
Certifying Fairness of Probabilistic Circuits

Nikil Roashan Selvam1 Guy Van den Broeck1 YooJung Choi1

1University of California, Los Angeles

Abstract

With the increased use of machine learning systems
for decision making, questions about their fairness
properties start to take center stage. A recently
introduced notion of fairness asks whether the
model exhibits a discrimination pattern, in which
an individual—characterized by (partial) feature
observations—receives vastly different decisions
merely by disclosing some sensitive attributes. Ex-
isting work on checking the presence of such pat-
terns is limited to naive Bayes classifiers, which
make strong independence assumptions. This pa-
per proposes an algorithm to search for discrimina-
tion patterns in a more general class of probabilistic
models—probabilistic circuits. If a model is not
fair, it may be useful to quickly find discrimination
patterns and distill them for better interpretability.
As such, we also propose a sampling-based ap-
proach to more efficiently mine discrimination pat-
terns, and introduce new classes of discrimination
patterns: minimal, maximal, and Pareto optimal.

1 INTRODUCTION
Machine learning systems are increasingly being used for
decision making in a variety of areas [5, 2, 10, 17]. Con-
sequently, there has been growing efforts to address biases
in the training data and model architecture leading to cer-
tain individuals or groups receiving unfavorable treatment
based on some sensitive attributes such as gender and race
[1, 14, 16, 23, 21, 27].

In this paper, we investigate the fairness properties of proba-
bilistic models that represent joint distributions over the de-
cision variable as well as the features. Such models are ubiq-
uitous in decision-making systems for various real-world
applications [19, 28, 15]. In particular, they can be used
to make classifications by inferring the probability of the
class given some observations, naturally handling missing

features at prediction time. While many existing work on al-
gorithmic fairness assume that predictions are always made
with complete observations of features, the notion of dis-
crimination pattern [4] explicitly aims to address fairness
of decisions made with partial information. Specifically, it
refers to individuals, characterized by some partial assign-
ments to the features, who may see a significant discrepancy
in the prediction after additionally disclosing some sensitive
attributes. However, as a model could exhibit as many as an
exponential number of discrimination patterns, using this
notion to audit and analyze the model can be challenging.

We make two main contributions. The first is to introduce
special classes of discrimination patterns—minimal, maxi-
mal, and Pareto optimal patterns—which can “summarize”
a large number of patterns, making them great targets to find
in a model in order to discover and understand its unfairness.
The second contribution is algorithms to find discrimination
patterns. While the existing algorithm is limited to naive
Bayes models, our proposed methods can be applied to a
more general class of models called probabilistic circuits
(PCs) [29]. We propose a search-based algorithm that can
find all discrimination patterns in a PC or otherwise certify
that there exists none and thus the PC is fair. We also intro-
duce a sampling-based method, which can no longer prove
fairness, but can far more efficiently find many discrimi-
nation patterns if they exist. Empirical evaluation on three
benchmark datasets demonstrates that our search algorithm
is able to find all discrimination patterns while only travers-
ing a fraction of the space of possible patterns. Furthermore,
we show that the sampling-based approach is indeed signifi-
cantly faster in pattern mining, while still returning similar
summary patterns as the exact approach.

2 DISCRIMINATION PATTERNS
Random variables and their assignments are denoted by up-
per (X) and lowercase (x) letters, respectively, and their sets
by respective bold letters (X,x). The set of possible values
of X is denoted by val(X). D denotes a binary decision
variable, and d its assignment that represents a favorable

Accepted for the 5th Workshop on Tractable Probabilistic Modeling at UAI (TPM 2022).

mailto:<nikilrselvam@ucla.edu>?Subject=Your UAI 2022 paper
mailto:<guyvdb@cs.ucla.edu>?Subject=Your UAI 2022 paper
mailto:<yjchoi@cs.ucla.edu>?Subject=Your UAI 2022 paper

decision. A set of discrete variables (features) Z are used
to make decisions, and a subset of variables S ⊂ Z are
designated as sensitive attributes, such as race or gender.

Definition 1 (Discrimination patterns [4]). Let P be a distri-
bution over D ∪Z, and x,y be joint assignments to X ⊆ S,
Y ⊆ Z \X, respectively. For some δ ∈ [0, 1], we say (x,y)
form a discrimination pattern w.r.t. P and δ if:

|P (d | x,y)− P (d | y)| > δ.

The LHS is referred to as its discrimination score, ∆(x,y).

Intuitively, a discrimination pattern corresponds to individu-
als who would see a significant difference in the probability
of getting a favorable decision just by disclosing some sen-
sitive information. A model is said to be δ-fair iff it exhibits
no discrimination pattern with respect to δ. On the other
hand, if there exist discrimination patterns, it would be use-
ful for domain experts or users to examine them to better
understand the behavior of the classifier and improve its
fairness properties. However, even a simple classifier could
exhibit a large number of discrimination patterns. Thus, we
next propose new classes of discrimination patterns that can
be used as representatives for a large number of patterns,
thereby being more amenable for interpretations.

A natural way to choose the most “interesting” patterns
may be by ranking them by their discrimination scores, and
focusing on a few instances that are the most discrimina-
tory. While it may be useful to study the most problematic
patterns and address them, they do not necessarily provide
insight into other discrimination patterns that exist. Instead,
we propose the notion of maximal and minimal patterns that
can summarize groups of patterns, namely their extensions
and contractions. An extension of a pattern (x,y), denoted
by (x′,y′) ⊃ (x,y), can be generated by adding an assign-
ment to the pattern: x ⊆ x′, y ⊆ y′, and either x⊂x′ or
y⊂y′. Conversely, (x,y) is called a contraction of (x′,y′).

Definition 2 (Maximal & minimal patterns). Let Σ denote
a set of discrimination patterns w.r.t. a distribution P and
threshold δ. The set of maximal patterns Σmax ⊆ Σ consists
of all patterns (x,y) ∈ Σ that are not a complete assignment
(i.e. Z \ (X ∪Y) ̸= ∅) and:

∀(x′,y′) ⊃ (x,y), (x′,y′) ̸∈ Σ.

The set of minimal patterns Σmin ⊆ Σ consists of all patterns
(x,y) ∈ Σ such that:

∀ (x′,y′) ⊃ (x,y), (x′,y′) ∈ Σ

and ∀ (x′′,y′′) ⊂ (x,y) s.t. x′′ ̸= ∅, (x′′,y′′) ̸∈ Σ.

In other words, a maximal pattern is a discrimination pattern
such that none of its extensions are discrimination patterns.
As the name suggests, an extension of a maximal pattern

cannot also be maximal, because by definition it will not be
a discrimination pattern. Hence, an individual with attributes
x and y who may see a discrimination in the decision by
disclosing their sensitive information would no longer re-
ceive such treatment if they additionally share other features,
whatever their values may be. On the other hand, we say a
discrimination pattern is minimal if all of its extensions and
none of its contractions are discriminatory. Thus, a single
minimal pattern effectively represents a large set of discrim-
ination patterns, whose size is exponential in the number
of unobserved features. Note that by definition a minimal
pattern cannot be a maximal pattern, and vice versa.

As a case study, we train a probabilistic model1 on the
COMPAS dataset, which exhibits 7445, 2338, and 1164 dis-
crimination patterns for δ = 0.01, 0.05, and 0.1 respectively.
On the other hand, this model has 170, 74, and 0 maximal
patterns, and only 103, 10, and 1 minimal patterns, for re-
spective values of threshold δ. Interestingly, none of the 74
maximal patterns for δ = 0.05 includes an assignment to
the variable regarding ‘supervision level’, suggesting that
there are many instances where an individual would not see
an unfair prediction if the supervision level is additionally
known. Remarkably, the single minimal pattern in the case
of δ = 0.1 can represent 512 patterns (its extensions) out of
1164 total discrimination patterns in the model.

Another important consideration when studying discrimi-
nation patterns is their probability. Recall that each pattern
(x,y) represents a group of people sharing the attributes
x and y. Then the probability P (x,y) corresponds to the
proportion of the population that could be affected. Even
though any unfairness is equally undesirable for minority
groups (i.e. lower probability) as it is for majority groups,
patterns that are so specific and have exceedingly low prob-
ability would not be as insightful when auditing a model
for real-world fairness concerns. As such, we propose to
summarize discrimination patterns by constructing a set of
patterns such that one cannot increase the discrimination
score without decreasing the probability, and vice versa.

Definition 3 (Pareto optimal patterns). The set of Pareto
optimal patterns ΣPO ⊆ Σ consists of the patterns (x,y) ∈
Σ such that ∀(x′,y′) ∈ Σ \ {(x,y)},

∆(x,y) > ∆(x′,y′) or P (x,y) > P (x′,y′).

Pareto optimal patterns can be a very effective way to study
fairness of a probabilistic model, as it significantly reduces
the number of discrimination patterns one would examine.
For example, the model trained on the COMPAS with 2388
and 1164 discrimination patterns w.r.t. δ = 0.05 and 0.1, re-
spectively, has only 38 and 28 Pareto optimal patterns. That
is, for δ = 0.1, each of the 1164− 28 = 1136 patterns has
discrimination score and probability that are both dominated
by those of some Pareto optimal pattern.

1See Sec. 4 for details of the trained model.

2

3 FINDING DISCRIMINATION
PATTERNS IN A PC

As discussed in Sec. 2, the probability of a pattern cor-
responds to the proportion of the affected subpopulation,
according to the probabilistic model. Therefore, a meaning-
ful analysis of discrimination patterns depends on how well
the model captures the population distribution. For instance,
the existing algorithm to discover discrimination patterns
assumes naive Bayes classifiers, which make strong inde-
pendence assumptions and are generally too restrictive to fit
real-world distributions. We instead consider a more expres-
sive type of models called probabilistic circuits, which refer
to a family of probabilistic models that support tractable in-
ference, encompassing arithmetic circuits [8], sum-product
networks [25], and-or graphs [11], probabilistic sentential
decision diagrams [18], and more. They were shown to
achieve competitive likelihoods in various density estima-
tion tasks [7, 20, 24]. In addition, classical graphical models
with bounded treewidth [6], including naive Bayes, and their
mixtures [22] can also easily be represented as PCs.

PCs allow tractable inference of certain probabilistic queries,
based on which structural properties they satisfy. The first in-
ference task we need is conditional probabilities, to compute
the discrimination score (Def. 1) of a pattern. Moreover, we
would also like to compute probabilities of patterns—that
is, marginal probabilities given some partial observations.
PCs support efficient marginal and conditional inference if
they satisfy two structural properties called smoothness and
decomposability. A PC is smooth if for every sum node its
children include exactly the same set of variables, and it
is decomposable if for every product node its children de-
pend on disjoint sets of variables [9]. Given these properties,
computing any marginal probability can be done through a
single feedforward evaluation of the PC, thus taking linear
time in the size of the circuit. Hence, we will assume smooth
and decomposable PCs throughout this paper.

Search Algorithm To certify whether a PC is δ-fair, we
search for discrimination patterns in it. If the search con-
cludes without finding any pattern, then we know that the
PC is δ-fair; otherwise, we return all or some of the discrim-
ination patterns based on the criteria discussed in Sec. 2.
More precisely, we adopt a branch-and-bound search ap-
proach (Alg. 2 in the appendix). At each search step, it
checks whether the current assignments form a discrimina-
tion pattern, and explores extensions by recursively adding
variable assignments. Note that while we mainly present
the algorithm that returns all discrimination patterns, we
can easily tweak it to return the top-k most discriminating
patterns: by keeping a running list of top-k patterns and
using the k-th highest score as the threshold instead of δ.

As there are exponentially many potential pat-
terns, we rely on a good upper bound to effec-
tively prune the search tree. In particular, we

Algorithm 1 SAMPLE-DISC-PATTERNS(C,Z)
Input: a PC C over variables D ∪ Z and a threshold δ
Output: a set of sampled discrimination patterns Σ

1: Σ← {}
2: while not timeout do
3: (x,y)← ({}, {})
4: while |x|+ |y| < n do
5: for (x′,y′) ∈ extensions(x,y)) do
6: if ∆(x′,y′) > δ then Σ← Σ ∪ {(x′,y′)}
7: (x,y)← sampleweight:∆(x′y′)(extensions(x,y))

8: return Σ

use the following as our bound UB(x,y,E) =
max{|maxu P (d | x,y,u)−minu P (d | y,u)| ,
|minu P (d | x,y,u)−maxu P (d | y,u)|} where U
can be any subset of Z \ (X ∪Y ∪E)—i.e., the remaining
variables to extend the current pattern. The core component
of above bound is maximizing or minimizing the condi-
tional probability of the form P (d | y,u) over the values of
some U for a given y. We now show how such optimization
can be done tractably for certain classes of PCs.

We use two key observations (formally proved in the ap-
pendix). First, to maximize or minimize a conditional prob-
ability given some (partial) assignments to a set of free
variables, it suffices to consider only their complete assign-
ments. Second, maximizing P (d | x,u) over U ⊆ Z \X
is equivalent to maximizing P (x,u|d)

P (x,u|d) . Combining these ob-
servations, we see that the upper bound UB(x,y,E) can
be computed easily if we can efficiently maximize and min-
imize quantities of the form P (x,u | d)/P (x,u | d). In
fact, we derive an algorithm with worst-case quadratic time
complexity (in the size of the circuit) for PCs that satisfy
additional structural constraints. Deferring the algorithmic
details and proof of correctness to the appendix, here we in-
stead provide high-level insights to these additional tractabil-
ity conditions. First, Vergari et al. [30] shows the necessary
structural conditions (called compatibility and determinism)
such that the quotient of two PCs can be computed tractably
and represented as another circuit representation that allows
for linear-time optimization [3]. Then all we need is to rep-
resent the conditional distributions P (Z | d) and P (Z | d)
as two PCs satisfying those conditions. If the decision vari-
able D appears at the top of the PC over D ∪ Z , then the
two subcircuits rooted at each child of the root node exactly
corresponds to the conditional distributions given D.

Lastly, the special types of discrimination patterns intro-
duced in Sec. 2 can be obtained with minor tweaks to the
search algorithm. Details are discussed in Sec. B.

Sampling Algorithm Certifying that there exists no dis-
crimination pattern, among exponentially many possible
assignments, is a very hard problem. In real-world settings,
one may simply be interested in quickly studying examples

3

of unfairness that may be present in the model. In fact, this
is the goal for many existing fairness auditing tools [26]:
to find patterns of bias (potentially using different fairness
definitions) for the developer or user to examine. Hence, we
introduce efficient sampling-based methods to mine discrim-
ination patterns. While these methods cannot necessarily
certify a model to be δ-fair, they can very quickly find a
large number of patterns, as we will later show empirically.

Our proposed approach is summarized in Alg. 1. At a high
level, each run of the sampling algorithm starts from an
empty assignment and incrementally adds one attribute at a
time until a complete assignment is obtained. The attribute
to be added (i.e. the immediate extension to be explored)
at each step is sampled at random with a likelihood propor-
tional to the discrimination score of the resulting assignment.
Any assignment explored along the way with a discrimina-
tion score above the threshold is added to our set of patterns.
Intuitively, at each assignment, we greedily use the discrim-
ination score of its immediate extension as a heuristic for
future extensions being discrimination patterns. Observe
that the sampling algorithm is computationally inexpensive
overall as the only circuit evaluations that need to be per-
formed are a few feed-forward evaluations (linear time) to
compute conditionals at each assignment explored. Lastly,
it is worth noting that after the discrimination patterns have
been sampled, we can utilize similar techniques as described
in Sec. 3 to efficiently summarize them through minimal,
maximal, and Pareto optimal patterns.

4 EMPIRICAL EVALUATION
We evaluate our algorithms on three datasets: COMPAS
which is used for recidivism prediction and Adult [13] and
Income [12] for predicting income levels. Each dataset is dis-
cretized and has the redundant features and unique values re-
moved. We learn a PC from each dataset using STRUDEL [7],
which returns deterministic and structured decomposable
PCs as required by our search algorithm.

Exact Search We first evaluate the efficiency of our
branch-and-bound search algorithm to find discrimination
patterns. As our approach is the first non-trivial method for
a general class of probabilistic circuits, we see whether it is
more efficient than a naive solution that enumerates all pos-
sible patterns. We observe that pruning is effective, resulting
in consistent speedup, including some significant improve-
ment in performance as high as 24x speedup on the Adult
dataset. We refer the reader to the appendix for complete
results. Moreover, note that our method must compute an
upper bound at every search step, which has a worst-case
quadratic time complexity. However, we see that pruning
the search space still improves the overall run time of the al-
gorithm, even with this extra computation. For example, our
method explores a little less than half the search space for
top-k discrimination patterns with δ = 0.1 on the COMPAS
dataset, with runtime 60% that of naive enumeration.

Table 1: Number of discrimination patterns and highest
score found by exact search and sampling.

Patterns found Highest score
Dataset Time δ Exact Sampling Exact Sampling

COMPAS 3s 0.05 347 751 0.2236 0.2230
0.10 210 347 0.2236 0.2230

Income 5s 0.05 209 1090 0.1076 0.1658
0.10 3 225 0.1076 0.1659

Adult 600s 0.05 37167 113763 0.6725 0.6871
0.10 30982 99578 0.6725 0.6844

(a) Exact Pareto front (b) Sampled Pareto front

Figure 1: Discrimination score and probability of all patterns
(grey) and summary patterns (colored) for COMPAS.

Sampling The primary motivation for the sampling algo-
rithm is not only to quickly audit a model for discrimination
patterns, but in particular to quickly analyze the most in-
teresting patterns. Thus, we first evaluate how efficiently
the sampling algorithm is able to find the most discrimina-
tory pattern (which we can find using exact search). The
speedups relative to naive enumeration for Compas, Income,
and Adult are: 26x, 17x, 48x on average over 10 independent
trials (with standard deviation 54x, 14x, 53x, respectively).

For a more direct comparison, we run the exact search al-
gorithm and the sampling method with a specified timeout.
We report both the number of patterns found and the highest
score in different settings (Tab. 1). We observe that the sam-
pling algorithm consistently outperforms the exact search
in both the number of patterns found the scores of patterns
found. Thus, we can reliably use the sampling approach to
quickly mine many discrimination patterns of significance.

Lastly, we evaluate whether the patterns returned by the
sampling algorithm are "interesting". To that end, we an-
alyze the top 10 discrimination patterns produced by our
sampling algorithm on COMPAS with a 3 second timeout
and find that they indeed correspond to some of the most dis-
criminating patterns in the model (See Sec. D). Furthermore,
we compare the Pareto optimal patterns from the sampling
algorithm (Fig. 1b) to the true Pareto front obtained through
exact search (Fig. 1a) and find that the sampling algorithm
contains most of the same patterns in its Pareto front despite
its short timeout. More concretely, the Pareto front from the
sampling approach contains 30 patterns, of which 27 are in
the true set of Pareto optimal patterns (there are 38 total).

4

References

[1] Solon Barocas and Andrew D Selbst. Big data’s dis-
parate impact. Calif. L. Rev., 104:671, 2016.

[2] Richard Berk, Hoda Heidari, Shahin Jabbari, Michael
Kearns, and Aaron Roth. Fairness in criminal justice
risk assessments: The state of the art. Sociological
Methods & Research, page 0049124118782533, 2018.

[3] Arthur Choi and Adnan Darwiche. On relaxing deter-
minism in arithmetic circuits. In Proceedings of the
Thirty-Fourth International Conference on Machine
Learning (ICML), 2017.

[4] YooJung Choi, Golnoosh Farnadi, Behrouz Babaki,
and Guy Van den Broeck. Learning fair naive bayes
classifiers by discovering and eliminating discrimina-
tion patterns. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 10077–
10084, 2020.

[5] Alexandra Chouldechova. Fair prediction with dis-
parate impact: A study of bias in recidivism prediction
instruments. Big data, 5(2):153–163, 2017.

[6] C. K. Chow and C. N. Liu. Approximating discrete
probability distributions with dependence trees. IEEE
Transactions on Information Theory, 1968.

[7] Meihua Dang, Antonio Vergari, and Guy Van den
Broeck. Strudel: A fast and accurate learner of
structured-decomposable probabilistic circuits. In-
ternational Journal of Approximate Reasoning, 140:
92–115, jan 2022. ISSN 0888-613X.

[8] Adnan Darwiche. A differential approach to inference
in bayesian networks. Journal of the ACM, 50(3):
280–305, 2003.

[9] Adnan Darwiche and Pierre Marquis. A knowledge
compilation map. Journal of Artificial Intelligence
Research, 17:229–264, 2002.

[10] Amit Datta, Michael Carl Tschantz, and Anupam
Datta. Automated experiments on ad privacy settings:
A tale of opacity, choice, and discrimination. Pro-
ceedings on privacy enhancing technologies, 2015(1):
92–112, 2015.

[11] Rina Dechter and Robert Mateescu. AND/OR search
spaces for graphical models. Artif. Intell., 171(2-3):
73–106, 2007.

[12] Frances Ding, Moritz Hardt, John Miller, and Ludwig
Schmidt. Retiring adult: New datasets for fair machine
learning. Advances in Neural Information Processing
Systems, 34, 2021.

[13] Dheeru Dua and Casey Graff. UCI machine learning
repository, 2017. URL http://archive.ics.
uci.edu/ml.

[14] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer
Reingold, and Richard Zemel. Fairness through aware-
ness. In Proceedings of the 3rd innovations in theo-
retical computer science conference, pages 214–226.
ACM, 2012.

[15] Thomas L. Griffiths, Nick Chater, Charles Kemp,
Amy Perfors, and Joshua B. Tenenbaum. Probabilistic
models of cognition: exploring representations and
inductive biases. Trends in Cognitive Sciences, 14
(8):357 – 364, 2010. ISSN 1364-6613. doi: https:
//doi.org/10.1016/j.tics.2010.05.004. URL http:
//www.sciencedirect.com/science/
article/pii/S1364661310001129.

[16] Moritz Hardt, Eric Price, and Nati Srebro. Equality
of opportunity in supervised learning. In Advances in
neural information processing systems, pages 3315–
3323, 2016.

[17] Loren Henderson, Cedric Herring, Hayward Derrick
Horton, and Melvin Thomas. Credit where credit is
due?: Race, gender, and discrimination in the credit
scores of business startups. The Review of Black Polit-
ical Economy, 42(4):459–479, 2015.

[18] Doga Kisa, Guy Van den Broeck, Arthur Choi, and
Adnan Darwiche. Probabilistic sentential decision
diagrams. In Proceedings of the 14th International
Conference on Principles of Knowledge Representa-
tion and Reasoning (KR), 2014.

[19] Daphne Koller and Nir Friedman. Probabilistic graph-
ical models: principles and techniques. MIT press,
2009.

[20] Anji Liu, Stephan Mandt, and Guy Van den Broeck.
Lossless compression with probabilistic circuits. In
International Conference on Learning Representations
(ICLR), apr 2022.

[21] David Madras, Elliot Creager, Toniann Pitassi, and
Richard Zemel. Fairness through causal awareness:
Learning latent-variable models for biased data. arXiv
preprint arXiv:1809.02519, 2018.

[22] Marina Meila and Michael I Jordan. Learning with
mixtures of trees. Journal of Machine Learning Re-
search, 1(Oct):1–48, 2000.

[23] Razieh Nabi and Ilya Shpitser. Fair inference on out-
comes. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

5

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.sciencedirect.com/science/article/pii/S1364661310001129
http://www.sciencedirect.com/science/article/pii/S1364661310001129
http://www.sciencedirect.com/science/article/pii/S1364661310001129

[24] Robert Peharz, Steven Lang, Antonio Vergari, Karl
Stelzner, Alejandro Molina, Martin Trapp, Guy
Van den Broeck, Kristian Kersting, and Zoubin
Ghahramani. Einsum networks: Fast and scalable
learning of tractable probabilistic circuits. In Proceed-
ings of the 37th International Conference on Machine
Learning (ICML), jul 2020.

[25] Hoifung Poon and Pedro Domingos. Sum-product
networks: A new deep architecture. In 2011 IEEE
International Conference on Computer Vision Work-
shops (ICCV Workshops), pages 689–690. IEEE, 2011.

[26] Pedro Saleiro, Benedict Kuester, Loren Hinkson, Jesse
London, Abby Stevens, Ari Anisfeld, Kit T Rodolfa,
and Rayid Ghani. Aequitas: A bias and fairness audit
toolkit. arXiv preprint arXiv:1811.05577, 2018.

[27] Babak Salimi, Luke Rodriguez, Bill Howe, and Dan
Suciu. Interventional fairness: Causal database repair
for algorithmic fairness. In Proceedings of the 2019
International Conference on Management of Data,
pages 793–810, 2019.

[28] Frank A Sonnenberg and J Robert Beck. Markov
models in medical decision making: a practical guide.
Medical decision making, 13(4):322–338, 1993.

[29] Antonio Vergari, YooJung Choi, Robert Peharz, and
Guy Van den Broeck. Probabilistic circuits: Repre-
sentations, inference, learning and applications. AAAI
Tutorial, 2020.

[30] Antonio Vergari, YooJung Choi, Anji Liu, Stefano
Teso, and Guy Van den Broeck. A compositional atlas
of tractable circuit operations for probabilistic infer-
ence. In Advances in Neural Information Processing
Systems 35 (NeurIPS), dec 2021.

6

A COMPUTING UPPER BOUNDS

A.1 DISCRIMINATION SCORE

We first formalize the two observations we used to derive
our upper bound on the discrimination score.

Lemma 1. Let P be a distribution over D∪Z and x a joint
assignment to X ⊆ Z. Also denote V = Z \X. Then for
any U ⊆ Z \X the following holds:

max
u∈val(U)

P (d | x,u) ≤ max
v∈val(V)

P (d | x,v)

That is, to maximize a conditional probability given some
(partial) assignments for a set of free variables, it suffices to
consider only the complete assignments to those variables.
Analogously, this statement holds for minimization as well,
with the direction of inequality reversed.

Proof of Lemma 1. Consider any U ⊂ Z \X and W /∈ U.
It suffices to show that

∀u ∈ val(U), P (d | x,u) ≤ max
w∈val(W)

P (d | x,u, w),

as the lemma then follows via a simple inductive argument.
Denote val(W) = {w1, w2, . . . , wn}. To show that there is
at least one w ∈ val(W) such that P (d | x,u) ≤ P (d |
x,u, w) for any u, we will show that P (d | x,u) > P (d |
x,u, wi) for i = 1, . . . , n − 1 implies that P (d | x,u) <
P (d | x,u, wn). First, for all i ≤ n− 1 we have:

P (d | x,u) > P (d | x,u, wi)

=⇒ P (d,x,u)P (x,u, wi) > P (x,u)P (d,x,u, wi).

By taking the sum of both sides of the above inequality, we
get:

n−1∑
i=1

P (d,x,u)P (x,u, wi) >

n−1∑
i=1

P (x,u)P (d,x,u, wi)

=⇒ P (d,x,u)P (x,u)−
n−1∑
i=1

P (x,u)P (d,x,u, wi)

> P (d,x,u)P (x,u)−
n−1∑
i=1

P (d,x,u)P (x,u, wi)

=⇒
P (d,x,u)−

∑n−1
i=1 P (d,x,u, wi)

P (x,u)−
∑n−1

i=1 P (x,u, wi)
>

P (d,x,u)

P (x,u)

=⇒ P (d | x,u, wn) > P (d | x,u)

Lemma 2. Let P be a distribution over D ∪Z, x an assign-
ment to X ⊆ Z, and U ⊆ Z \X. Then,

argmax
u∈val(U)

P (d | x,u) = argmax
u∈val(U)

P (x,u | d)
P (x,u | d)

.

Proof. Since P (d | x,u) = P (d,x,u)

P (d,x,u)+P (d,x,u)
=

1
1+P (d,x,u)/P (d,x,u)

, we obtain that

argmax
u∈val(U)

P (d | x,u) = argmin
u∈val(U)

P (d,x,u)

P (d,x,u)

= argmax
u∈val(U)

P (d,x,u)

P (d,x,u)
= argmax

u∈val(U)

P (x,u | d)
P (x,u | d)

.

Combining these observations, we see that the following
upper bound

max{
∣∣∣max

u
P (d | x,y,u)−min

u
P (d | y,u)

∣∣∣ ,∣∣∣min
u

P (d | x,y,u)−max
u

P (d | y,u)
∣∣∣}

can be computed easily if we can efficiently maximize and
minimize quantities of the form P (x,u | d)/P (x,u | d)
over values of U = Z \ X for some given evidence x ∈
val(X). We now describe our algorithm to compute the
upper bound on discrimination score. The pseudocode of
our algorithm to maximize such ratio is given in Alg. 3.
Again, we assume that the root of the PC is effectively
a decision node on D, and thus its children represent the
conditional distributions P (z | d) and P (z | d). Hence we
can run Alg. 3 by giving those two children nodes as inputs.
Moreover, we can easily tweak the algorithm to minimize
the ratio, by changing Line 9 to return the minimum over
non-zero values of the recursive calls if they exist, or zero
otherwise.

The algorithm assumes PCs that satisfy two structural con-
straints: determinism and compatibility. A circuit is deter-
ministic if the children of every sum node have disjoint
supports (denoted by supp(n)). In other words, for every
complete assignment z, at most one of the children nodes
will have a non-zero output. In addition, two circuits are
compatible if they are: (1) smooth and decomposable; and
(2) any pair of product nodes, one from each circuit, that
are defined over the same set of variables decompose the
variables in the same way. We refer the readers to [30] for a
more detailed discussion of compatibility.

Proof of Correctness. We proceed via induction. For the
leaves, as they are compatible, by definition their supports
are either identical or completely disjoint. Thus, the maxi-
mum ratio is 1, 0, or undefined (we also propagate 0 in this
case).

Next, consider two compatible product nodes. As they
decompose the variables identically, we can order their
children nodes such that n(z) =

∏
i ni(zi) and m(z) =∏

i mi(zi), where ni and mi are over the same set of vari-
ables Zi. Let us write Ui = U ∩ Zi and Xi = X ∩ Zi.

7

Algorithm 2 SEARCH-DISC-PATTERNS(x,y,E)

Input: a PC C over variables D ∪ Z and a threshold δ
Output: a set of discrimination patterns Σ
Data: current pattern (x,y)← ({}, {}); excluded variables E← {}

1: Σ← {}
2: for each z ∈ val(Z) for some variable Z ∈ Z \ (X ∪Y ∪E) do
3: if Z ∈ S then
4: if ∆(x ∪ {z},y) > δ then Σ← Σ ∪ {(x ∪ {z},y)}
5: if UB(x ∪ {z},y,E) > δ then ▷ extend x and recurse
6: Σ← Σ ∪ SEARCH-DISC-PATTERNS(x ∪ {z},y,E)

7: if ∆(x,y ∪ {z}) > δ then Σ← Σ ∪ {(x,y ∪ {z})}
8: if UB(x,y ∪ {z},E) > δ then ▷ extend y and recurse
9: Σ← Σ ∪ SEARCH-DISC-PATTERNS(x,y ∪ {z},E)

10: if UB(x,y,E ∪ {Z}) > δ then ▷ exclude Z and recurse
11: Σ← Σ ∪ SEARCH-DISC-PATTERNS(x,y,E ∪ {Z})
12: return Σ

Algorithm 3 Best Ratio with Evidence: BR(n,m)

Input: deterministic and compatible PCs n and m over Z;
an assignment x ∈ val(X) for X ⊂ Z

Output: maxu∈val(U) n(x,u)/m(x,u) where U = Z\X
1: if n,m are leaf nodes then
2: if supp(n) ∩ supp(m) ̸= ∅ and n(x) ̸= 0,m(x) ̸=

0 then
3: BR(n,m)← 1
4: else
5: BR(n,m)← 0

6: else if n,m are product nodes then
7: BR(n,m)←

∏|ch(n)|
i=1 BR(ni,mi)

8: else ▷ n,m are sum nodes
9: BR(n,m)← maxni∈ch(n),mj∈ch(m)

θi
θj

BR(ni,mj)

Then, we have:

max
u∈val(U)

n(x,u)

m(x,u)
= max

u∈val(U)

∏
i ni(xi,ui)∏
i mi(xi,ui)

=
∏
i

max
ui∈val(Ui)

ni(xi,ui)

mi(xi,ui)
,

leading to Line 7 in Alg. 3.

Finally, consider two deterministic sum nodes. Then for any
z, at most one children each of n and m would evaluate
non-zero values. That is, the sum nodes can effectively be
treated as maximization nodes: e.g. n(z) =

∑
i ni(z) =

maxi ni(z). Moreover, among all pairs of children ni,mj ,
the ratio ni(z)/mj(z) for any fixed z would be non-zero for
at most one pair (again, we treat the ratio that is undefined
as 0). Therefore, we have:

n(z)

m(z)
=

∑
i ni(z)∑
j mj(z)

=
maxi ni(z)

maxj mj(z)
= max

i,j

ni(z)

mj(z)
.

Thus, we can break down the maximization as the following,
corresponding to Line 9:

max
u∈val(U)

n(x,u)

m(x,u)
= max

u∈val(U)
max
i,j

ni(x,u)

mj(x,u)

= max
i,j

max
u∈val(U)

ni(x,u)

mj(x,u)
.

A.2 DIVERGENCE SCORE

Divergence score was introduced to address the fact that the
probability of a pattern, as well as its discrimination score,
is an important consideration.

Definition 4 (Divergence score [4]). Let P be a probability
distribution over D∪Z and δ some threshold in [0.1]. Further
suppose x and y are joint assignments to X ⊆ S and Y ⊆
Z \X, respectively. Then the divergence score of (x,y) is:

min
Q

DKL (P ∥ Q)

s.t. ∆(x,y) ≤ δ, P (d, z) = Q(d, z), ∀ z ̸⊃ x ∪ y

where DKL (P ∥ Q)=
∑

d,z P (d, z) log(P (d, z)/Q(d, z)).

Informally, aims to quantify how much the distribution P
needs to be changed in order to remove the discrimination
pattern (x,y). Thus, the patterns with highest divergence
scores would tend to have both high discrimination score as
well as high probability.

We can search for the top-k patterns ranked by their diver-
gence score using a similar branch-and-bound approach.
Choi et al. [4] gives the following upper bound on the diver-
gence scores of extensions of an assignment (x,y):

P (d,x,y) log
maxz|=xy P (d | z)
minz|=y P (d | z)

8

+ P (dxy) log
maxz|=xy P (d | z)
minz|=y P (d | z)

,

where z |= xy denotes a complete assignment to Z that
agrees with x and y on their assignments to variables in X
and Y, respectively.

Observe that this upper bound once again requires efficient
maximization and minimization of conditional probability
of extensions. Thus, Alg. 3 allows us to leverage this up-
per bound and straightforwardly extend our exact search
algorithm to mine divergence patterns as well.

A.3 RELATIVE DISCRIMINATION SCORE

We define discrimination patterns using an absolute dif-
ference in conditional probabilities, but one may wish to
characterize discrimination using a quantity that is propor-
tional to the initial prediction probability. For instance, a
prediction that goes from 0.15 to 0.05 after disclosing the
sensitive attributes could be seen as more problematic than
one that goes from 0.8 to 0.7, but they would have the same
discrimination score. We can alternatively define a score
based on relative difference as the following.

Definition 5 (Relative Degree of Discrimination). Let P
be a probability distribution over D ∪ Z, and x and y be
joint assignments to X ⊆ S and Y ⊆ Z \X, respectively.
The relative discrimination score of pattern x,y, defined as
∆′(x,y) = P (d|x,y)

P (d|y) .

We can mine discrimination patterns under this notion as
well, by using a similar approach to derive the upper bound.
That is, to get an upper bound on the relative discrimination
score, we independently minimize/maximize P (d | x,y)
and P (d | y) over extensions, as described in Sec. 3
and Sec. A.1.

B RECOVERING SUMMARY PATTERNS

We can tweak the search algorithm to keep track of the
Pareto front of discrimination patterns found so far in each
search step. Concretely, we maintain an ordered container
storing the probability and discrimination score in increasing
order of the former and decreasing order of the latter.

Similarly, finding the set of maximal patterns is almost iden-
tical to searching for all discrimination patterns. In particu-
lar, when exploring a pattern in the search tree, we declare
it to be maximal if no extension of it can possibly be a dis-
crimination pattern, determined by the quadratic-time upper
bound on discrimination score.

For minimal patterns, we derive a sub-quadratic time algo-
rithm to examine a set of patterns and recover the minimal
ones. Suppose we are given a set of patterns Σ. While a

trivial algorithm to extract minimal patterns is quadratic in
the number of patterns, we can recover the minimal pat-
terns in time O

(
P ·N2 + PNlog(PN)

)
, where P is the

number of potential patterns and N = |Z|. Note that this is
particularly of interest when the number of patterns is very
large.

First, we pre-process the patterns to identify candidate min-
imal patterns, which are patterns all of whose extensions
are also patterns. Note that we get this for for free in the
case of exact search with minor modifications. Consider the
poset of all possible assignments xy ordered by inclusion.
We traverse this graph in level order, while maintaining a
queue of nodes to visit and a set of assignments that we
do not want to visit S. At the beginning of each level, we
expand the nodes in S. Then, for each node in the queue for
the current level that is not in S, if it is a candidate minimal
pattern, we mark it as minimal, and add all its children to S.
Otherwise, we add every child not in S to the queue for the
next level.

C SAMPLING WITH MEMOIZATION

At a high level, there are key two additions to Alg. 1 in
Alg. 4.

First, the weights to sample from immediate extensions
are no longer merely their discrimination scores. Instead,
we maintain an estimator Φ(x,y) at each assignment cor-
responding to the expected discrimination score of an ex-
tension of (x,y) (not just the immediate extensions by a
single variable). Φ(x,y) is initialized as the discrimination
score for every assignment x,y. After each sampling run
(which refers to the complete extension path taken from
the empty assignment ({}, {}) to a complete assignment),
we backtrack to update Φ(x,y) with our new information
about average score of pattern encountered on the path after
that assignment. More precisely, one can think of Φ(xy)
as tracking the average discrimination score of a path of
extensions from (x,y), averaged over all extension paths
explored so far. Observe that in contrast to Alg. 1, consecu-
tive sampling runs are no longer independent, and later runs
have a more informed heuristics for exploring the search
space.

Second, at any particular assignment (x,y), the extensions
are no longer directly sampled in proportion to Φ(x,y).
Instead, we instead introduce a power factor of Γ(x,y) =(
1 + |x|+|y|

n

)
as a heuristic for how strongly we wish to ad-

here to our estimator in picking our path. One can view this
as a control for exploration versus exploitation as Γ(x,y)
varies from 1 to 2. Intuitively, we are more open to explo-
ration early on in our path as given a target pattern (x′,y′),
there are initially exponentially many paths to reach it. How-
ever, we prefer to exploit our estimator Φ(x,y) as the num-
ber of extension paths to (x′,y′) reduces later in the sam-

9

Algorithm 4 SAMPLE-DISC-PATTERNS(C,Z)
Input: a PC C over variables D ∪ Z and a threshold δ
Output: a set of sampled discrimination patterns Σ

1: Σ← {}
2: Φ(x,y)← ∆(x,y) ∀xy
3: σ(x,y)← 1 ∀xy
4: repeat ▷ generate samples until timeout
5: (x,y)← ({}, {})
6: p← []
7: while |x|+ |y| < n do
8: for (x′,y′) ∈ extensions(x,y)) do ▷ extensions by a single variable
9: if ∆(x′,y′) > δ then Σ← Σ ∪ {(x′,y′)}

10: (x,y)← sample
weight:Φ(x,y)(1+

|x|+|y|
n)(extensions(x,y))

11: p← p+ (x,y)

12: for (x,y) ∈ reversed(p)) do ▷ update estimates

13: t← Σn
i=|x|+|y|Φ(p[i])

n−|x|−|y|
14: σ(x,y)← σ(x,y) + 1

15: Φ(x,y)← Φ(x,y)·(σ(x,y)−1)+t
σ(x,y)

16: until timeout
17: return Σ

pling run. We note that this is particularly of significance in
settings where the number of variables (and consequently
the search space) is large, as for most practical purposes we
are interested in quickly finding the most interesting pat-
terns, and not necessarily interested in exploring the search
space to extract all possible patterns.

D ADDITIONAL EXPERIMENTAL
RESULTS

We mine the top-k patterns for two ranking heuristics (dis-
crimination and divergence score), three values of k (1, 10,
100), and three threshold values δ (0.01, 0.05, 0.1). Tab. 3
reports the speedup in terms of the proportion of the search
space visited by our algorithm compared to the naive ap-
proach. Note that only the settings in which δ = 0.1 for
ranking by discrimination score are reported, because the
results are identical for smaller values of δ. We observe that
pruning is effective, resulting in consistent speedup, includ-
ing some significant improvement in performance as high as
24x speedup in the case of mining top-k divergence patterns
on the Adult dataset.

Tab. 2 details the speedup of the sampling algorithm relative
to naive enumeration, in terms of the number of assignments
explored to find the top-1 pattern; each result is the aver-
age over 10 independent random trials. Recall that each
sampling instance merely requires a few feed-forward eval-
uations of the circuit (linear time) for computing marginals.
Hence, from the table it is clear that the sampling algorithm
is much quicker than exact search in finding the patterns

Table 2: Average speedup of sampling v.s. naive enumera-
tion to find top 1 pattern (in terms of proportion of search
space explored).

Discrimination Divergence
Dataset Avg StdDev Avg StdDev

Compas 26x 54x 29x 15x
Income 17x 14x 143x 6x
Adult 48x 53x 49480x 2113x

with highest scores.

We also report an extended version of the results reported in
Tab. 12. In particular, we compare the number and scores of
patterns found by exact search and Alg. 4 with a fixed time-
out in various settings (dataset, type of score, and threshold).
We find that Alg. 4 consistently outperforms exact search in
both number of patterns found and score of highest pattern
found across different settings.

2The pre-processed data, trained models, and code
are available at https://github.com/UCLA-StarAI/PC-
DiscriminationPatterns

10

https://github.com/UCLA-StarAI/PC-DiscriminationPatterns
https://github.com/UCLA-StarAI/PC-DiscriminationPatterns

Table 3: Dataset statistics (number of examples, number of sensitive features S, non-sensitive features N , and number of
potential patterns) and speedup of top-k search v.s. naive enumeration, in terms of the fraction of search space explored.

Disc. Divergence
Dataset Size S N # Pat. k δ=0.1 δ=0.01 δ=0.05 δ=0.10

COMPAS 48834 4 3 15K
1 2.73x 2.17x 1.40x 1.16x
10 2.68x 1.85x 1.26x 1.10x
100 2.52x 1.46x 1.13x 1.04x

Income 195665 2 6 11K
1 1.22x 1.50x 1.32x 1.13x
10 1.20x 1.40x 1.26x 1.08x
100 1.13x 1.31x 1.15x 1.02x

Adult 32561 4 9 11M
1 1.32x 24.20x 16.72x 10.88x
10 1.31x 20.44x 14.75x 9.82x
100 1.29x 16.10x 11.87x 8.40x

Table 4: Number of patterns and highest score of pattern found by exact search and sampling.

Score Delta Exact Sampling
Discrimination 0.01 584 980

0.05 347 751
0.1 210 347

Divergence 0.01 586 1186
0.05 577 1644

Score Delta Exact Sampling
Discrimination 0.01 0.2236 0.2226

0.05 0.2236 0.2230
0.1 0.2236 0.2230

Divergence 0.01 0.0015 0.0071
0.05 0.0002 0.0009

(a) COMPAS dataset with a 3 second timeout

Score Delta Exact Sampling
Discrimination 0.01 953 2236

0.05 209 1090
0.1 3 225

Divergence 0.01 840 2366
0.05 818 2179

Score Delta Exact Sampling
Discrimination 0.01 0.1076 0.1658

0.05 0.1076 0.1658
0.1 0.1076 0.1658

Divergence 0.01 0.0046 0.0100
0.05 0.0004 0.0023

(b) Income dataset with a 5 second timesout

Score Delta Exact Sampling
Discrimination 0.01 42467 127855

0.05 37167 113763
0.1 30982 99578

Divergence 0.01 35792 133780
0.05 35292 130232

Score Delta Exact Sampling
Discrimination 0.01 0.6725 0.6935

0.05 0.6725 0.6871
0.1 0.6725 0.6844

Divergence 0.01 0.0317 0.2125
0.05 0.0162 0.1098

(c) Adult dataset with a 600 second timeout

11

	Introduction
	Discrimination Patterns
	Finding Discrimination Patterns in a PC
	Empirical Evaluation
	Computing Upper Bounds
	Discrimination Score
	Divergence Score
	Relative Discrimination Score

	Recovering Summary Patterns
	Sampling with Memoization
	Additional Experimental Results

