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Abstract
Traditionally, data storage systems provide error-
correction and data integrity techniques in an in-
dependent layer, with the goal of protecting all
the data equally regardless of the application.
In the context of machine learning systems, this
strategy is not appropriate: errors in a few fea-
tures may prove to be critically important (with
respect to the algorithm output), while many er-
rors may have little or no effect. This work
takes a different direction: we allow ML algo-
rithms to talk to error-correction schemes, with
the goal of making algoritms robust to storage
noise. We introduce several novel problems, pro-
vide an efficient solution to estimate the noise-
induced change in the algorithm output for lin-
ear models, and show how to optimize error-
correction codes to minimize error effects for
fixed overhead.

1. Introduction
The standard approach to handling noise and faults in data
storage systems is to provide a separate abstraction layer
where error and fault correction techniques are applied to
maintain the integrity of the data. The goal of this strategy
is to ensure that all of the data is reliable; the correction
layer is agnostic to the use of the data.

This solution may not be suitable for big data systems. Uni-
formly protecting the data is equivalent to minimizing the
error rate measured at the input to some algorithm; this rate
does not directly translate to the effect on the output. Even
a very large number of errors may not have any impact on,
for example, a classifier output. On the other hand, an er-
ror in a single feature (out of many) may have a dramatic
impact, even though the input error rate remains very low.
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Figure 1. Noisy system. Training phase (left) uses binary features
and labels (X,Y ) passed through a noisy binary symmetric chan-
nel BSC(ε): X ′ is equal to X with probability 1 − ε and equal
to X̄ with probability ε. Algorithm L can use noise statistics ε to
produce a model F minimizing the impact of noise. Test phase
(right) also operates on noisy features X ′ without observing the
true values X .

This observation inspires us to consider a cross-layer ap-
proach for error-protection in machine learning systems,
with the goal of reducing the effect of noise on the algo-
rithm output. This novel problem bridges machine learn-
ing and the traditional fields concerned with the reliability
of data, such as coding and information theory.

A general setting is shown in Figure 1. Noise can be found
in the training data and labels (X,Y ) (left). The learned
model F is affected by this noise, but can also be modified
to be noise-aware by using the noise statistics ε. This model
operates on noisy test data (right). The setting leads to the
following hierarchy of problem settings, in increasing order
of intractability:

1. Fixed model (learned from noiseless training data, i.e.,
εL,i = 0) operating on noisy test data,

2. Noise-aware model (learned from noiseless training
data and noise statistics ε), produced to minimize ex-
pected noise loss on the output,

3. Noise-aware model learned from noisy training data.
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Table 1. Noise loss (probability of incorrect classification) for var-
ious redundancy allocations.

Parameters Noise loss by protection strategy
p0(x1) p0(x2) p1(x1) p1(x2) Uniform None All x1 All x2

0.10 0.11 0.90 0.89 0.037 0.10 0.009 0.10
0.20 0.19 0.70 0.70 0.036 0.095 0.054 0.054

We largely concentrate on the first setting (which is quite
challenging) while briefly discussing the other problems.

Given one of the problem settings, the first task is to evalu-
ate the impact of the noise by measuring the loss (expected
noise loss, or ENL) on the output compared to a noiseless
version with the same features. For problems 2 and 3, we
can modify L to produce a model minimizing this loss.
However, in all cases, we can modify the ε’s through ap-
plication of error-correcting codes. This is the key insight
that enables us to bring together machine learning and cod-
ing theory. Naturally, forcing ε → 0 minimizes the loss;
however, this may require an unacceptable amount of cod-
ing overhead. Instead, we focus on optimizing the code
(with respect to the loss function) for a fixed overhead. We
illustrate the main ideas with the following toy example:

2. Motivating Example
Consider a naive Bayes classifier with n = 2 features
X1, X2, noisy versions X ′1, X

′
2, and uniform prior on the

class. The noise parameter is ε = 0.1 by default. Let
pi(xj) := p(xj = 0|C = i). We allocate 4 additional
redundancy bits for protection; uniform protection gives
2 such bits to each feature, while protection on Xi alone
grants all 4 bits to Xi (the result of protection is a reduc-
tion of the εi noise parameter for feature i.)

In the first row of Table 1, X1 contains more information
about class C compared to X2. Observe that allocating all
bits to X1 yields a lower loss than equal protection or pro-
tection on X2. Conversely, in the last row, even though X2

contains more information about C, the loss is minimized
by a uniform allocation of redundancy bits. The average
loss between noisy and noiseless classifier output (equiva-
lent to the probability of changing the classification) varies
for different values of the pi(xj)’s and noise parameters.
These observations imply that we cannot directly examine
the conditional probabilities to decide how to allocate re-
dundancy - we need an informed coding allocation strategy.

3. Related Work
There is a vast literature on robust machine learning algo-
rithms. For example, Ramoni & Sebastiani (2001) con-
siders missing training set data (missing features or labels)
and is concerned with the impact on classifier accuracy.

In Provost & Fawcett (2001), varying operative conditions
and their effect on classifiers are studied. An experimental
study of algorithms with synthetic noise corrupted datasets
is performed by Kalapanidas et al. (2003). Deleted features
are also tackled by Dekel & Shamir (2008) and Globerson
& Roweis (2006); the latter proposes a game-theoretic ap-
proach to avoid over-reliance on a deleted feature.

Our approach (more detail in Mazooji et al. (2016) and Sala
et al. (2017)) fundamentally differs from such works. In
our problem, the noise occurs after feature generation (e.g.,
because the features are stored on noisy data storage de-
vices). However, the system has the ability to protect the
algorithm output with tailored error-correction strategies.

At the same time, our work stands in contrast to existing
research on channel coding for data protection. The goal
in these works is to preserve the data being stored with-
out considering the application. That is, error-correction
forms a separate abstraction layer. Works in this area
propose error-correction for disk drives (Riggle & Mc-
Carthy, 1998), write-once memories (Rivest & Shamir,
1982), RAID architectures (Blaum et al., 1995), non-
volatile memories such as flash (Cassuto et al., 2010;
Dolecek & Sala, 2016), solid-state drives (Zhao et al.,
2013), and distributed storage (Weatherspoon & Kubiatow-
icz, 2002), (Dimakis et al., 2010).

4. Noise in Linear Models
We consider algorithms resulting in linear models in prob-
lem setting 1. For simplicity, we use binary features, al-
though our results easily extend to non-binary features. Let
[n] := {1, 2, . . . , n}. Let x = (x1, x2, . . . , xn) be a test
point. Our running examples will be linear regression and
linear classifiers; the classifier will be in the form of naive
Bayes, though the results equivalently apply to logistic re-
gression, other hyperplane-based classifiers, etc.

Noise Model. We employ a simple noise model: we de-
fine a noise parameter vector ε = (ε1, ε2, . . . , εn) with
0 ≤ εi ≤ 1/2 for 1 ≤ i ≤ n. The binary feature Xi is
flipped to its opposite valueXi with probability εi and stays
unchanged with probability 1 − εi. We express the result-
ing error vector as E = (E1, E2, . . . , En), where Ei = 1
if an error has occurred for feature i and 0 otherwise. If
errors occur at positions in S ⊆ [n] in E, then the prob-
ability of E is given by Pr(E) =

∏
i∈S εi

∏
i 6∈S(1 − εi).

We denote the algorithm operating on the noisy features as
F (x,E) = F (x⊕E).

Noise Loss Measures. We examine the effect of the
feature bit errors on the output of the algorithm. Let
`(F (e), F (x, e)) be the noise loss between the output of
the noiseless and noisy versions of the algorithms. We
are interested in evaluating the expected noise loss (ENL)
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EE[`(F (X), F (X,E))].

Conditioning on E and letting Se be the positions i where
ei = 1, the ENL can be written as∑

Se⊆[n]

`(F (X), F (X, e))
∏
i∈Se

εi
∏
i 6∈Se

(1− εi). (1)

We are interested in the empirical ENL
EE[`(F (x), F (x,E))]. A natural choice for ` is the
L1 norm: `(F (x), F (x,E)) = |F (x) − F (x,E)|. For
classification problems, this 0/1 loss reduces to the clas-
sification change probability, that is, the the probability
that the noiseless point X and the noisy version X′ have
differing classification. For linear regression problems, the
L2 norm is also of interest.

For linear models, the ENL can be written, for a function g
determined by the algorithm, as the discrete integral

EE[`(F (x), F (x,E))]

=
∑
S∈[n]

g

(∑
i∈S

Di

)∏
i∈S

εi
∏
i 6∈S

(1− εi), (2)

for certain choices of Di. In linear regression, |F (x) −
F (x,E)| = |aTx − aT (x ⊕ E)|, so that Di = ai(−1)xi

for 1 ≤ i ≤ n. Thus for linear regression, g(v) = |v|. For
Naive Bayes, set the loss term Dj to be the difference

Dj = Bj −Aj = log((1− αj)/(1− βj))− log(αj/βj),

where αi = p(xi|C = 0) and βi = p(xi|C = 1). Then,
it can be shown that g(v) = 1{v < T}, i.e., for linear
classifiers

EE[`(F (x), F (x,E))]

=
∑
S∈[n]

1

{∑
i∈S

Di < T

}∏
i∈S

εi
∏
i6∈S

(1− εi). (3)

5. Computing the Expected Noise Loss
Computing the ENL is a significant challenge. As a warm-
up, we compute the ENL under the L2 norm for linear re-
gression. It is not hard to show that

EE[||aᵀx− aᵀx′||]
= Tr(aaᵀCov(x− x′)) + EE[x− x′]ᵀaaᵀEE[x− x′].

It is easy to compute EE[x − x′]. If xi = 0, the expecta-
tion is −εi, while if x1 = 1, it is εi, so that EE[x − x′] =
[(−1)x1+1ε1, . . . , (−1)xn+1εn]

ᵀ. Moreover, a similar so-
lution can be found for Problem 2 for linear regression: it
is possible to find the optimal coefficients a that minimize
the expected L2 loss as a function of the ε’s.

Algorithm 1 Expected Noise Loss Approximation
Input: Loss terms D1, D2, . . . , Dn, Error probabili-
ties ε1, ε2, . . . , εn, Target T (in classification problems),
Number of buckets in quantization scheme k, Model
function g
Output: Expected noise loss approximation ENLapp

Initialize S1, . . . , Sk to 0, ENLapp to 0
for j = 1 to n do

if Dj ∈ [Intervalbegin
i , Intervalend

i ) then
Ni ← Ni + 1, εi,Ni

← εj
end if

end for
expand G[i, j] =

∏k
i=1

∏Ni

j=1((1− εi,j) + εi,jyz
i)

for i = 0 to n do
for j ≥ 0 do

ENLapp ← ENLapp + gi,j(G[i, j])
end for

end for

Algorithm 2 Channel Code Optimization
Input: Test points x1,x2 . . . ,xt, Noise vector ε =
(ε, . . . , ε), redundancy budget r
Output: Optimized redundancy allocation vector rr

Initialize r(0) to 0
for j = 0 to r − 1 do
i← argmini

1
t

∑t
k=1 ENLapp(xk,E

r(j)+1(i)))
r(j + 1)← r(j) + 1(i)

end for

In contrast to the L2 loss, which offers the convenient fac-
torization in above, the general problem and the L1 loss
function version are difficult to compute:

Proposition 1. Expression (2) is #P-hard to compute,
even for an efficiently computable function g.

Proposition 2. Expression (3) is NP-hard to compute.

To deal with this, we provide a lightweight, efficient ap-
proximation of the ENL relying on a discretization scheme.
The key idea is to quantize the loss terms Di into k in-
tervals, for k a constant. By a clever choice of quantiza-
tion, we induce a structure that enables us to approximate
the ENL in no more than O(n2 log n) operations. The ap-
proximation is described in Algorithm 1. For linear regres-
sion, set g`,m(v) = | m

k−1DI + `(Dmin − DI

k−1 )| × v. For
linear classifiers, set g`,m(v) = 1{m < T ′} × v where

T ′(`) := k−1
DI

(
T − `

(
Dmin − DI

k−1

))
. Details on how

to perform the quantization are found in the longer version
of this work (Sala et al., 2017). The key result is that the
approximation can be performed efficiently:

Theorem 1. The ENL approximation in Algorithm 1 re-
quires no more than O(k2n2 log(kn)) computations of g.
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Table 2. Expected Noise Loss (ENL) for classification and regression
Movie dataset, feature set 1 Movie dataset, feature set 2 Voting dataset Bike rent dataset

R Uniform Optimal Ratio Uniform Optimal Ratio Uniform Optimal Ratio Uniform Optimal Ratio
1 0.1263 0.1025 1.233 0.1011 0.0866 1.167 0.0564 0.0414 1.363 504.7 396.5 1.273
2 0.0442 0.0303 1.459 0.0348 0.0302 1.152 0.0318 0.0238 1.339 131.6 102.3 1.286
3 0.0147 0.0088 1.671 0.0115 0.0100 1.151 0.0190 0.0143 1.332 35.28 27.32 1.291
4 0.0047 0.0026 1.903 0.0038 0.0033 1.154 0.0115 0.009 1.356 10.16 7.982 1.273
5 0.0016 0.0008 2.101 0.0012 0.0011 1.158 0.0070 0.0050 1.391 3.486 2.884 1.209
6 0.0005 0.0002 2.255 0.0004 0.0003 1.160 0.0042 0.0029 1.433 1.682 1.515 1.110
7 0.0001 7.7E-05 2.398 0.0002 0.0001 1.162 0.0026 0.0018 1.474 1.189 1.142 1.041
8 6.3E-05 2.5E-05 2.539 4.9E-05 4.2E-05 1.164 0.002 0.0011 1.518 1.053 1.040 1.013
9 2.2E-05 8.1E-06 2.672 1.7E-05 1.5E-05 1.165 0.001 0.0006 1.563 1.015 1.011 1.004
10 7.4E-06 2.6E-06 2.811 5.8E-06 5.0E-06 1.165 0.0006 0.0004 1.611 1.004 1.003 1.001

6. Optimized Channel Coding
Now that we can compute the ENL, the next step is is to
tailor an error-correction strategy to the characteristics of
the features in order to minimize the ENL (reducing the
harmful impact of the noise on the output of the algorithm).

Repetition codes. We rely on repetition coding. If the
jth feature xj , corrupted by a bit flip with probability ε,
is repeated 2r + 1 times for some r ≥ 0, the probabil-
ity ε(r) that the feature is decoded incorrectly is equal to
the probability that the majority of votes are corrupted:
ε(r) =

∑2r+1
i=r+1

(
2r+1

i

)
εi(1 − ε)2r+1−i. Repetitions codes

are useful due to the flexibility of per-bit independent en-
coding and decoding. Unlike in classical coding, we have
found that such codes can be optimal in our setting.

Coding optimization. We use a total budget of 2r redun-
dancy bits. Feature i is represented by 1 + 2ri copies, and
has error probability ε(ri), for 1 ≤ i ≤ n. The noise
vector for all n features is ε(r) = (ε(r1), ε(r2), . . . , ε(rn)).
The corresponding error vector is written E(r). The values
r = (r1, r2, . . . , rn) are constrained by r1+r2+. . .+rn =
r. The goal is to minimize the ENL over t test points
x1, . . . ,xt with respect to r and the resulting ε vector. We
have the following optimization

argmin
r

1

t

t∑
j=1

ENL(xj ,E
(r)) s.t.

n∑
i=1

ri = r, ri ≥ 0. (4)

Consider the following greedy allocation algorithm, us-
ing the ENL approximation in Algorithm 1 and performed
one redundancy unit (two repeated bits) at a time. After
the jth step, we write the redundancy vector as r(j) =
(r1(j), r2(j), . . . , rn(j)). In the (j + 1)st step, one of the
ri(j) terms is selected and increased by 1. We write 1(i)
for the vector (0, 0, . . . , 0, 1, 0, . . . , 0) with a 1 in the ith
position and 0’s elsewhere. Then, the (j+1)st step is given
by argmini

1
t

∑t
k=1 ENLapp(xk,E

r(j)+1(i))) s.t. 1 ≤
i ≤ n. The complexity is reduced to that of performing
nt ENL computations per each of the r steps. The proce-
dure is given in Algorithm 2.

For linear classifiers, we found that the redundancy alloca-
tion function is submodular, and thus the greedy algorithm
is close to optimal. This requires two properties: (i) mono-
tonicity (which holds with high probability when the test
and training distributions are the same) and (ii) the ‘dimin-
ishing returns’ property, which follows from monotonicity.

Experiments. We demonstrate the benefits of our scheme
on several datasets: binary classification uses a vot-
ing dataset (Lichman, 2013) and a movie review dataset
(Bekker et al., 2015), and linear regression uses a bike
rental dataset (Gam, 2013). In all cases, we used k = 50
for the number of buckets in our ENL approximations. For
the movie reviews set we used two sets of n = 20 features
and 250 test data points. The ε parameter was 0.2 for the
first 2 datasets (a very high amount of noise that can never-
theless be handled through channel coding). Table 2 shows
the ENL for uniform and optimized assignment of redun-
dancy bits given a budget of 2nR bits. For the classifica-
tion setting, the values can be interpreted as the probability
of switching the classification due to noisy test features;
for regression, the values can be thought of as a type of
distortion on the output. We also report the ratio of the
ENL between the uniform and optimized coding strategies;
this ratio represents the benefits of our coding strategy. We
observe performance improvements of between 10% and
300% for various data sets.

7. Conclusion
We proposed a new class of problems where data protec-
tion is tailored to take advantage of the application. For
the problem setting with linear models operating on noisy
test data, we introduced an efficient scheme to evaluate the
noise loss and an optimized coding scheme targeted at min-
imizing the noise loss based on submodular optimization.
Our informed approach for redundancy allocation is among
the first principled methods combining coding theory with
machine learning. Several interesting problems remain for
future work: non-linear models, other loss functions, and
the general cases of Problems 2 and 3.
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