric databases.

Second, Gribkoff et al. [2014a] show that the following query can
be computed in PTIME over symmetric databases:

∀x∀y∀u∀v(S(x, y) ∨ ¬S(u, y) ∨ S(u, v) ∨ ¬S(x, v))
DeFinetti’s theorem cannot be applied since there are no unary sym-
bols. Instead, the algorithm described by Gribkoff et al. [2014a] uses
dynamic programming over the domain [n]. Kazemi et al. [2016] de-
scribe an alternative algorithm that performs recursion over the do-
main size within the query plan. The complexity of this query over
asymmetric databases is open to date.

4.7 Extensions

The positive results discussed so far are restricted to databases that
are tuple-independent. The negative results (#P-hardness) hold only if
one makes no restriction on the tuple-independent database. We sum-
marize here several extensions that have been studied in the literature.

4.7.1 Block-Independent-Disjoint Databases

Dalvi and Suciu [2007a] consider the complexity of query evaluation
on Block-Independent-Disjoint databases. They prove a dichotomy
into #P-hard and PTIME for conjunctive queries without self-joins. For
example consider the following three queries:

q1 =R(x), S(x, y), T (y), U(u, y), V (a, u)
q2 =V (x, y), T (y)
q3 =V (x, y),W (x, y)
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Every underlined attribute represents the key in a possible worlds
of that table. Thus,R(x) is a tuple-independent table, whileU(u, y) has
blocks defined by grouping on the variable u (and a possible world in-
cludes at most one tuple from each u-group). In the first query, a repre-
sents a constant. Recall that a disjoint project operator assumes that all
duplicates being eliminated are exclusive probabilistic events, hence
their probabilities can be added up. Using this operator, the probabil-
ity of q1 can be computed in PTIME, as illustrated below:

P(q) =
∑
b∈D

P(R(x), S(x, y), T (y), U(b, y), V (a, b))

=
∑
b∈D

P(R(x), S(x, y), T (y), U(b, y)) · p(V (a, b))

=
∑
b∈D

∑
c∈D

P(R(x), S(x, c), T (c), U(b, c)) · p(V (a, b))

=
∑
b∈D

∑
c∈D

P(R(x), S(x, c)) · p(T (c)) · p(U(b, c)) · p(V (a, b))

=
∑
b∈D

∑
c∈D

(1−
∏
d∈D

(1− p(R(d)) · p(S(d, c)))) ·

p(T (c)) · p(U(b, c)) · p(V (a, b))

The first line corresponds to a disjoint project operator that elimi-
nates the variable u: since all values of u occur with the same key value
a in V (a, v), their corresponding events are disjoint, hence the proba-
bilities can be added up. Next, in each term, the value u = b becomes
a key in the relation U(u, y), allowing us to do a disjoint projection of
the variable y. The rest of the query is treated like a hierarchical query
over a tuple-independent database.

On the other hand, both queries q2 and q3 are proven to be #P-hard
in Dalvi and Suciu [2007a].

The paper establishes a dichotomy for conjunctive queries without
self-joins over BID tables into PTIME and #P-hard. Recall that, over
tuple-independent databases, a conjunctive query without self-joins
is in PTIME iff it is hierarchical, and it is not hard to see that the prob-
lem “give a query, is it hierarchical?” is in AC0. On the other hand,
Dalvi and Suciu [2007a] proves that the problem “given a query, is it
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computable in PTIME over BID tables?” is PTIME-complete: this rules
out a test as simple as the hierarchy test.

The complexity of query evaluation over BID tables is open be-
yond conjunctive queries without self-joins.

4.7.2 Restricting the Input Database

We consider several restrictions on the database that alter the analysis
of lifted query processing.

Functional dependencies Returning to tuple-independent data-
bases, we now restrict the set of possible tuples to satisfy certain func-
tional dependencies. For example, we may declare that x is a key in
S(x, y). The relation S is still tuple-independent, but all possible tu-
ples have distinct values of x. The dichotomy theorem for conjunctive
queries without self-joins proven by Dalvi and Suciu [2007b] already
covered such functional dependencies. A much more elegant and sim-
ple technique was described by Olteanu et al. [2009]. The technique is
very simple: if x → y holds in some relation, then modify the CQ by
adding y to all relations that contain x: the complexity of the modified
query is the same as that of the original query. For example, if x is a
key in S(x, y), then the query ∃x∃yR(x), S(x, y), T (y) is modified to
∃x∃yR(x, y), S(x, y), T (y). More precisely, we iterate over the possible
tuples a ∈ R, and replace each such tuple with (a, b) ∈ R, where b is
the unique value for which (a, b) ∈ S: if no such tuple exists in S then
delete a from R. The modified query R(x, y), S(x, y), T (y) is hierarchi-
cal, hence in PTIME. Extensions beyond conjunctive queries without
self-joins are open.

Databases with mixed probabilistic and deterministic relations
In this model we assume that each relation in the database schema
is marked as being probabilistic or deterministic (in other words, all
tuples have probability = 1). For example, if R is deterministic and
S, T probabilistic, then ∃x∃yR(x), S(x, y), T (y) is in PTIME, because it
admits the safe plan Π∅(Πy(R onx S) ony T ). But if R, T are probabilis-
tic and S deterministic, then ∃x∃yR(x), S(x, y), T (y) is #P-hard. The
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result by Dalvi and Suciu [2007b] covers such cases but only for con-
junctive queries without self-joins. The case of more general queries
is open. When the database consists of both symmetric probabilistic
relations and asymmetric deterministic relations, then queries that are
liftable on symmetric databases remain liftable, as long as the Boolean
rank of the deterministic relations is bounded [Van den Broeck and
Darwiche, 2013].

Queries over databases with a bounded tree-width Amarilli et al.
[2015, 2016] prove that every query in Monadic Second Order logic
(MSO) can be evaluated in linear time over tuple-independent prob-
abilistic databases with a bounded tree-width. This result should be
contrasted with the Dichotomy in §4.4: in that case we restricted the
query and considered arbitrary input databases, while here the query
is unrestricted (any query in MSO), while the databases are restricted
to have bounded tree-width.

The result is an application of Courcelle [1990]’s theorem, which
states that every sentence in MSO can be computed in linear time in
the size of the (deterministic) database, if the database is restricted to
have a bounded tree-width. Courcelle’s theorem consists of translat-
ing the MSO query into a tree-automaton, and this translation is non-
elementary in the size of the query. Amarilli et al. [2015] shows how
to adapt Courcelle’s translation to obtain an automaton that computes
the query on any possible world, i.e. subset of the input database. The
subset is given by adding a bit to each tuple in the database, indicating
whether it is present or absent. Thus, the automaton reads tuples from
the (tree decomposition) of the database, together with the indicator
bit stating whether the tuple is present or not, and computes the query
on the possible world corresponding to the tuples where the indicator
bit is set to 1. Next, they show how to convert the automaton into
a polynomial-time, dynamic programming algorithm that computes
the probability of the query on a randomly chosen world.

A natural question is whether there exists richer classes of proba-
bilistic databases for which every FO query is computable in polyno-
mial time. Amarilli et al. [2016] answer this negatively, by showing
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that there exists a query in first-order logic that is #P-hard on any
class of tuple-independent database instances that has unbounded
tree-width.

4.7.3 Extending the Query Language

We review lifted query evaluation for extended query languages.

Queries with Interpreted Predicates Olteanu and Huang [2009]
considered CQ with inequality predicates, i.e. <. They analyzed the
complexity of queries consisting of the Cartesian product of distinct
relations and an arbitrary set of inequality predicates, as illustrated by
the following two examples:

q1 =∃x∃y∃z∃u∃v∃wR(x), S(y), T (z, u),K(v, w), x < z, y < z, y < v

q2 =∃x∃y∃z∃u∃v∃wK(z, u), S(x, y),M(v, w), z < x < u, v < y < w

The paper describes two results. The first result describes a class
of tractable queries. We say that a query is max-one if, for every atom,
at most one variable in that atom occurs in an inequality predicate.
The paper shows that, for every max-one query, its probability on
tuple-independent databases can be computed in PTIME. The proof
by Olteanu and Huang [2009] consists of showing how to construct
a polynomial-size OBDD (which we define in the next chapter). Here
we prove that a max-one query can be compute in polynomial time
using dynamic programming. For simplicity, we illustrate the proof
on the query q1 above: the general case follows immediately. Choose
any variable that is maximal under the predicates <: such a variable
must exist, otherwise the inequality predicates form a cycle, and the
query is unsatisfiable. For q1, let’s choose z. Suppose w.l.o.g. that the
values in the z-column of the relation T are 1, 2, . . . , n. Thus, n the
largest possible value of the variable z, and we may assume w.l.o.g.
that all values of x and y in the database are < n (since we can re-
move values≥ nwithout affecting the query). On any possible world,
there are two cases: (1) ∃uT (n, u): in that case the query is true iff the
following residual query is true, q′1 = R(x), S(y),K(v, w), y < v. (2)
¬∃uT (n, u): in that case q1 is true iff it is true on the world obtained
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by removing all tuples of the form T (n,−) from the database. Thus,
denoting Pk(−) the probability on the subset of the database where
all values of z are ≤ k, and all values of x, y are < k, we have:

Pn(q1) =P(∃uT (n, u))Pn(q′1) + (1−P(∃uT (n, u)))Pn−1(q1)

Each term on the right hand side is either the probability of a simpler
query (which is computed similarly), or is Pn−1(q1), which is over a
smaller domain.

Second, Olteanu and Huang [2009] consider queries that are not
max-one and describe a large class of #P-hard queries. We refer the
reader to Olteanu and Huang [2009] for the rather technical defi-
nition of this class, and instead will prove that the query q2 is #P-
hard, by reduction from the query H0 = ∃x∃yR(x), S(x, y), T (y). Con-
sider a probabilistic database instanceR,S, T , and assume w.l.o.g. that
all constants in the database are even numbers. Define the instance
K,S,M as follows: the relation S is the same, K = {(i− 1, i+ 1) |
i ∈ R}, M = {(j − 1, j + 1) | j ∈ T}. It follows that the probabilities of
h0 and q2 are equal.

Beyond these two results, the complexity of queries with inequali-
ties is open.

Queries with a HAVING Predicate Ré and Suciu [2009] studied the
complexity of conjunctive queries without selfjoins, with GROUP-BY
and HAVING predicates, with various aggregate functions. They al-
low the input to be a BID database. The exact complexity of such a
query depends on the choice of the aggregate operator (min, max, ex-
ists, count, sum, avg, or count(distinct)), and on the choice of the com-
parison predicate used for that aggregate (=, 6=,≥, >,≤, <). For vari-
ous combinations of these parameters, they proved a trichotomy re-
sult: some queries are in PTIME, others are #P-hard by admit efficient
approximations (i.e. have an FPTRAS), while others are provably hard
to approximate. For example, consider the following Boolean queries:

q1[count(distinct x) ≥ k] =R(x), S(x, y, z)
q2[count(distinct y) ≥ k] =R(x), S(x, y, z)
q3[count(distinct y) ≥ k] =R(x), S(x, y), T (y)
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The first query checks if there are at least k distinct values x satisfying
the body of the conjunctive query, the second checks of there are at
least k distinct values y, and similarly for the third.

The paper proves trichotomy results for various combinations of
aggregate functions and comparison operators. In particular, it shows
that the query q1 is in PTIME, q2 is #P-hard but admits an FPTRAS,
while q3 admits a reduction from #BIS, which is the problem: given a
bipartite graph (X,Y,E), compute the fraction of subsets of X × Y that are
independent sets. #BIS is a complete problem w.r.t. to approximation-
preserving reductions, and thus it is believed to be hard to approxi-
mate. In other words, q3 is believed to be hard to approximate.

The complexity of queries with a HAVING clause is open beyond
conjunctive queries without self-joins.

4.7.4 Lifted Inference from the Graphical Models Perspective

Lifted inference in AI and probabilistic databases share a common
goal: to exploit relational structure for speeding up inference. A key
difference is that the AI community has focused on exploiting the
symmetry and exchangeability found in probabilistic graphical model
templates [Niepert and Van den Broeck, 2014], not on processing
probabilistic data as such. The symmetric weighted model count-
ing problem described in §4.6 unifies these perspectives. Lifted infer-
ence for probabilistic graphical models was proposed by Poole [2003],
spurring a large amount of research on exact inference [de Salvo Braz
et al., 2005, Milch et al., 2008, Sen et al., 2009, Choi et al., 2011, Jha
et al., 2010, Gogate and Domingos, 2011, Van den Broeck et al., 2011,
Kopp et al., 2015, Kazemi et al., 2016]. These works either develop
new inference rules, or speed up an existing set of rules [Kazemi and
Poole, 2014, 2016, Taghipour et al., 2013]. Significant attention has also
gone to approximate lifting techniques that augment sampling, varia-
tional, or message passing algorithms with the ability to exploit sym-
metry [Singla and Domingos, 2008, Kersting et al., 2009, Niepert, 2012,
Van den Broeck et al., 2012, Bui et al., 2013, Venugopal and Gogate,
2014, Jernite et al., 2015, Anand et al., 2017]. The AI community stud-
ies domain complexity as a notion separate from data and query com-
plexity. In this context, domain-lifted inference refers to PTIME com-
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plexity in the size of the domain, regardless of the graphical model or
observed data size [Van den Broeck, 2011]. This community studies
the complexity of lifted inference in Jaeger [2000], Jaeger and Van den
Broeck [2012], Van den Broeck and Davis [2012], Cozman and Mauá
[2015, 2016], as well as the work discussed in §4.6 on the complexity
of symmetric weighted model counting.



5
Query Compilation

The goal of knowledge compilation is to find a compact representation
of a Boolean formula F that can be used to efficiently solve certain
hard problems on F [Darwiche and Marquis, 2002]. In this paper, the
hard problem of interested is model counting, and therefore we define
a compilation of a Boolean formula F to be some representation such
that the (weighted) model count of F can computed in polynomial
time in the size of the representation. Usually, the compilation is some
type of circuit that represents F , designed in such a manner that we
can do weighted model counting efficiently in the size of the circuit.
Huang and Darwiche [2005] have shown that any DPLL-based model
counting algorithm can be modified to construct a compilation of the
Boolean formula, by constructing a circuit from the execution trace
of the algorithm. Many types of circuits have been proposed in the
literature, see the monograph by Wegener [2000] and the framework
by Darwiche and Marquis [2002]; we review the most popular circuits
used for weighted model counting in §5.1.

Jha and Suciu [2011, 2013] defined Query Compilation to refer to
the compilation of the lineage of a query. The fundamental question
in query compilation is: given a fixed query, what is the size of the

292
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compilation, as a function of the input database? We are interested in
this question because it gives us insights into the runtime of inference
methods based on grounding. More precisely, consider any algorithm
for weighted model counting on a Boolean formula, see §3.4. We can
use it to evaluate a queryQ on a probabilistic database as follows. First
ground the query to obtain a Boolean formula FQ,D, then use the algo-
rithm to compute the probability P(FQ,D). The question of interest to
us is: for which queries Q is this grounded method guaranteed to run
in polynomial time in the size of the database? By the Dichotomy The-
orem 4.6, whenever the grounded inference runs in PIME, the queryQ
is also liftable, hence the answer must be a set of liftable queries. In this
chapter we will show that the grounded approach cannot compute ef-
ficiently all liftable queries, by proving that some liftable queries have
exponential size compilation targets. This shows that the lifted infer-
ence methods in Chapter 4 are sometimes exponentially faster that
grounded inference.

5.1 Compilation Targets

We briefly review the main compilation targets used in query compi-
lation.

Free Binary Decision Diagrams These circuits were introduced
by Lee [1959] and later popularized by Akers Jr. [1978], under the
name Binary Decision Diagrams, or Read-Once Branching Programs.
They are referred today as Free Binary Decision Diagrams (FBDD) to
distinguish from the Orderend Binary Decision Diagrams (discussed
next).

Fix a set of Boolean variables X. An FBDD is a rooted DAG F ,
where each internal node u is labeled with a variable X ∈ X, and has
two outgoing edges, labeled 0 and 1; we call its two children the 0-
child and the 1-child respectively. Each sink node is labeled either 0 or
1. Moreover, the FBDD is required to satisfy the following condition:
for any path from the root node to a sink node, each variableX is read
at most once. Figure 5.1a illustrates a simple FBDD.
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(a) An FBDD representing Boolean
formula (¬X)Y Z ∨XY ∨XZ.

(b) A decision-DNNF representing Boolean for-
mula (¬X)Y ZU ∨XY Z ∨XZU .

Figure 5.1: Illustration of compilation targets from Beame et al. [2017].

The FBDD F represents a Boolean formula F , defined as follows.
Associate to each node u of the FBDD a Boolean formula, Fu, defined
inductively as follows: for a 0-sink node, Fu = 0, for a 1-sink node,
Fu = 1, and for any internal node u labeled with a variable X :

Fu = (¬X) ∧ Fu0 ∨X ∧ Fu1 (5.1)

where u0 and u1 are its 0-child and 1-child respectively. Then the

FBDD denotes the formula F def= Fr, where r is the root of the DAG.
Notice that the definition in Equation 5.1 corresponds precisely to a
Shannon expansion. In other words, an FBDD encodes a sequence of
Shannon expansions.

An equivalent way to define the Boolean F represented by the
FBDD F is as program that computes the Boolean formula, as follows.
Let θ be an assignment to the variables X. To compute θ(F ), follow a
certain path in the DAG F , as follows. Set the current node to be the
root node. If X is the variable labeling the current node, then read its
value θ(X): if θ(X) = 0 then continue with the 0-child, otherwise con-
tinue with the 1-child. When reaching a sink node, return θ(F ) as the
label of that sink node (0 or 1). We invite the reader to check that the
definitions are equivalent.



5.1. Compilation Targets 295

If F is an FBDD computing a Boolean formula F , then one can
compute the probability of F using dynamic programming on the
DAG F . We start by setting P(Fu) = 0 for every 0-sink node u,
P(Fu) = 1 for every 1-sink node u, then traverse the DAG bottom-
up, and for each node u we set:

P(Fu) = (1− p(X))P(Fu0) + p(X)P(Fu1)

where u0, u1 are its 0-child and 1-child respectively. This takes linear
time in the size of the DAG F , since each node u is visited only once.

Given a Boolean formula F with n Boolean variables, our goal is
to find a compact FBDD. Once such an FBDD has been constructed,
model counting can be performed in linear time in the size of the
FBDD. However, there are Boolean formulas F for which any FBDD
has size exponential in the number of variables n, as we will illustrate
in §5.2.

Ordered Binary Decision Diagrams Fix a variable order Π; more
precisely, Π is a permutation on the set [n], where n = |X| is the num-
ber of Boolean variables. A Π-Ordered Binary Decision Diagram (OBDD)
is an FBDD with the property that every path from the root to a sink
node reads the variables in the order given by Π: more precisely if
it reads Xi before Xj , then Π(i) < Π(j) [Wegener, 2000, pp.45]. An
OBDD is an Π-OBDD for some Π.

OBDDs where introduced by Bryant [1986]. The main motivation
for restricting the variable order was to simplify the synthesis of the
OBDD. For any Π, there exists a trivial Π-OBDD with 2n − 1 internal
nodes, which consists of a full binary tree. Each path in the tree reads
the variables in the same orderXΠ−1(1), XΠ−1(2), . . ., there are 2n paths,
one for each assignment to the Boolean variables, and the sink nodes
are labeled with the value of the Boolean formula for that assignment.
We want to reduce the size of this OBDD. Define an equivalence re-
lation on the set of nodes, where u, v are equivalent if they represent
the same Boolean formula, Fu = Fv. To reduce the size of the OBDD,
we merge all equivalent nodes into one: this operation is well defined,
because whenever two nodes u, v are equivalent, then their 0-children
are also equivalent, and so are their 1-children. The resulting OBDD is
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called the reduced OBDD, or the canonical OBDD for the given vari-
able order Π. Reducing an OBDD to obtain the reduced (canonical)
OBDD is a process similar to minimizing a deterministic automaton.
Notice that checking formula equivalence Fu = Fv is co-NP complete,
and therefore reducing an OBDD is not an effective procedure. While
for theoretical analysis we always assume that a Π-OBDD is reduced,
in practice systems use some heuristics with false negatives for the
equivalence test, resulting in an OBDD that is not fully reduced.

If every path reads all n variables (in the order Π) then we call the
OBDD complete. The OBDD can then be partitioned into layers, where
layer i reads the variable XΠ−1(i) and both its children belong to layer
i + 1. Notice that a canonical OBDD is not necessarily layered, since
edges may skip layers. Every OBDD can be converted into a complete
OBDD by introducing dummy test nodes at skipped layers, with at
most a factor n increase in the size. The width of a complete OBDD is
the largest number of nodes at each layer. The number of nodes in the
OBDD is ≤ nw, where n is the number of Boolean variables and w is
the width.

An important property of complete OBDDs, which we will use for
query compilation, is that one can synthesize an OBDD for a Boolean
formula F = F1 op F2 from OBDDs for its sub-formulas, where op
is one of ∨ or ∧. Let F1,F2 be complete Π-OBDDs computing F1, F2,
and let w1, w2 be their widths. We construct a Π-OBDD F for F =
F1 op F2, with a width at most w1w2, as follows. The nodes of F are
all pairs (u, v) where u and v are two nodes at the same layer i of F1
and F2 respectively. The 0-child and 1-child of (u, v) are (u0, v0) and
(u1, v1) respectively, where u0, u1 are the children of u in F1 and v0, v1
are the children of v in F2. Since both F1 and F2 are complete, all
nodes u0, u1, v0, v1 are at the same layer i + 1, hence the construction
is well defined. The root of F is (r1, r2), where r1, r2 are the roots of
F1,F2, and the sink nodes of F will be pairs (u, v) where u, v are sink
nodes of F1 or F2 respectively, and its label is u op v. For example,
if we want to compute F1 ∨ F2, then we obtain 4 kind of sink nodes:
(0, 0), (0, 1), (1, 0), (1, 1). The first becomes a 0-sink in F , the last three
become 1-sinks.
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Given a Boolean formula F , our goal is to find a variable order Π
for which the reduced Π-OBDD is smallest. In general, finding the op-
timal order Π is NP-complete, but, as we will show, when the formula
is the lineage of a query then an efficient order can easily be found, or
determine that none exists.

Read-Once Formulas A read-once Boolean expression is an ex-
pression where each Boolean variable occurs only once. In this paper
we restrict read-once expressions to use only the operators ∧,∨,¬; we
do not allow xor or ⇔. Like the previous compilation targets, read-
once expressions have the property that their probability can be com-
puted in linear time in the size of the formula, using two simple rules
P(F1∧F2) = P(F1)P(F2) and P(¬F ) = 1−P(F ) (we use de Morgan’s
laws to we express ∨ in terms of ¬ and ∧), and this justifies our inter-
est in read-once expressions. However, they do not strictly speaking
form a compilation target, since not every Boolean formula F can be
written as a read-once formula. When F can be written as a read-once
expression, then we call it a read-once formula.

Every read-once formula F with n variables admits an OBDD with
≤ n internal nodes. Indeed, let Π be the order in the variables are listed
on the leaves of the read-once expression for F . Then the Π-OBDD for
F can be obtained inductively on the structure of F . If F = F1 ∧ F2
then the order Π is the concatenation of the orders of the variables in
F1 and F2 (which are disjoint sets, by assumption). The OBDD for F
is obtained by re-routing the 1-sink node of F1 to the root node of F2.
Contrast this to the earlier construction for synthesizing and OBDD
for F1 ∧ F2 from two Π-OBBDD’s for F1, F2; here F1, F2 have disjoint
sets of variables, and the construction is much simpler. Similarly, the
OBDD for F1 ∨ F2 is obtained by re-routing the 0-sink node of the
OBDD for F1 to the root node of F2. Finally, an OBDD for ¬F1 is ob-
tained from an OBDD for F1 by switching the 0- and 1-sink nodes.
Thus, the OBDD for any read-once formula has linear size. This con-
struction breaks if the read-once formula uses xor or⇔, see Wegener
[2000].
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DNNFs and Variants Darwiche [2001] introduced Deterministic De-
composable Negation Normal Forms, or d-DNNF’s. A d-DNNF is a
rooted DAG where the leaves are labeled with Boolean variables, and
the internal nodes are labeled with ∧,∨,¬. There are three restric-
tions on the circuit. First all negations are pushed down to the leaves,
hence the term negation normal form, NNF. Second, the subtrees of a
∧ node have disjoint sets of variables, in which case we say that the
node is decomposable, hence the D in DNNF. Finally, the children of a ∨
node define mutually exclusive expressions: if u, v are two such chil-
dren denoting the formulas Fu, Fv respectively, then Fu ∧ Fv ≡ false:
then the node is called deterministic, hence the d in d-DNNF. Given
a d-DNNF for a Boolean formula F , one can compute the probabil-
ity of F in linear time in the size of the d-DNNF. Notice that a d-
DNNF is not effectively checkable: checking if a ∨ node is determinis-
tic is coNP-hard. Huang and Darwiche [2005] introduced a restricted
class, called decision-DNNF, where each ∨ node must be of the form
[(¬X) ∧ F ] ∨ [X ∧G]. In effect, a ∨ nodes is similar to a decision node
of an FBDD: it checks the variableX and returns either the left child F
or the right child G. A Decision-DNNF can be checked effectively. Al-
though Decision-DNNF’s were defined as a restriction on d-DNNFs,
we prefer to define them as an extension of FBDDs.

We define a Decision-DNNF to be an FBDD extended with a new
kind of node, ∧, such that for every ∧-node with children u and v, the
subtrees rooted at u and v have disjoint sets of variables. Figure 5.1b
illustrates a simple Decision-DNNF. The probability of a Boolean for-
mula is computable in linear time in the size of the Decision-DNNF,
using simple dynamic programming. For a decision node u with chil-
dren u0, u1:

Fu =(1− p(X)) ·P(Fu0) + p(X) ·P(Fu1).

For an AND node u with children v, w:

Fu =P(Fv) ·P(Fw).

Finally, Darwiche [2011] introduces another restriction of d-
DNNF’s, called Sentential Decision Diagrams, SDD, which impose two
restrictions on d-DNNFs. First, every internal node is of the form:
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(G0 ∧F0)∨ (G1 ∧F1)∨ · · · such that all Gi are mutually exclusive and
exhaustive. That is, Gi ∧ Gj ≡ false, for all i 6= j and

∨
iGi ≡ true.

Hence, the node has 2k children, corresponding to the expressions
G0, F0, G1, F1, etc. Second, variables are traversed in a fixed order, in
the following sense. Let Π be a binary tree whose leaves are labeled
with the variables X of the Boolean expression: Π is called a v-tree.
An SDD is called a Π-SDD if, either:

1. Π is a single leaf node representing the variable X and the SDD
is a literal of X or a constant, or,

2. denoting Π1,Π2 the two subtrees of Π’s root node, the children
G0, G1, . . . of the SDD’s root node are Π1-SDDs, and the children
F0, F1, . . . are Π2-SDDs.

Any SDD is required to be a Π-SDD for some v-tree Π. SDDs naturally
generalize OBDDs: an OBDD is a special case of an SDD where each
internal node has the form (¬X) ∧ F0 ∨ X ∧ F1, and the v-tree Π is a
right-deep linear tree, corresponding to a linear order of the variables.

The trace of a DPLL Algorithm Recall from §3.4 that today’s exact
model counting algorithm are based on the DPLL family of algorithm.
Huang and Darwiche [2005] observed that the trace of any DPLL al-
gorithm is a compilation target. More precisely:

• The trace of the basic DPLL algorithm is a complete binary deci-
sion diagram (complete binary tree).

• The trace of a DPLL algorithm with caching and static variable
order is an OBDD.

• The trace of a DPLL algorithm with caching and dynamic vari-
able order is an FBDD.

• The trace of a DPLL algorithm with caching, dynamic variable
order, and components, is a Decision-DNNF.
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Indeed, a Shannon expansion step corresponds to constructing a
decision node. Caching, and reusing values from the cache, corre-
sponds to sharing nodes in a DAG. Changing dynamically the vari-
able to expand corresponds to different variable orders in the FBDD.
And, finally, the “components” extension of the DPLL algorithm cor-
responds to a decomposable ∧ in a Decision-DNNF.

5.2 Compiling UCQ

Query compilation for some query Q means first computing the lineage
FQ,n of the query on the domain [n], then compiling FQ,n into one of
the compilation targets described in the previous section. The main
problem that we study is the size of the resulting compilation, as a
function of the domain size n. If this size is large, e.g. exponential in
n, then any DPLL-based algorithm whose trace is that type of com-
pilation will also run in exponential time. If the size is small, then in
most cases it turns out that we can also design a specialized DPLL
algorithm to compute the query with that running time.

We will present several lower and upper bounds for the com-
pilation size. Most of these results were presented for Unions of
Conjunctive Queries (UCQ), but they carry over immediately to
Unate First Order Logic with a single type of quantifiers (∃ or ∀),
similarly to Chapter 4. To keep the discussion simple, we present
these results in the context of Unions of Conjunctive Queries. Recall
that we denoted FO∃,∨,∧ the positive, existential fragment of FO.
FO∃,∨,∧ is equivalent to Boolean UCQ queries, which are usually
written as a disjunction of conjunctive queries

∨
mQm. The conversion

from FO∃,∨,∧ to an expression of the form
∨
mQm may lead to an

exponential blowup in size, but this is of no concern to us, since we
only study the data complexity, and for that purpose the query is
treated as a constant. In this chapter we will use FO∃,∨,∧ and UCQ
interchangeably, with some abuse.
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5.2.1 Query Compilation to Read-Once Formulas

Recall that we defined hierarchical queries in §4.3. We give here an al-
ternative, equivalent definition [Suciu et al., 2011, pp.72]. An expres-
sion in FO∃,∨,∧ is called hierarchical if for any existentially quanti-
fied sub-expression ∃xQ, the variable x occurs in all atoms in Q. A
UCQ query is called hierarchical if it is equivalent to a hierarchical
expressions. The reader may check that, for FO∃,∨,∧, this definition
is equivalent1 to Def. 4.3. For example, we have argued in §4.3 that
∃x∃y(R(x) ∧ S(x, y)) is hierarchical: it is not a hierarchical expression
according to our new definition, but it is equivalent to the hierarchical
expression ∃x(R(x) ∧ ∃yS(x, y)). An expression in FO∃,∨,∧ is called
non-repeating if every relational symbol occurs at most once.

The following gives a complete characterization of UCQ queries
that have read-once lineages:

Theorem 5.1. Jha and Suciu [2013] Let Q be a UCQ query. Then the
following conditions are equivalent.

• Q is equivalent to an expression that is both hierarchical and
non-repeating.

• For every n ≥ 0, the lineage FQ,n is a read-once Boolean formula.

The proof in one direction is straightforward: if Q is an expression
that is both hierarchical and non-repeating, then its lineage expression
as defined in §3.3 is also read-once: we need the non-repeating prop-
erty to ensure that FQ1,n ∨ FQ2,n and FQ1,n ∧ FQ2,n are read-once, and
we use the hierarchy property to ensure that

∨
i∈[n] FQ[i/x],n is read-

once. The proof in the other direction is rather technical, see Jha and
Suciu [2013]: it shows that if the lineage FQ,n over a domain of size
n = Ω(km) is read-once, then it can be converted into a hierarchical,
non-repeating expression for Q; here m is the maximum arity of all
relational symbols, and k the number of variables plus number of re-
lational symbols in Q.

1The two definitions do not agree for FO. For example ∃x∀y(R(y) ∧ S(x, y)) is
hierarchical according to Def. 4.3, but we cannot push ∃x past ∀y.



302 Query Compilation

Recall that the class of conjunctive queries is the same as FO∃,∧.
Any conjunctive query that is hierarchical by Def. 4.3 admits a hier-
archical expression by simply pushing ∃-quantifiers down. Moreover,
a conjunctive query without self-joins is trivially non-repeating. This
implies:

Corollary 5.2. Olteanu and Huang [2008] Let Q be a conjunctive
query without self-joins. Then Q is hierarchical iff for every n ≥ 0,
the lineage FQ,n is a read-once Boolean formula.

We illustrate with several examples.
Consider the query expression Q = ∃x(R(x)∧∃yS(x, y)), which is

both hierarchical and non-repeating. The lineage expression is:

R(1) ∧ (S(1, 1) ∨ S(1, 2) ∨ · · · ) ∨R(2) ∧ (S(2, 1) ∨ · · · ) ∨ · · ·

and is obviously read-once.
Next, we consider two queries that we have seen in §4.4 can be

computed in PTIME. We start with:

Q =∃x∃y(R(x) ∧ S(x, y)) ∨ ∃u∃v(T (u) ∧ S(u, v))

Its lineage is always read-once because it is equivalent to the following
expression that is both hierarchical and non-repeating:

Q =∃x[(R(x) ∨ T (x)) ∧ ∃yS(x, y)]

The second query is:

Q =∃x∃y∃u∃v(R(x) ∧ S(x, y) ∧ T (u) ∧ S(u, v))

While this query is hierarchical, it cannot be written without repeat-
ing the symbol S, hence its lineage is not always read-once: we invite
the reader to check that the lineage FQ,3 is not read-one by the char-
acterization of read-once Boolean formulas described by Golumbic
et al. [2006]. This shows that liftable queries are not restricted to those
whose lineage is read-once.

We end this section with a discussion on the subtle requirement
that the expression for Q needs to be simultaneously hierarchical and
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non-repeating to guarantee read-onceness. It is insufficient to find sep-
arately a hierarchical and a read-once expression for Q. For example,
consider the query H1:

H1 =∃x0∃y0R(x0) ∧ S(x0, y0) ∨ ∃x1∃y1S(x1, y1) ∧ T (y1)

The following two equivalent expressions are hierarchical and non-
repeating respectively, but none has both properties:

H1 ≡∃x0(R(x0) ∧ ∃y0S(x0, y0)) ∨ ∃y1(∃x1(S(x1, y1)) ∨ T (y1))
H1 ≡∃x∃y(S(x, y) ∧ (R(x) ∨ T (y)))

Computing the probability of H1 is #P-hard, so obviously its lineage
cannot be read-once. This leads to the question whether such coun-
terexamples are restricted to #P-hard queries. The answer is negative:
the following two expressions [Suciu et al., 2011, pp.112] are equiva-
lent, one is hierarchical, the other is non-repeating, the query is liftable
(hence computable in polynomial time), yet is lineage is not read-once:

Q ≡∃x1∃y1(A(x1) ∧B(x1) ∧ C(y1) ∧ F (y1))
∨ ∃x2∃y2(A(x2) ∧D(x2) ∧ E(y2) ∧ F (y2))

Q ≡∃x∃y[(A(x) ∧ ((B(x) ∧ C(y)) ∨ (D(x) ∧ E(y))) ∧ F (y2))]

We invite the reader to prove that every query over a unary vocabu-
lary is liftable using the inference rules in §4.2; this proves that Q is
liftable. To prove that its lineage is not read-once in general, it suffices
to check that the primal graph of the lineage FQ,2 has an induced P4
path (see Golumbic et al. [2006]).

5.2.2 Query Compilation to polynomial size OBDDs

UCQ Queries with a polynomial size OBDD can be fully character-
ized syntactically, using a syntactic property called inversion. Let Q
be a UCQ query expression. We assume in this section that the query
Q is shattered and ranked, see Def. 4.4; the results in this section ap-
ply immediately to arbitrary UCQ, because shattering and ranking
(Lemma 4.3) do not affect the lineage.
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Consider an FO∃,∨,∧ expression Q, and let A be an atom in Q. The
context of A is the sequence of existentially quantified variables pre-
ceding A, and we denote it with ∃x1∃x2 · · · ∃xk. The order matters, i.e.
the context consists of the order in which the existential quantifiers
were introduced. Notice that if Q is a hierarchical expression, then the
atom A must contain all variables in the context.

Definition 5.1. [Suciu et al., 2011, pp.112] A query expression Q in
FO∃,∨,∧ is called inversion-free if the following holds. For any rela-
tional symbol R of arity k there exists a permuation πR on [k] such
that, for every atom A of Q that refers to the symbol R, the context
of A consists of exactly k variables, ∃x1∃x2 · · · ∃xk, and the atom is
A = R(xπR(1), xπR(2), . . . , xπR(k)).

A query is inversion-free if it is equivalent to an inversion-free ex-
pression.

An inversion-free expression is, in particular, a hierarchical expres-
sion; moreover, it requires that atoms referring to the same relational
symbol use the variables in their context in the same order. For exam-
ple consider the following two queries:

Q = ∃x1(R(x1) ∧ ∃y1S(x1, y1)) ∨ ∃x2(∃y2S(x2, y2) ∨ T (x2))
H1 = ∃x1(R(x1) ∧ ∃y1S(x1, y1)) ∨ ∃y2(∃x2S(x2, y2) ∨ T (y2))

The first query is inversion free, because in both atoms S the variables
occur in the same order as the existential quantifiers that introduced
them: ∃x1∃y1S(x1, y1) and ∃x2∃y2S(x2, y2). The second query is not
inversion-free because the variables in the two atoms S use reverse
orders relative to the existential quantifiers, i.e. ∃x1∃y1S(x1, y1) and
∃y2∃x2S(x2, y2). We cannot swap the quantifier order ∃y2∃x2 to ∃x2∃y2
because the context for T (y2) consists only of ∃y2. For a more subtle
example, consider the query H2 (introduced in §4.4):

H2 =∃x0R(x0) ∧ ∃y0S1(x0, y0) ∨ ∃x1∃y1S1(x1, y1) ∧ S2(x1, y1)
∨ ∃y2(∃x2S2(x2, y2) ∧ T (y2))

The first occurrence of S1 requires x0 to be introduced before y0, and
therefore in the second occurrence of S1, x1 must be introduced before
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y1 (we cannot swap ∃x1∃y1 for that reason). But that conflicts with
the order required by the second S2, which needs y2 to be introduced
before x2. Hence, H2 too has an inversion. It is easy to check that all
queries Hk, k ≥ 0 in §4.4 have an inversion. On the other hand, every
hierarchical, non-repeating query expression is inversion-free.

We give an equivalent definition of inversion-free queries, perhaps
more intuitive. We will assume that Q is a hierarchical query expres-
sion. Recall from §4.3 that at(x) denotes the set of atoms that con-
tain the variable x. The unification graph of Q is defined as follows.
Its nodes consists of pairs of variables (x, y) that occur in a common
atom. And there is an undirected edge from (x, y) to (x′, y′) if there ex-
ists two atoms containing x, y and x′, y′ respectively, such that the two
atoms can be unified and their most general unifier sets x = x′ and
y = y′. Then an inversion is a path (x0, y0), (x1, y1), . . . , (xk, yk) where
at(x0) ⊃ at(y0) and at(xk) ⊂ at(yk). The length of the inversion is de-
fined as k. (We can assume w.l.o.g. that at(xi) = at(yi) for i = 1, k − 1:
otherwise, if for example at(xi) ⊃ at(yi), then we consider the shorter
inversion from (xi, yi) to (xk, yk).) One can check that the query ex-
pression Q is inversion-free (as defined earlier) iff it has no inversion
(as defined here). For example, every query Hk has an inversion of
length k, namely (x0, y0), (x1, y1), · · · , (xk, yk).

Fix a domain size n, and recall that Tup([n]) denotes the set of
ground tuples over the domain [n].

Theorem 5.3. Jha and Suciu [2013] Let Q be a shattered and ranked
UCQ. Then the following hold:

• If Q is inversion free, then for all n there exists an order Π on
Tup[n] such that the reduced Π-OBDD for the lineage FQ,n has
width ≤ 2|Q| = O(1), and size O(nk), where k is the maximum
arity of any relation in Q.

• If Q is a minimal UCQ (§4.4), and has an inversion of length k,
then for all n and for any order Π on Tup[n], the reduced OBDD
of lineage FQ,n has size Ω(k2n/2k).

The theorem thus proves a dichotomy of UCQ queries into those
whose lineage admits a polynomial size OBDD, and, in fact, linear
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in the number of Boolean variables |Tup(n)|, and those for which the
OBDD is exponential in the size of the domain.

Proof. We sketch only the proof of the first item, by showing how
to convert an inversion-free query into an OBDD. We start from an
inversion-free query Q and a domain size n. Recall that the database
schema is R = (R1,R2, . . . ,R`). Consider the set S = {R1, . . . ,R`}∪ [n]
with the total order R1 < R2 < · · · < R` < 1 < 2 < · · · < n. By
definition, each relational symbol R ∈ R is associated with a permu-

tation πR, and define ρR def= (πR)−1. We associate each ground tuple
t = R(i1, i2, . . . , ik) ∈ Tup([n]) with the following sequence in S∗:
(iρ(i1), iρ(i2), . . . , iρ(ik),R). Define the order Π on Tup([n]) as the lexi-
cographic order of the corresponding sequences. In other words, if A
is an atom in the query, then we order the ground tuples gr(A) by
their first existential variable, then by their second, and so on; the fact
that the query is inversion-free ensures that there is no conflict in this
ordering, i.e. we get the same order for gr(A′) where A′ is a different
atom that refers to the same relational symbol as A. We claim that the
width of the Π-OBDD for Q is w ≤ 2|Q| = O(1), which implies that the
size of the Π-OBDD isO(|Tup|) = O(nk). We prove the claim by induc-
tion on the sentence Q. If Q is a single ground atom t, then the width
of the complete Π-OBDD is 2 (all levels below t must have two nodes
to remember if twas true or false). IfQ = Q1∧Q2 orQ = Q1∨Q2 then
we first construct complete OBDDs for Q1, Q2. Since both Q1, Q2 use
the same variable order Π, we can use the OBDD synthesis described
earlier to derive a complete OBDD for Q, whose width is at most the
product of the widths of the two OBDDs. If Q = ∃xQ1, then we first

construct n OBDDs Gi for Q1[i/x], for i = 1, 2, . . . , n. Let T def= Tup[n].
Partition T into n sets T = T1∪· · ·∪Tn, where Ti consists of all ground
atoms R(i1, . . . , ik) where R ∈ R and iρR(1) = i. Then, for each i, the
lineage of Q1[i/x] uses only Boolean variables from Ti. Moreover, the
order Π places all tuples in Ti before those in Tj , forall i < j. There-
fore, we can construct an Π-OBDD for

∨
FQ1[i/x],n as follows: take the

union of all OBDDs G1, . . . , Gn, reroute the 0-sink node of Gi−1 to the
root note of Gi. The resulting Π-OBDD is not complete yet, because
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the 1-sink node of Gi−1 stops early, skipping all levels in the OBDDs
Gi, . . . , Gn. We complete the OBDD (since we need the OBDD to be
complete at each step of the induction) by introducing one new node
wi,j for each layer j of each Gi, i > 1. The 1-sink node of Gi−1, i < n

will be re-routed towi,1; both the 0-child and 1-child ofwi,j arewi,j+1 if
j is not the last layer ofGi, or both are wi+1,1 if i < n, or both are the 1-
sink node otherwise. The new nodes increase the width only by 1.

Thus, inversion-free queries prescribe a simple order on the
Boolean variables: simply order the attributes of each relation R ac-
cording to (πR)−1, then order its grounded tuples lexicographically.
For example, if the query is ∃x∃yR(x) ∧ S(x, y) then we order S in
row-major order: S(1, 1), S(1, 2), . . . , S(2, 1), S(2, 2), . . . On the other
hand, for the query ∃x∃yS(x, y)∧T (y) we order them in column-major
order, S(1, 1), S(2, 1), . . . , S(1, 2), S(2, 2), . . . If the query has an inver-
sion, then there is a conflict between the different orderings, and we
have no good choice for the order Π: an OBDD will be exponentially
large.

Beame and Liew [2015] have recently extended Theorem 5.3 from
OBDDs to SDDs. The first item of the theorem immediately applies to
SDDs, since every OBDD is also an SDD. Beame and Liew [2015] ex-
tended the second bullet to SDDs, by showing that, if a query has an
inversion, then its SDD is exponentially large. Thus, although SDDs
were designed specifically to have increased expressive power over
OBDDs, when restricted to Unions of Conjunctive Queries, they are
effectively the same. Bova [2016] has shown that SDD can be expo-
nentially more concise than OBDDs on the generalized hidden bit class
of Boolean formulas. The study of the expressive power of SDDs com-
pared to OBDDs and FBDDs is an active area of research.

5.2.3 Query Compilation to polynomial size FBDDs

There are known examples of UCQ queries whose FBDDs have size
polynomial in the input domain, and there are known examples of
queries whose FBDDs are exponential. We will illustrate both. The ex-
act separation between them is open.
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Consider the following query:

Q =∃x1∃y1(R(x1) ∧ S(x1, y1)) ∨ ∃x2∃y2(S(x2, y2) ∧ T (y2))
∨ ∃x3∃y3(R(x3) ∧ T (y3))

We invite the reader to check that P(Q) can be computed in PTIME
using the lifted inference rules in §4.2. On the other hand, the minimal
OBDD for its lineage has exponential size, by Theorem 5.3, because the
query has an inversion from (x1, y1) to (x2, y2). Intuitively, the reason
why any OBDD is exponentially large is the conflict between the need
to read the variables S(i, j) in row-major order in order to compute
∃x1∃y1(R(x1)∧S(x1, y1)), and the need to read them in column-major
order to compute ∃x2∃y2(S(x1, y1) ∧ T (y1)).

Surprisingly, the query has an FBDD whose size is polynomial in
the number of Boolean variables2. The FBDD starts by testing R(1). If
R(1) = true, then the query simplifies to:

Q|R(1)=true =∃x1∃y1(R(x1) ∧ S(x1, y1))|R(1)=true

∨ ∃x2∃y2(S(x2, y2) ∧ T (y2)) ∨ ∃y3T (y3)
=∃x1∃y1(R(x1) ∧ S(x1, y1))|R(1)=true ∨ ∃y3T (y3)

because the sentence ∃x2∃y2(S(x2, y2) ∧ T (y2)) logically implies
∃y3T (y3) and therefore is redundant. Thus, on this branch the residual
query is inversion-free, and we can compute it with an OBDD by or-
dering the atoms S in row-major order. On the branch R(1) = false,
we test R(2). If R(2) = true then the query simplifies to:

Q|R(1)=false,R(2)=true =∃x1∃y1(R(x1) ∧ S(x1, y1))|R(1)=false,R(2)=true

∨ ∃y3T (y3)

which, again, is inversion-free and can be computed by traversing S in
row-major order. Thus, the FBDD will consists of a union of nOBDDs,
one for each branch R(1) = · · · = R(i − 1) = false, R(i) = true,
where it computes an inversion-free query. We are left with the branch
R(1) = · · · = R(n) = false, and here the residual query is:

Q|R(1)=···=R(n)=false =∃x2∃y2(S(x2, y2) ∧ T (y2))
2The size can be reduced to be linear in the number of Boolean variables.
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This, too, is inversion-free, and we can compute it with an OBDD by
ordering the atoms S in column-major order. Since each of the n + 1
OBDDs used in the construction has size O(n2), the total size of the
FBDD is O(n3). Notice that the FBDD uses different orders for the
atoms S(i, j) on different branches: row-major on some branches, and
column major on other branches.

Next, we describe an interesting class of queries that have been
shown to require exponential size. Recall that Hk is the union of the
following conjunctive queries:

Hk0 =∃x0∃y0(R(x0) ∧ S1(x0, y0))
Hk1 =∃x1∃y1(S1(x1, y1) ∧ S2(x1, y1))

. . .

Hkk =∃xk∃yk(Sk(xk, yk) ∧ T (yk))

Theorem 5.4. Beame et al. [2014, 2017] (1) Any FBDD for Hk has
≥ (2n − 1)/n nodes, where n is the size of the domain. (2) Let
F (Z0, Z1, . . . , Zk) be any monotone Boolean formula that depends
on all variables Zi, i = 0, k. Then any FBDD for the query Q =
F (Hk0, Hk1, . . . ,Hkk) has size 2Ω(n).

Recall that the number of Boolean variables in the lineage of Hk

is 2n + kn2 = O(n2); part (1) of the theorem says essentially that any
FBDD for Hk has size exponential in the square root of the number of
variables.

Part (2) of the theorem is the interesting piece, because it allows us
to combine the queries Hk0, . . . ,Hkk in any ways, as long as we use
every sub-query Hki. Notice that, if we don’t use some sub-query Hki,
then F (Hk0, Hk1, . . . ,Hkk) is inversion-free, hence it has an OBDD of
linear size, so we must use every sub-query to generate queriesQwith
exponential-size FBDDs. For example, part (2) immediately implies
part (1), since Hk is a ∨-combination, Hk = Hk0 ∨ · · · ∨Hkk, but Hk is
not very interesting since we already know that computing P(Hk) is
#P-hard. An interesting query is:

QW =(H30 ∨H32) ∧ (H30 ∨H33) ∧ (H31 ∨H33) (5.2)
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The theorem implies that any FBDD for QW is exponential in the size
of the domain. However, QW can be computed in PTIME using lifted
inference, by applying the inclusion/exclusion formula:

P(QW ) =P(H30 ∨H32) + P(H30 ∨H33) + P(H31 ∨H33)
−P(H30 ∨H32 ∨H33)−P(H30 ∨H31 ∨H33)
−P(H30 ∨H31 ∨H32 ∨H33)
+ P(H30 ∨H31 ∨H32 ∨H33)

=P(H30 ∨H32) + P(H30 ∨H33) + P(H31 ∨H33)
−P(H30 ∨H32 ∨H33)−P(H30 ∨H31 ∨H33)

The two terms containing the #P-hard expression H3 = H30 ∨ H31 ∨
H32∨H33 canceled out, and we are left with five inversion-free queries.
Each can be computed in PTIME (and, in fact, each has a linear-size
OBDD).

5.2.4 Query Compilation to polynomial size Decision-DNNFs

Beame et al. [2013, 2017] have shown a general result proving that
Decision-DNNF’s are not much more powerful than FBDDs:

Theorem 5.5. Beame et al. [2013, 2017] IfG is a Decision-DNNF with
N nodes computing a Boolean formula F , then there exists an FBDD
G′ with at most N2log2 N nodes computing the same formula.

In other words, for any Decision-DNNF withN nodes we can con-
struct an equivalent FBDD with ≈ N logN nodes: this expression is
called a quasi polynomial, because it increases slightly faster than any
polynomial, but not exponentially fast.

Recall that Decision-DNNFs and FBDDs are traces of DPLL algo-
rithm with and without components. Then, the theorem implies im-
mediately a lower bounds on the runtime of any DPLL algorithm with
components:

Proposition 5.1. Any DPLL-based algorithm for model counting
takes 2Ω(n1/2) steps when applied to the lineage of the query QW in
Equation 5.2.
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Proof. Suppose the algorithm takes N steps. Then we obtain a
Decision-DNNF with N nodes. By Theorem 5.5, we also obtain an
FBDD of size ≤ 2logN+log2 N , which, by Theorem 5.4, is 2Ω(n). Thus,
log2N = Ω(n), proving the claim.

Thus, for some the query QW lifted inference is exponen-
tially faster than grounding followed by a DBPLL-based algorithm.
The query QW is not unique with this property. Beame et al.
[2013, 2017] describe an entire class of queries, namely any query
F (Hk0, Hk1, . . . ,Hkk) where F is a positive Boolean formula, whose
lattice L consisting of all its implicates and false has the property
µL(0̂, 1̂) = 0, where µL is the Möbius function µL on L, and 0̂, 1̂ are the
minimal and maximal elements of L (in particular 0̂ is Hk0 ∨ · · · ∨Hkk

and 1̂ is false); we refer the reader to Stanley [1997] for the defini-
tion of the lattice-theoretic notions, and to Beame et al. [2013, 2017]
for the details of the class of queries separating lifted inference from
grounded inference.

5.3 Compilation Beyond UCQ

We briefly review compilation approaches that go beyond UCQ
queries on tuple-independent probabilistic databases.

Probabilistic Graphical Models Knowledge compilation is an ef-
fective way of performing inference in a variety of probabilistic mod-
els. For example, weighted model counting encodings of probabilistic
graphical models are compiled into d-DNNF [Chavira and Darwiche,
2005] or SDD [Choi et al., 2013] to simplify the development of solvers,
and amortize the cost of inference for multiple online queries over a
single offline compilation step.

Probabilistic Logic Programs and Datalog The compilation ap-
proach to inference has been particularly popular within probabilistic
logic programming. De Raedt et al. [2007] and Riguzzi [2007] compile
ProbLog and LPADs into OBDDs. Fierens et al. [2015] propose to com-
pile into the more succinct d-DNNF representation instead. While this
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can yield exponentially smaller circuits, d-DNNF compilers require
CNF sentences as input, necessitating an initial expensive reduction
from logic programs to CNFs in propositional logic. To avoid this in-
termediate CNF representation, Vlasselaer et al. [2015] augment the
iterative semi-naive evaluation strategy for datalog to incrementally
compile an SDD circuit. This enables the compilation of significantly
larger probabilistic datalog programs. Finally, Renkens et al. [2012,
2014] study the approximate compilation problem: from a probabilis-
tic logic program, how to find a CNF that can easily be compiled into
an efficient circuit, and whose weighted model count provides a tight
lower bound on the query probability.

First-Order Circuits The compilation approaches discussed so far
all start from a first-order description (the query) to compile a propo-
sitional logic circuit. Van den Broeck et al. [2011] and Van den Broeck
[2013] instead define a first-order d-DNNF circuit language that per-
mits efficient first-order model counting. Statistical relational models
such as MLNs and parfactors (§2.7.2) are turned into these circuits
through a process of first-order knowledge compilation. This compila-
tion process can be thought of as a lifted query plan [Gribkoff et al.,
2014b], keeping a trace of the execution of the lifted query evalua-
tion algorithm (§4.2) with additional compilation rules for symmet-
ric databases (§4.6). By grounding a first-order d-DNNF for a given
domain, one obtains a classical d-DNNF circuit. The size of the first-
order d-DNNF is independent of the domain size, and is compact even
for some queries that have no compact classical d-DNNF [Van den
Broeck, 2015].



6
Data, Systems, and Applications

To conclude, we list several probabilistic datasets, systems, and appli-
cations that embody some of the ideas presented in this survey.

6.1 Probabilistic Data

Several large datasets have been reported in the literature that are an-
notated with probabilistic values. We describe some of them below,
and summarize them in Table 6.1.

NELL The Never-Ending Language Learning (NELL) project at CMU
described by Carlson et al. [2010], is a research project that aims
to learn over time to read the web. Started in 2010, NELL extracts
facts from text found in hundreds of millions of web pages, and im-
proves its reading competence over time. The facts, called “beliefs”,
are records whose main four attributes are (entity, relation, value, con-
fidence); the records have several other attributes storing meta data
(the source webpage, the actual string that produced the extraction,
etc). Currently, NELL reports 50M tuples (beliefs).
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Name URL Number
of tuples

Notes

NELL http://rtw.ml.cmu.edu/rtw/ 50M
Probase https://concept.research.

microsoft.com/Home/Download
85M IsA relations

Knowledge
Vault

https://en.wikipedia.org/wiki/
Knowledge_Vault

1.6B - 3B Not publicly
available

Yago http://www.mpi-inf.mpg.de/
departments/databases-and-
information-systems/research/
yago-naga/yago/

120M Probabilities
are not pub-
licly available

ReVerb http://reverb.cs.washington.edu/ 15M only p > 0.9

Table 6.1: Some probabilistic datasets reported in the literature

Probase Microsoft’s Probase reported in Wu et al. [2012], is a uni-
versal, general-purpose, probabilistic taxonomy, automatically con-
structed from a corpus of 1.6 billion web pages. It uses an iterative
learning algorithm to extract isA pairs from web text. For example,
Probase contains the triples (apple, isA, fruit), (apple, isA, company),
(tree, isA, plant), and (steam turbine, isA, plant). The database as-
sociates two probabilities to each triple. The first is the plausibility,
which is the probability that the triple exists, quite similar to a tuple-
independent database. Then second is typicality, which corresponds to
a conditional probability. Typicality is defined in both direction: for a
given concept how typical is a given instance, and for a given instance
how typical is the concept; each corresponds to a BID table. Probase
now forms the Microsoft Concept graph; only a small subset of the
data (without probabilities) is available for download.

Knowledge Vault Dong et al. [2014] describe Google’s Knowledge
Vault project, or KV for short, which constructs automatically a Web-
scale probabilistic knowledge base using a variety of information ex-
traction sources. Like other knowledge bases, KV stores information
in triple form, (subject, predicate, object, confidence) for example the
following triple represents the statement “Barak Obama was born in
Honolulu”:

</m/02mjmr,

/people/person/place_of_birth /m/02hrh0_ 0.98>

http://rtw.ml.cmu.edu/rtw/
https://concept.research.microsoft.com/Home/Download
https://concept.research.microsoft.com/Home/Download
https://en.wikipedia.org/wiki/Knowledge_Vault
https://en.wikipedia.org/wiki/Knowledge_Vault
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
http://reverb.cs.washington.edu/
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where /m/02mjmr is the ID for Barak Obama and /m/02hrh0_ is the
ID for Honolulu, while 0.98 is a probability representing the system’s
confidence in the triple1.

The Knowledge Vault combines noisy extractions from the Web
with prior knowledge derived from other knowledge bases. The size
of KV was reported at 1.6 billion triples by Dong et al. [2014], and
has since almost doubled in size. There are about 50M entities, and
a few thousands relation types. The data is proprietary and to our
knowledge has not been made publicly available.

Yago Yago is a project developed at MPI that consists of a large on-
tology automatically extracted from the Web, see e.g. the latest survey
by Hoffart et al. [2013]. The ontology is automatically derived from
Wikipedia WordNet and GeoNames, and currently has 10 million enti-
ties and more than 120 million facts (triples). While the publicly avail-
able data is determinstic, it is reported to us by Martin Theobald that
intermediate stages of the system has data annotated with confidence
values, expressed as probabilities.

Reverb Reverb is reported in Fader et al. [2011] and contains
15 million binary assertions from the Web. The data is available
for download from the ReVerb homepage at http://reverb.

cs.washington.edu/, and is now included in OpenIE http://

openie.allenai.org/. The available dataset in ReVerb contains
only extractions with a confidence value > 0.9.

6.2 Probabilistic Database Systems

Several probabilistic database systems have been reported in the liter-
ature. All systems faced the fundamental challenge of reconciling the
inherent computational complexity of probabilistic inference, with the
expectation on any database system to scale up to very large data sets;
perhaps for that reason, no commercial, general purpose probabilistic
database system exists to date.

1The actual confidence of this triple is not reported in Dong et al. [2014].

http://reverb.cs.washington.edu/
http://reverb.cs.washington.edu/
http://openie.allenai.org/
http://openie.allenai.org/
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Trio The Trio system described by Benjelloun et al. [2006a] manages
incomplete and probabilistic databases based on maybe-tuples, X-
tuples, and lineage expressions. For query evaluation the system com-
putes the query’s lineage then uses an internally developed DPLL-
based weighted model counter to compute the probability.

MayBMS MayBMS is a probabilistic database system described
by Antova et al. [2007] and is available for download at http:

//maybms.sourceforge.net/. MayBMS is a modified postgres
system that supports tuple-independent probabilistic relations with
a confidence attribute and computes output probabilities for SQL
queries. The probabilistic inference is done either using safe plans
(when possible) or by performing weighted model counting using a
DPLL-based algorithm.

MystiQ MystiQ is a probabilistic database system described by Ré
and Suciu [2008], which supports tuple independent and BID rela-
tions. MystiQ is a lightweight interface connecting to postgres. It ac-
cepts SQL queries and either converts them to safe plans (expressed in
SQL and run in postgres) or computes the lineage then computes (out-
side the engine) an approximate probability using Karp and Luby’s
FPTRAS.

Alchemy The first implementation of Markov Logic Network de-
scribed by Richardson and Domingos [2006] is Alchemy. Users de-
fine soft and hard constraints, and provide evidence, which are ground
tuples with probability 1. The system computes either the MAP or
marginal probabilities and uses an MCMC algorithm to perform prob-
abilistic inference. Alchemy is implemented entirely from scratch and
does not use any database technology.

Tuffy and DeepDive An implementation of Markov Logic Net-
works that uses a database engine (postgres) to perform the ground-
ing is described by Niu et al. [2011] and is called Tuffy. By using a stan-
dard query engine to perform grounding the authors report speedups

http://maybms.sourceforge.net/
http://maybms.sourceforge.net/
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of orders of magnitude over Alchemy. Tuffy is is available for down-
load at http://i.stanford.edu/hazy/tuffy/download/. It is
now part of the larger DeepDive system [Zhang, 2015].

ProbLog ProbLog is a well-maintained probabilistic logic program-
ming system. It supports datalog queries on probabilistic databases. A
recent overview is described in Fierens et al. [2015]. The probabilities
can also be associated to the rules rather than to the data, and ProbLog
allows recursive queries. For example, the following ProbLog rule
fires only with probability 0.3:

0.3::smoker(Y) :- smoker(X), friend(X,Y)

Query evaluation in ProbLog is based on SDDs. First, the system com-
putes the lineage of the query, then the resulting formula is converted
into an SDD; the probability is then computed on the SDD using
standard dynamic programming (see §5.1). ProbLog is available from
https://dtai.cs.kuleuven.be/problog/.

SlimShot SlimShot was introduced by Gribkoff and Suciu [2016] as
a probabilistic database system that combines lifted inference with ap-
proximate weighted model counting based on Monte Carlo simula-
tions. The system takes as input a set of soft constraints (Markov logic
networks) and a query, and evaluates the query by using the reduc-
tion described in §2.6. Then it chooses a set of relation names such
that both numerator and denominator of the conditional probabil-
ity (Equation 2.11) are liftable, and performs collapsed particle sam-
pling on only these relations. The system is available from https:

//github.com/ericgribkoff/slimshot.

ProbKB, ProbKB, described by Chen and Wang [2014], is a proba-
bilistic database system for evaluating massive numbers of soft con-
straints. The system focuses on grounding the soft constraints, by ex-
ploiting the fact that in a large Knowledge Base the number of distinct
rule templates is limited. For example, the 30,000 soft constraints au-
tomatically extracted by the ReVerb project conform to only 7 distinct
templates, which ProbKb can ground by issuing only 7 SQL queries.

http://i.stanford.edu/hazy/tuffy/download/
https://dtai.cs.kuleuven.be/problog/
https://github.com/ericgribkoff/slimshot
https://github.com/ericgribkoff/slimshot
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Forclift For lifted inference in symmetric probabilistic databases,
Markov logic networks, and applications to lifted machine learning,
the Forclift system implements algorithms for first-order knowledge
compilation [Van den Broeck, 2013]. The system is available from
https://github.com/UCLA-StarAI/Forclift.

6.3 Applications

Many applications include some form of probabilistic data, but only a
few require query evaluation in the sense described in this survey. We
briefly list here some of the latter.

Knowledge Base Construction (KBC) is the process of populating
a structured relational database from unstructured sources: the sys-
tem reads a large number of documents (Web pages, journal articles,
news stories) and populates a relational database with facts. Shin et al.
[2015] describe DeepDive, a system that uses a declarative mapping
in a language that combines SQL with probabilities, using a seman-
tics similar to Markov Logic Networks. DeepDive performs two ma-
jor tasks. First, grounding, evaluates a large number of SQL queries to
produce a large database called a factor graph. Second, inference, runs
a large MCMC simulation on the factor graph. DeepDive is reported
to take hours on a 1TB RAM/48-core machine to perform the proba-
bilistic inference based on MCMC.

Inferring Missing Facts Several research projects have been de-
veloped to learn rules that can be used to infer more knowledge.
Fader et al. [2011] describe SHERLOCK, a system that infers over
30,000 Horn clauses automatically from ground facts previously de-
rived from Web text, using open information extraction. Learning is
done in an un-supervised, domain-independent manner, based on
techniques developed in the Inductive Logic Programming (ILP) lit-
erature. All 30,000 rules are soft rules, in the sense that they carry a
weight representing the systems confidence in that rule. Coping with
such a large number of rules is a major challenge. For example, just

https://github.com/UCLA-StarAI/Forclift
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grounding 30,000 rules requires running 30,000 SQL queries, which
is prohibitively expensive; as we mentioned earlier, ProbKB, a project
described by Chen and Wang [2014], speeds up grounding by classi-
fying the rules into a small number of templates.

Bootstrapping Approximate Query Processing (AQP) consists of a
suite of techniques to allow interactive data exploration over massive
datasets. The main goal is to trade off query evaluation speed for pre-
cision: users are willing to settle for an approximate answer, if that
answer can be computed at interactive speed. Some well know AQP
systems offering this tradeoff are described by Hellerstein et al. [1997],
Jermaine et al. [2007], Kandula et al. [2016], Agarwal et al. [2013], Ding
et al. [2016]. However, the approximate answers need to be quantified
with confidence intervals, and computing these intervals remains a
major challenge in AQP. Bootstrapping is a classic technique in statis-
tics to compute the confidence intervals, and consists of repeatedly
re-sampling from the sample, with replacement, and observing the
confidence interval of the query answer on the re-samples. However,
the number of re-samples required is rather large, which in turn de-
feats the purpose of AQP of returning answers very quickly. Zeng
et al. [2014] propose an alternative solution to bootstrapping, based
on lifted probabilistic inference. Every tuple t in the sample is asso-
ciated with a numerical random variable Xt ∈ {0, 1, 2, . . .} indicating
how many re-samples selected that tuple. Then, if the query to be com-
puted is liftable, its distribution can be obtained using adaptations of
the lifted inference techniques described in Chapter 4.

Lifted Learning The weights of the soft constraints in a Markov
logic network are typically learned from training data; moreover,
some applications even require the soft rules themselves to be learned
from data, and this is especially challenging given the huge space of
possible theories. The learning task is an iterative process to compute
the maximum likelihood of a model given the data, and the critical
piece of the loop is probabilistic inference, i.e. computing the proba-
bility of the existing data given the current model. Van Haaren et al.
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[2016] describe a system that uses lifted inference for the inner loop
of the learning task. The authors report that the lifted learning algo-
rithm results in more accurate models than several competing approx-
imate approaches. In related work, Jaimovich et al. [2007] and Ahmadi
et al. [2012] speed up Markov logic network parameter learning by
performing approximate lifted message passing inference.

Image Retrieval Zhu et al. [2015] use probabilistic databases for im-
age retrieval within the DeepDive system: given a textual query, such
as “Find photos of me sea kayaking last Halloween in my photo al-
bum”, the task is to show images that fit the description. Probabilistic
databases are particularly suited to answer queries that require joint
reasoning about several (probabilistic) image features and meta-data.
Zhu et al. [2014] learn a more specific MLN knowledge base from im-
ages, in order to reason about object affordances.



7
Conclusions and Open Problems

This survey discussed two recent developments in probabilistic infer-
ence: query evaluation in probabilistic databases, and lifted inference
in statistical relational models. In probabilistic databases the input is
large, defines a simple probabilistic space, but the query generates a
complex model, where probabilistic inference may be challenging. In
statistical relational models, the probabilistic model is usually a large
graphical model, such as a Markov network or a Bayesian network,
which is specified using a much shorter first-order relational repre-
sentation. We have explained why these two models are, essentially,
equivalent, and have discussed the complexity of the probabilistic in-
ference problem under various assumptions.

Probabilistic inference remains a major challenge in Computer Sci-
ence, and is of increasing importance because many algorithms that
process large amounts of data use probabilities to model the uncer-
tainty in that data. For example, probabilistic inference remains the
key technical bottleneck in the automated construction of large knowl-
edge bases. However, large probabilistic models are almost always
generated programatically, from some high level specification, and the
goal of lifted inference is to speedup probabilistic inference by “lift-

321



322 Conclusions and Open Problems

ing” it to that high-level specification. We have seen in this survey
recent advances, as well as limitations of lifted inference.

Probabilistic data processing and lifted inference offer a rich set
of open problems, for any Databases or AI researcher interested in
probabilistic inference, or any PhD student looking for a thesis topic.
We mention here just a handful of open problems.

On the theoretical side, one is to study the complexity of approx-
imate lifted inference. We have seen that there exists a query whose
probability is NP-hard to approximate, and we have seen that ev-
ery existentially quantified query admits an FPTRAS. The problem is:
given any query, prove that it either has an FPTRAS or is NP-hard
to approximate. On the other hand, some system do not compute
marginal probabilities, but instead compute the MPD (Most Proba-
ble Database). The user specifies a set of (possibly soft) constraints in
some high level language, and the task is to find the most likely world
that satisfies the constraint. Since computing the MPD is known to
be NP-hard in general, the question is to characterize the constraints
for which the MPD can be computed efficiently. Ideally, in either case,
one wishes to have a dichotomy theorem, but perhaps the dichotomy
could be restricted to a small class of queries. Finally, we mention that
the use of symmetries is still very poorly understood. We lack a gen-
eral characterization of inference complexity over symmetric proba-
bilistic databases, and even the data complexity class for such prob-
lems, #P1, has not been the subject of sufficient study.

On the practical side, integrating the insights described here into
a scalable general-purpose system is an open problem. Such a system
should provide the user with enough modeling power and query ca-
pabilities to enable applications in information extraction, data clean-
ing, relational learning, network mining, etc. At the same time, it
should retain the ability to perform lifted inference and find effective
approximations, even for theoretically hard problems.
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