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1 Introduction
Poker playing computer bots can be divided into two categories. There are the game-theoretic bots, that
play according to a strategy that gives rise to a Nash equilibrium. These bots are impossible to beat, but
are also not able to exploit non-optimalities in their opponents. The other type of bot is the exploiting bot
that employs game tree search and opponent modeling techniques to discover and exploit weaknesses of
opponents. In this paper, we focus on the second type of bot.

Research in computer Poker has been mainly dealing with the limit variant of Texas Holdem. In limit
Poker, bet sizes are fixed as well as the total number of times a player can raise the size of the pot. In fact,
all exploiting bots developed so far, deal with the heads-up limit version of the game. We investigate the
use of Monte-Carlo Tree Search (MCTS) in multiplayer no-limit Texas Hold’em Poker. To extend to use of
MCTS to incomplete information games, we propose new backpropagation and selection strategies that take
into account the consequences of having non-deterministic nodes in the search tree.

2 The Poker Game Tree
A game tree is used to reason about future states of the game. The expected reward in each state is computed
through a set of backpropagation rules. Because cards are dealt randomly, the basic MINIMAX game tree
has to be extended with chance nodes to deal with the nondeterminism in the game.

It is impossible to make claims about the optimal action for an opponent without knowing what cards he
is holding. Therefore, we need an opponent model to predict the behaviour of the opponents. The hidden
information in Poker thus results in a so called MIXIMAX game trees [1] where opponent decision nodes
have to be modeled as chance nodes. The model that we use is a set of M5P regression trees [5] that predict
the probability of each possible action in a given game state and the rank of each player’s hand at showdown.
We learn the model using the Weka toolkit [6] from features of the game state, such as the number of raises,
individual player statistics and the pot odds.

3 Monte-Carlo Tree Search
The game tree for 2 player no-limit holdem Poker consists of an estimated 1071 nodes [3]. Traversing the
entire tree is impossible and an incomplete search procedure is required. We employ Monte-Carlo Tree
Search [2] which is a best-first search strategy that revolutionized research in computer-Go.

MCTS incrementally builds a subtree of the entire game tree in memory. For each node, standard
MCTS stores the expected value of the reward of that node together with a counter that stores the number
of sampled games that gave rise to the estimate. The algorithms starts with only the root of the tree and
repeats the following 4 steps until it runs out of computation time: (1) Selection: Starting from the root, the
algorithm selects in each stored node the branch it wants to explore further until it reaches a stored leaf. This
is not necessarily a leaf of the full game tree. (2) Expansion: One (or more) leafs are added to the tree as
child(ren) of the leaf reached in the previous step. (3) Simulation A sample game starting from the added
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leaf is played until conclusion. (4) Backpropagation The estimates of the expected values and the counters
on the explored path are updated with the new information. Finally, an action-selection strategy chooses a
good action to be executed based on the stored values in each of the root’s children.

4 Expected Reward Distributions
Because Poker is a nondeterministic incomplete information game, we are faced with the problem that
the propagated rewards will never converge to a single value, but instead are drawn from a probability
distribution. Existing strategies were not designed with this type of game in mind and, as a consequence,
fail to exploit this fact. In the worst case, they continuously sample from uninformative branches of the
game tree. We propose a modification of the standard MCTS selection and backpropagation strategies that
explicitly model and exploit the uncertainty of sampled expected values. This improves the performance of
MCTS in nondeterministic games or games with hidden information.

First, we can estimate the expected value and variance of the rewards obtained in the simulation step.
From these values, we build the expected reward distribution. This distribution models the uncertainty of the
expected reward of an action. In contrast to the reward distribution, the expected reward distribution does
converge to a single value when more samples are taken.

Second, better sample selection strategies can be used that fully exploit the information in the expected
reward distributions. We propose the UCT+ strategy that is based on the existing UCT strategy [4]. It
samples more in regions of the game tree that both have an uncertain estimate of the expected reward and an
expected reward that is high enough to be worth considering, thereby striking a balance between exploration
and exploitation.

5 Results
The new strategies are evaluated as a part of a complete Poker bot that is, to the best of our knowledge, the
first exploiting no-limit Texas Hold’em bot that can play at a reasonable level in games of more than two
players. The experiments show that the MCTS-based approach enables strong exploitative behaviour against
weaker rule-based opponents. Preliminary experiments show that the bot can hold its own when playing
against experienced humans. In a number of experimental evaluations, we studied some of the conditions
that allow the proposed selection and backpropagation strategies to result in a measurable advantage over
existing strategies. We discovered that an increase in available computation time translates in additional
profit for the new approach. We expect a similar trend as the complexity of the opponent model surpasses
the complexity of the backpropagation algorithm.
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