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Abstract

ProbLog is a probabilistic programming language based on Prolog. The new
ProbLog system - called ProbLog2 - can solve a range of inference and learning
tasks typical for the Probabilistic Graphical Models (PGM) and Statistical Rela-
tional Learning (SRL) communities. The main mechanism behind ProbLog2 is a
conversion of the given program to a weighted Boolean formula. We argue that
this conversion approach can also be applied - with certain restrictions - to other
probabilistic programming languages such as Church and Figaro.

1 Introduction

ProbLog [6] is a probabilistic extension of Prolog based on Sato’s distribution semantics [19]. A
ProbLog program consists of a set of probabilistic facts and a logic program, i.e. a set of rules. A
probabilistic fact, written as p::f, is an atom f annotated with the probability p of this atom being
true. A ProbLog program specifies a probability distribution over possible worlds, as dictated by the
distribution semantics [19]: each ground probabilistic fact gives an atomic choice; a total choice σ
is obtained by making an atomic choice for all ground probabilistic facts (the probability of σ is the
product of the probabilities of the atomic choices); each total choice σ can be extended to a possible
world, which contains σ together with all the atoms inferable from σ using the rules.

Example 1 We are packing our baggage to fly to the NIPS conference. We have a set of items,
each having a particular weight, and we pack each item with a certain probability. We want to
compute the probability that we will have excess baggage, i.e., that the total weight of our baggage
will exceed a given limit L. We can model this in ProbLog as follows.

0.9::pack(skis). weight(skis,5).
0.2::pack(helmet). weight(helmet,2).
0.6::pack(gloves). weight(gloves,1).
... ...

excess(L) :- excess([skis,helmet,gloves,...],L). % all possible items

excess([],L) :- L<0.
excess([I|R],L) :- pack(I), weight(I,W), L2 is L-W, excess(R,L2).
excess([I|R],L) :- not(pack(I)), excess(R,L).

Given a ProbLog program, one can solve a number of inference and learning tasks. The previous
ProbLog system [14] was rooted in the (Inductive) Logic Programming (ILP) community and hence
focusses on tasks that are most natural in an (I)LP setting. The main inference task in this system is to
compute the so-called succes probability of a query [14], which is a probabilistic variant of proving
a query in Prolog. For learning, the setting that was first considered is learning from entailment,

1



ProbLog2

Church

Figaro

Graphical Model

Weighted CNF MC-SAT

d-DNNF

MaxWalkSAT

EM

Figure 1: ProbLog2 pipeline architecture.

a probabilistic variant of the standard ILP setting (each example in the dataset consists of an atom
together with its target probability) [11].

The new ProbLog system - called ProbLog2 - is more inspired by the work in the PGM and SRL
community, leading to different tasks being tackled [8]. The main inference task in ProbLog2 is to
compute the marginal probabilities of a set of query atoms given some evidence. This generalizes
the traditional ProbLog task of computing a success probability in two ways: (1) evidence is con-
sidered, (2) multiple queries can be answered simultaneously. Another inference task considered is
finding the Most Probable Explanation (MPE): given some evidence, the goal is to find the most
likely truth value of all the non-evidence atoms. For learning, ProbLog2 uses the learning from
interpretations setting [12], which matches the typical learning setting from PGM and SRL (each
example is a partial interpretation, i.e., we observe the truth value of a subset of all atoms in the pro-
gram). ProbLog2 solves all these tasks by various algorithms that all operate on a weighted CNF,
i.e., a weighted Boolean formula in Conjunctive Normal Form.

2 ProbLog2: Inference and Learning on Weighted CNFs

ProbLog2 has a pipeline architecture of grounding, followed by conversion to weighted CNF, fol-
lowed by inference and learning on the weighted CNF [8]. The main motivation behind this new
architecture is that, once a weighted CNF is obtained, inference and learning can be done using state-
of-the-art algorithms from SRL and PGM. In this sense, ProbLog2 forms a bridge from probabilistic
programming to SRL and PGM.

Grounding and conversion. In order to convert the ProbLog program to a weighted CNF, the pro-
gram is first grounded. Grounding the entire program is usually prohibitive. Hence, our grounding
algorithm only considers the rules relevant to the task at hand (depending on the query and evi-
dence, or the learning examples). The resulting ground program is then converted to an equivalent
weighted CNF. This conversion must compensate for the change in semantics from logic program-
ming to propositional logic and can be carried out by a number of existing methods [13, 15]. The
resulting CNF can then be ‘conditioned’ by conjoining it with the evidence, optionally followed by
simplification (using unit propagation, etc).

Example 2 In our baggage example, if we ask the query excess(6), part of the resulting Boolean
formula looks a follows (for brevity we consider only 3 items, we abbreviate ‘skis’ to ‘s’, etc).

excess(6 )↔ excess([s, h, g ], 6 )

excess([s, h, g ], 6 )↔ (pack(s) ∧ excess([h, g ], 1 )) ∨ (¬pack(s) ∧ excess([h, g ], 6 ))

This formula can be converted to CNF using standard methods. The weight function for the CNF
follows from the probabilistic facts (e.g., the weight for pack(s) is 0.9, for ¬pack(s) 0.1, etc) [8].

Inference on weighted CNFs. Once we have a weighted formula, we can apply well established
methods from SRL and PGM. Computing marginal probabilities reduces to weighted model count-
ing [18, 8], which can be solved in various ways. We use knowledge compilation [5, 2, 1]: we
compile the CNF to a d-DNNF circuit; probabilities can then be computed in time linear in the
circuit size. Finding the MPE solution can also be done with knowledge compilation [4], or with
algorithms for weighted MAX-SAT such as MaxWalkSAT [16, 7]. Even lifted inference, which
exploits symmetries in the probabilistic programs during inference, can be performed on weighted
first-order CNFs [21, 9, 20].

Learning on weighted CNFs. ProbLog2 currently supports parameter learning in the learning from
interpretations setting [12]. Given is a ProbLog program with unknown parameters (fact probabil-
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ities) and a set I of partial interpretations. Each partial interpretation I ∈ I consists of a set of
true atoms I+ and a set false atoms I−. The goal is to learn the maximum likelihood parameter
estimates, i.e. to maximize

∏
I∈I P (I), with P (I) =

∏
f∈I+ P (f)

∏
f∈I−(1− P (f)). This corre-

sponds to the standard learning setting in SRL and PGM. We use Expectation Maximization (EM)
to solve this [12]. In the E-step, several marginal probabilities need to be calculated. This is done
using the above inference approach, namely via knowledge compilation. The advantage of knowl-
edge compilation in the context of parameter learning is that the compiled circuits depend only on
the structure of the program but not on its parameters. Hence, we only need to compile the circuits
once (upfront) and can then use them in each iteration of the EM algorithm.

3 Weighted CNFs for Other Probabilistic Programming Languages

The probabilistic programming community has given rise to a diverse set of languages, including
functional, logic and object-oriented programming languages. As we showed, probabilistic logic
programming can benefit from using a representation like weighted CNFs. We argue that the same
is true for other probabilistic programming languages, even those that have no obvious connection
to logic. There is of course one important prerequisite, namely that the given probabilistic program
can indeed be transformed to a weighted CNF. If that is the case, all the algorithms used by ProbLog
apply directly.

Let us now consider the problem of transforming a functional probabilistic program written in
Church [10] into a weighted CNF. Church is a probabilistic extension of Scheme for modeling
stochastic generative processes.

Example 3 The distribution of Example 1 is modeled in Church by the following four functions.

(define skis (if (flip 0.9) 5 0))
(define helmet (if (flip 0.2) 2 0))
(define gloves (if (flip 0.6) 1 0))
(define (excess l) (> (+ skis helmet gloves) l))

For a given query, there are many weighted logical theories that correspond to this distribution. They
contain the propositions skis-flip, helmet-flip and gloves-flip, representing the random flips in the
program. The most basic weighted theory is in disjunctive normal form. It enumerates all subsets
of items that exceed the weight limit (one of which is skis-flip ∧ helmet-flip ∧ gloves-flip) and
disjoins these terms, stating that one of these subsets has to be included for the query to succeed. A
more compact representation is obtained by executing the Church program and backtracking on flip
statements, constructing a computation graph of the program. This graph can then be transformed
into a weighted CNF, similar to the ProbLog approach [8]. This transformation introduces additional
propositions, such as excess([s, h, g ], 6 ) in Example 2, as a shorthand for a complex state of other
random variables.

A similar technique can be applied to object-oriented probabilistic programming languages, such
as Figaro [17]. In Figaro, we can model the distribution of Example 1 with a class for each item
and a property for each item that represents its weight. These properties are actually probability
distributions. Arithmetic operations on these distributions can be modeled using the apply method.
Once we convert the Figaro program to a weighted CNF, again, existing algorithms can be applied.

Of course this strategy is only applicable to programs that can indeed be transformed to a weighted
CNF. This is the case for all ProbLog programs, but not necessarily for all Church or Figaro programs
(or BLOG programs, etc). Concretely, one restriction is that we need to be able to derive a finite
CNF, which requires the given program to be evidence-finite [3]. Furthermore, it is unclear how
to do the transformation for open world models as seen frequently in BLOG. Finally, while the
transformation works for programs with Boolean random variables, and can be extended for non-
Boolean variables, it is inapplicable for continuous random variables.

Even with these restrictions on the supported programs, we believe this strategy of converting to a
weighted CNF to be a promising one for the field of probabilistic programming. It shows that differ-
ent languages like Figaro, Church and ProbLog - despite their syntactical and semantical differences
- can potentially use the same underlying inference and learning algorithms.
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