
Under review

PROBABILISTICALLY REWIRED MESSAGE-PASSING
NEURAL NETWORKS

Chendi Qian*

Computer Science Department
RWTH Aachen University, Germany
chendi.qian@log.rwth-aachen.de

Andrei Manolache*

Computer Science Department
University of Stuttgart, Germany
Bitdefender, Romania
andrei.manolache@ki.uni-stuttgart.de

Kareem Ahmed, Zhe Zeng & Guy Van den Broeck
Computer Science Department
University of California, Los Angeles, USA

Mathias Niepert†
Computer Science Department
University of Stuttgart, Germany

Christopher Morris†
Computer Science Department
RWTH Aachen University, Germany

ABSTRACT

Message-passing graph neural networks (MPNNs) emerged as powerful tools for
processing graph-structured input. However, they operate on a fixed input graph
structure, ignoring potential noise and missing information. Furthermore, their
local aggregation mechanism can lead to problems such as over-squashing and
limited expressive power in capturing relevant graph structures. Existing solutions
to these challenges have primarily relied on heuristic methods, often disregarding
the underlying data distribution. Hence, devising principled approaches for learning
to infer graph structures relevant to the given prediction task remains an open
challenge. In this work, leveraging recent progress in exact and differentiable k-
subset sampling, we devise probabilistically rewired MPNNs (PR-MPNNs), which
learn to add relevant edges while omitting less beneficial ones. For the first time,
our theoretical analysis explores how PR-MPNNs enhance expressive power, and
we identify precise conditions under which they outperform purely randomized
approaches. Empirically, we demonstrate that our approach effectively mitigates
issues like over-squashing and under-reaching. In addition, on established real-
world datasets, our method exhibits competitive or superior predictive performance
compared to traditional MPNN models and recent graph transformer architectures.

1 INTRODUCTION

Graph-structured data is prevalent across various application domains, including fields like chemo-
and bioinformatics (Barabasi & Oltvai, 2004; Jumper et al., 2021; Reiser et al., 2022), combinatorial
optimization (Cappart et al., 2023), and social-network analysis (Easley et al., 2012), highlighting the
need for machine learning techniques designed explicitly for graphs. In recent years, message-passing
graph neural networks (MPNNs) (Kipf & Welling, 2017; Gilmer et al., 2017; Scarselli et al., 2008b;
Veličković et al., 2018) have become the dominant approach in this area, showing promising performance
in tasks such as predicting molecular properties (Klicpera et al., 2020; Jumper et al., 2021) or enhancing
combinatorial solvers (Cappart et al., 2023).

However, MPNNs have a limitation due to their local aggregation mechanism. They focus on encoding
local structures, severely limiting their expressive power (Morris et al., 2019; Xu et al., 2019; Morris
et al., 2021). In addition, MPNNs struggle to capture global or long-range information, possibly leading

*These authors contributed equally.
†Co-senior authorship.

1

ar
X

iv
:2

31
0.

02
15

6v
3

 [
cs

.L
G

]
 1

5
O

ct
 2

02
3

Under review

Figure 1: Overview of the probabilistically rewired MPNN framework. PR-MPNNs use an upstream
model to learn priors θ for candidate edges, parameterizing a probability mass function conditioned on
exactly-k constraints. Subsequently, we sample multiple k-edge adjacency matrices (here: k = 1) from
this distribution, aggregate these matrices (here: subtraction), and use the resulting adjacency matrix as
input to a downstream model, typically an MPNN, for the final predictions task. On the backward pass,
the gradients of the loss ℓ with respect to the parameters θ are approximated through the derivative
of the exactly-k marginals in the direction of the gradients of the point-wise loss ℓ with respect to the
sampled adjacency matrix. We use recent work to make the computation of these marginals exact and
differentiable, reducing both bias and variance.
to phenomena like under-reaching (Barceló et al., 2020) or over-squashing (Alon & Yahav, 2021).
Over-squashing, as explained by Alon & Yahav (2021), refers to excessive information compression
from distant nodes due to a source node’s extensive receptive field, occurring when too many layers
are stacked.

Topping et al. (2021); Bober et al. (2022) investigated over-squashing from the perspective of Ricci
and Forman curvature. Refining Topping et al. (2021), Di Giovanni et al. (2023) analyzed how
the architectures’ width and graph structure contribute to the over-squashing problem, showing that
over-squashing happens among nodes with high commute time, stressing the importance of graph
rewiring techniques, i.e., adding edges between distant nodes to make the exchange of information
more accessible. In addition, Deac et al. (2022); Shirzad et al. (2023) utilized expander graphs to
enhance message passing and connectivity, while Karhadkar et al. (2022) resort to spectral techniques,
and Banerjee et al. (2022) proposed a greedy random edge flip approach to overcome over-squashing.
Recent work (Gutteridge et al., 2023) aims to alleviate over-squashing by again resorting to graph
rewiring. In addition, many studies have suggested different versions of multi-hop-neighbor-based
message passing to maintain long-range dependencies (Abboud et al., 2022; Abu-El-Haija et al.,
2019; Gasteiger et al., 2019; Xue et al., 2023), which can also be interpreted as a heuristic rewiring
scheme. The above works indicate that graph rewiring is an effective strategy to mitigate over-squashing.
However, most existing graph rewiring approaches rely on heuristic methods to add edges, potentially
not adapting well to the specific data distribution or introducing edges randomly. Furthermore, there is
limited understanding to what extent probabilistic rewiring, i.e., adding or removing edges based on the
prediction task, impacts the expressive power of a model.

In contrast to the above lines of work, graph transformers (Chen et al., 2022; Dwivedi et al., 2022b; He
et al., 2023; Müller et al., 2023; Rampášek et al., 2022) and similar global attention mechanisms (Liu
et al., 2021; Wu et al., 2021) marked a shift from local to global message passing, aggregating over all
nodes. While not understood in a principled way, empirical studies indicate that graph transformers
possibly alleviate over-squashing; see, e.g., Müller et al. (2023). However, due to their global aggregation
mode, computing an attention matrix with n2 entries for an n-order graph makes them applicable
only to small or mid-sized graphs. Further, to capture non-trivial graph structure, they must resort to
hand-engineered positional or structural encodings.

Overall, current strategies to mitigate over-squashing rely on heuristic rewiring methods that may
not adapt well to a prediction task or employ computationally intensive global attention mechanisms.
Furthermore, the impact of probabilistic rewiring on a model’s expressive power remains unclear.

2

Under review

Present work By leveraging recent progress in differentiable k-subset sampling (Ahmed et al., 2023),
we derive probabilistically rewired MPNNs (PR-MPNNs). Concretely, we utilize an upstream model
to learn prior weights for candidate edges. We then utilize the weights to parameterize a probability
distribution constrained by so-called k-subset constraints. Subsequently, we sample multiple k-edge
adjacency matrices from this distribution and process them using a downstream model, typically an
MPNN, for the final predictions task. To make this pipeline trainable via gradient descent, we adapt
recently proposed discrete gradient estimation and tractable sampling techniques (Xie & Ermon, 2019;
Niepert et al., 2021; Ahmed et al., 2023); see Figure 1 for an overview. Our theoretical analysis explores
how PR-MPNNs overcome MPNNs’ inherent limitations in expressive power and identifies precise
conditions under which they outperform purely randomized approaches. Empirically, we demonstrate
that our approach effectively mitigates issues like over-squashing and under-reaching. In addition, on
established real-world datasets, our method exhibits competitive or superior predictive performance
compared to traditional MPNN models and graph transformer architectures.

Overall, PR-MPNNs pave the way for the principled design of more flexible MPNNs, making them less
vulnerable to potential noise and missing information.

1.1 RELATED WORK

MPNNs are inherently biased towards encoding local structures, limiting their expressive power (Morris
et al., 2019; Xu et al., 2019; Morris et al., 2021). Specifically, they are at most as powerful as
distinguishing non-isomorphic graphs or nodes with different structural roles as the 1-dimensional
Weisfeiler–Leman algorithm (Weisfeiler & Leman, 1968), a simple heuristic for the graph isomorphism
problem; see Section 2. Additionally, they cannot capture global or long-range information, often linked
to phenomena such as under-reaching (Barceló et al., 2020) or over-squashing (Alon & Yahav, 2021),
with the latter being heavily investigated in recent works.

Graph rewiring Several recent works aim to circumvent over-squashing via graph rewiring. Perhaps
the most straightforward way of graph rewiring is incorporating multi-hop neighbors. For example,
Brüel-Gabrielsson et al. (2022) rewires the graphs with k-hop neighbors and virtual nodes and also
augments them with positional encodings. MixHop (Abu-El-Haija et al., 2019), SIGN (Frasca et al.,
2020), DIGL (Gasteiger et al., 2019), and SP-MPNN (Abboud et al., 2022) can also be considered
as graph rewiring as they can reach further-away neighbors in a single layer. Particularly, Gutteridge
et al. (2023) rewires the graph similarly to Abboud et al. (2022) but with a novel delay mechanism,
showcasing promising empirical results. Several rewiring methods depend on particular metrics, e.g.,
Ricci or Forman curvature (Bober et al., 2022), balanced Forman curvature (Topping et al., 2021). In
addition, Deac et al. (2022); Shirzad et al. (2023) utilize expander graphs to enhance message passing
and connectivity, while Karhadkar et al. (2022) resort to spectral techniques, and Banerjee et al. (2022)
propose a greedy random edge flip approach to overcome over-squashing. Refining Topping et al. (2021),
Di Giovanni et al. (2023) analyzed how the architectures’ width and graph structure contribute to the
over-squashing problem, showing that over-squashing happens among nodes with high commute time,
stressing the importance of rewiring techniques. Overall, current strategies to mitigate over-squashing
either rely on heuristic rewiring methods or even purely randomized approaches that may not adapt well
to a given prediction task. Furthermore, the impact of probabilistic rewiring on a model’s expressive
power remains unclear.

There also exists a large set of works from the field of graph structure learning proposing heuristical
graph rewiring approaches; see Appendix A for details.

Graph transformers Different from the above, graph transformers (Dwivedi et al., 2022b; He et al.,
2023; Müller et al., 2023; Rampášek et al., 2022; Chen et al., 2022) and similar global attention
mechanisms (Liu et al., 2021; Wu et al., 2021) marked a shift from local to global message passing,
aggregating over all nodes. While not understood in a principled way, empirical studies indicate
that graph transformers possibly alleviate over-squashing; see, e.g., Müller et al. (2023). However,
all transformers suffer from their quadratic space and memory requirements due to computing an
attention matrix.

3

Under review

2 BACKGROUND

In the following, we provide the necessary background.

Notations Let N := {1, 2, 3, . . . }. For n ≥ 1, let [n] := {1, . . . , n} ⊂ N. We use {{. . . }} to denote
multisets, i.e., the generalization of sets allowing for multiple instances for each of its elements. A graph
G is a pair (V (G), E(G)) with finite sets of vertices or nodes V (G) and edges E(G) ⊆ {{u, v} ⊆
V (G) | u ̸= v}. If not otherwise stated, we set n := |V (G)|, and the graph is of order n. We also call
the graph G an n-order graph. For ease of notation, we denote the edge {u, v} in E(G) by (u, v) or
(v, u). Throughout the paper, we use standard notations, e.g., we denote the neighborhood of a vertex v
by N(v) and ℓ(v) denotes its discrete vertex label, and so on; see Appendix B for details.

1-dimensional Weisfeiler–Leman algorithm The 1-WL or color refinement is a well-studied heuristic
for the graph isomorphism problem, originally proposed by Weisfeiler & Leman (1968). Formally, let
G = (V (G), E(G), ℓ) be a labeled graph. In each iteration, t > 0, the 1-WL computes a node coloring
C1

t : V (G) → N, depending on the coloring of the neighbors. That is, in iteration t > 0, we set

C1
t (v) := RELABEL

((
C1

t−1(v), {{C1
t−1(u) | u ∈ N(v)}}

))
,

for all nodes v ∈ V (G), where RELABEL injectively maps the above pair to a unique natural number,
which has not been used in previous iterations. In iteration 0, the coloring C1

0 := ℓ. To test if two
graphs G and H are non-isomorphic, we run the above algorithm in “parallel” on both graphs. If the
two graphs have a different number of nodes colored c in N at some iteration, the 1-WL distinguishes
the graphs as non-isomorphic. Moreover, if the number of colors between two iterations, t and (t+ 1),
does not change, i.e., the cardinalities of the images of C1

t and C1
i+t are equal, or, equivalently,

C1
t (v) = C1

t (w) ⇐⇒ C1
t+1(v) = C1

t+1(w),

for all nodes v and w in V (G), the algorithm terminates. For such t, we define the stable coloring
C1

∞(v) = C1
t (v), for v in V (G). The stable coloring is reached after at most max{|V (G)|, |V (H)|}

iterations (Grohe, 2017). It is easy to see that the algorithm cannot distinguish all non-isomorphic
graphs (Cai et al., 1992). Nonetheless, it is a powerful heuristic that can successfully test isomorphism
for a broad class of graphs (Babai & Kucera, 1979). A function f : V (G) → Rd, for d > 0, is
1-WL-equivalent if f ≡ C1

∞; see Appendix B for details.

Message-passing graph neural networks Intuitively, MPNNs learn a vectorial representation, i.e.,
a d-dimensional real-valued vector, representing each vertex in a graph by aggregating information
from neighboring vertices. Let G = (G,L) be an attributed graph, following, Gilmer et al. (2017) and
Scarselli et al. (2008a), in each layer, t > 0, we compute vertex features

h(t)
v := UPD(t)

(
h(t−1)
v ,AGG(t)

(
{{h(t−1)

u | u ∈ N(v)}}
))

∈ Rd,

where UPD(t) and AGG(t) may be differentiable parameterized functions, e.g., neural networks, and
h
(t)
v = Lv . In the case of graph-level tasks, e.g., graph classification, one uses

hG := READOUT
(
{{h(T)

v | v ∈ V (G)}}
)
∈ Rd,

to compute a single vectorial representation based on learned vertex features after iteration T . Again,
READOUT may be a differentiable parameterized function, e.g., a neural network. To adapt the
parameters of the above three functions, they are optimized end-to-end, usually through a variant of
stochastic gradient descent, e.g., Kingma & Ba (2015), together with the parameters of a neural network
used for classification or regression.

3 PROBALISTICALLY REWIRED MPNNS

Here, we outline probabilistically rewired MPNNs (PR-MPNNs) based on recent advancements in
discrete gradient estimation and tractable sampling techniques (Ahmed et al., 2023). Let An denote
the set of adjacency matrices of n-order graphs. Further, let (G,X) be a n-order attributed graph with
an adjacency matrix A(G) ∈ An, and node attribute matrix X ∈ Rn×d, for d > 0. A PR-MPNN
maintains a (parameterized) upstream model hu : An × Rn×d → Θ, typically a neural network,

4

Under review

parameterized by u, mapping an adjacency matrix and corresponding node attributes to unnormalized
edge priors θ ∈ Θ ⊆ Rn×n.

In the following, we use the priors θ as parameters of a (conditional) probability mass function,

pθ(A(H)) :=

n∏
i,j=1

pθij (A(H)ij),

assigning a probability to each adjacency matrix in An, where pθij (A(H)ij = 1) = sigmoid(θij) and
pθij (A(H)ij = 0) = 1− sigmoid(θij). Since the parameters θ depend on the input graph G, we can
view the above probability as a conditional probability mass function conditioned on the graph G.

Unlike previous probabilistic rewiring approaches, e.g., Franceschi et al. (2019), we introduce dependen-
cies between the graph’s edges by conditioning the probability mass function pθij (A(H)) on a k-subset
constraint. That is, the probability of sampling any given k-edge adjacency matrix A(H), becomes

p(θ,k)(A(H)) :=

{
pθ(A(H))/Z if ∥A(H)∥1 = k,
0 otherwise, with Z :=

∑
B∈An : ∥B∥1=k

pθ(B). (1)

The original graph G is now rewired into a new adjacency matrix Ā by combining N samples A(i) ∼
p(θ,k)(A(G)) for i ∈ [N] together with the original adjacency matrix A(G) using a differentiable
aggregation function g : A

(N+1)
n → An, i.e., Ā := g(A(G),A(1), . . . ,A(N)) ∈ An. Subsequently,

we use the resulting adjacency matrix as input to a downstream model fd, parameterized by d, typically
an MPNN, for the final predictions task.

We have so far assumed that the upstream MPNN computes one set of priors hu : An×Rn×d → Rn×n

which we use to generate a new adjacency matrix Ā through sampling and then aggregating the
adjacency matrices A(1), . . . ,A(N). In Section 5, we show empirically that having multiple sets of
priors from which we sample is beneficial. Multiple sets of priors mean that we learn an upstream model
hu : An × Rn×d → Rn×n×M where M is the number of priors. We can then sample and aggregate
the adjacency matrices from these multiple sets of priors.

Learning to sample To learn the parameters of the up- and downstream model ω = (u,d) of the
PR-MPNN architecture, we minimize the expected loss

L(A(G),X, y;ω) := EA(i)∼p(θ,k)(A(G))

[
ℓ
(
fd

(
g
(
A(G),A(1), . . . ,A(N)

)
,X

)
, y
)]

,

with y ∈ Y , the targets, ℓ a point-wise loss such as the cross-entropy or MSE, and θ = hu(A(G),X).
To minimize the above expectation using gradient descent and backpropagation, we need to efficiently
draw Monte-Carlo samples from p(θ,k)(A(G)) and estimate ∇θL the gradients of an expectation with
respect to the parameters θ of the distribution p(θ,k).

Sampling To sample an adjacency matrix A(i) from p(θ,k)(A(G)) conditioned on k-edge constraints,
and to allow PR-MPNNs to be trained end-to-end, we use SIMPLE (Ahmed et al., 2023), a recently
proposed gradient estimator. Concretely, we can use SIMPLE to sample exactly from the k-edge
adjacency matrix distribution p(θ,k)(A(G)) on the forward pass. On the backward pass, we compute
the approximate gradients of the loss (which is an expectation over a discrete probability mass function)
with respect to the prior weights θ using

∇θL ≈ ∂θµ(θ)∇Aℓ with µ(θ) := {p(θ,k)(A(G)ij)}ni,j=1 ∈ Rn×n,

with an exact and efficient computation of the marginals µ(θ) that is differentiable on the backward
pass, achieving lower bias and variance. We show empirically that SIMPLE (Ahmed et al., 2023)
outperforms other sampling and gradient approximation methods such as GUMBEL SOFTSUB-ST
(Xie & Ermon, 2019) and I-MLE (Niepert et al., 2021), improving accuracy without incurring a
computational overhead.

Computational complexity The vectorized complexity of the exact sampling and marginal inference
step is O(log k log l), where k is from our k-subset constraint, and l is the maximum number of edges
that we can sample. Assuming a constant number of layers, PR-MPNN’s worst-case training complexity
is O(l) for both the upstream and downstream models. Let n be the number of nodes in the initial graph,
and l = max({ladd, lrm}), with ladd and lrm being the maximum number of added and deleted edges. If

5

Under review

we consider all of the possible edges for ladd, the worst-case complexity becomes O(n2). Therefore, to
reduce the complexity in practice, we select a subset of the possible edges using simple heuristics, such
as considering the top ladd edges of the most distant nodes. During inference, since we do not need
gradients for edges not sampled in the forward pass, the complexity is O(l) for the upstream model and
O(L) for the downstream model, with L being the number of edges in the rewired graph.

4 EXPRESSIVE POWER OF PROBABILISTICALLY REWIRED MPNNS

We now, for the first time, explore the extent to which probabilistic MPNNs overcome the inherent
limitations of MPNNs in expressive power caused by the equivalence to 1-WL in distinguishing non-
isomorphic graphs (Xu et al., 2018; Morris et al., 2019). Moreover, we identify formal conditions under
which PR-MPNNs outperform popular randomized approaches such as those dropping nodes and edges
uniformly at random. We first make precise what we mean by probabilistically separating graphs by
introducing a probabilistic and generally applicable notion of graph separation.

Let us assume a conditional probability mass function p : An → [0, 1] conditioned on a given n-order
graph, defined over the set of adjacency matrices of n-order graphs. In the context of PR-MPNNs, p is
the probability mass function defined in Section 3 but it could also be any other conditional probability
mass function over graphs. Moreover, let f : An → Rd, for d > 0, be a permutation-invariant,
parameterized function mapping a sampled graph’s adjacency matrix to a vector in Rd. The function f
could be the composition of an aggregation function g that removes the sampled edges from the input
graph G and of a downstream MPNN. Now, the conditional probability mass function p separates two
graphs G and H with probability ρ with respect to f if

EḠ∼p(·|G),H̄∼p(·|H)

[
f(A(Ḡ)) ̸= f(A(H̄))

]
= ρ,

that is, if in expectation over the conditional probability distribution, the vectors f(A(Ḡ)) and f(A(H̄))
are distinct with probability ρ.

In what follows, we analyze the case of p being the exactly-k probability distribution defined in
Equation 1 and f being the aggregation function removing edges and a downstream MPNN. However,
our framework readily generalizes to the case of node removal, and we provide these theoretical results
in the appendix. Following Section 3, we sample adjacency matrices with exactly k edges and use
them to remove edges from the original graph. We aim to understand the separation properties of the
probability mass function p(k,θ) in this setting and for various types of graph structures. Most obviously,
we do not want to separate isomorphic graphs and, therefore, remain isomorphism invariant, a desirable
property of MPNNs.
Theorem 4.1. For sufficiently large n, for every ε ∈ (0, 1) and k > 0, we have for almost all pairs, in
the sense of Babai et al. (1980), of isomorphic n-order graphs G and H and all permutation-invariant,
1-WL-equivalent functions f : An → Rd, d > 0, there exists a probability mass function p(θ,k) that
separates the graph G and H with probability at most ε with respect to f .

Theorem 4.1 relies on the fact that most graphs have a discrete 1-WL coloring. For graphs where the
1-WL stable coloring consists of a discrete and non-discrete part, the following result shows that there
exist distributions p(θ,k) not separating the graphs based on the partial isomorphism corresponding to
the discrete coloring.
Proposition 4.2. Let ε ∈ (0, 1), k > 0, and let G and H be graphs with identical 1-WL stable
colorings. Let VG and VH be the subset of nodes of G and H that are in color classes of cardinality 1.
Then, for all choices of 1-WL-equivalent functions f , there exists a conditional probability distribution
p(θ,k) that separates the graphs G[VG] and H[VH] with probability at most ε with respect to f .

Existing methods such as DropGNN (Papp et al., 2021) or DropEdge (Rong et al., 2020) are more likely
to separate two (partially) isomorphic graphs by removing different nodes or edges between discrete
color classes, i.e., on their (partially) isomorphic subgraphs. For instance, in the appendix, we prove that
pairs of graphs with m edges exist where the probability of non-separation under uniform edge sampling
is at most 1/m. This is undesirable as it breaks the MPNNs’ permutation-invariance in these parts.

Now that we have established that distributions with priors from upstream MPNNs are more likely to
preserve (partial) isomorphism between graphs, we turn to analyze their behavior in separating the
non-discrete parts of the coloring. The following theorem shows that PR-MPNNs are more likely to

6

Under review

Table 1: Comparison between PR-MPNN and baselines on three molecular property prediction datasets.
We report results for PR-MPNN with different gradient estimators for k-subset sampling: GUMBEL
SOFTSUB-ST (Maddison et al., 2017; Jang et al., 2017; Xie & Ermon, 2019), I-MLE (Niepert et al.,
2021), and SIMPLE (Ahmed et al., 2023) and compare them with the base downstream model, and
two Graph Transformers. The variant using SIMPLE consistently outperforms the base models and is
competitive or better than the two Graph Transformers. We use green for the best model, blue for the
second-best, and red for third. We note with + EDGE the instances where edge features are provided,
and with - EDGE when they are not.

ZINC OGBG-MOLHIV ALCHEMY
- EDGE ↓ + EDGE ↓ + EDGE ↑ + EDGE ↓

G
IN

B
A

C
K

B
O

N
E K-ST SAT 0.166±0.007 0.115±0.005 0.625±0.039 N/A

K-SG SAT 0.162±0.013 0.095±0.002 0.613±0.010 N/A
BASE 0.258±0.006 0.207±0.006 0.775±0.011 11.12±0.690

BASE W. PE 0.162±0.001 0.101±0.004 0.764±0.018 7.197±0.094

PR-MPNNGMB (OURS) 0.153±0.003 0.103±0.008 0.760±0.025 6.858±0.090

PR-MPNNIMLE (OURS) 0.151±0.001 0.104±0.008 0.774±0.015 6.692±0.061

PR-MPNNSIM (OURS) 0.139±0.001 0.085±0.002 0.795±0.009 6.447±0.057

P
N

A GPS N/A 0.070±0.004 0.788±0.010 N/A
K-ST SAT 0.164±0.007 0.102±0.005 0.613±0.025 N/A
K-SG SAT 0.131±0.002 0.094±0.008 0.591±0.005 N/A

10 20 30 40 50
#samples

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

4-Cycles - 1 prior

PR-MPNN
DropGNN

10 20 30 40 50
#samples

A
cc

ur
ac

y

4-Cycles - 5 priors

PR-MPNN
DropGNN

10 20 30 40 50
#samples

A
cc

ur
ac

y

4-Cycles - 10 priors

PR-MPNN
DropGNN

Figure 2: Comparison between PR-MPNN and DropGNN on the 4-CYCLES dataset. PR-MPNN
rewiring is almost always better than randomly dropping nodes, and is always better with 10 priors.

separate non-isomorphic graphs than probability mass functions that remove edges or nodes uniformly
at random.
Theorem 4.3. For every ε ∈ (0, 1) and every k > 0, there exists a pair of non-isomorphic graphs G
and H with identical and non-discrete 1-WL stable colorings such that for every 1-WL-equivalent
function f ,

(1) there exists a probability mass function p(k,θ) that separates G and H with probability at least
(1− ε) with respect to f ;

(2) removing edges uniformly at random separates G and H with probability at most ε with
respect to f .

Finally, we can also show a negative result: there exist classes of graphs for which PR-MPNNs cannot
do better than random sampling.
Proposition 4.4. For every k > 0, there exist non-isomorphic graphs G and H with identical 1-WL
colorings such that every probability mass function p(θ,k) separates the two graphs with the same
probability as the distribution that samples edges uniformly at random.

7

Under review

Figure 3: Example graph from the TREES-
LEAFCOUNT test dataset with radius 4 (left). PR-
MPNN rewires the graph, allowing the downstream
MPNN to obtain the label information from the
leaves in one massage-passing step (right).

2 3 4 5 6
Problem radius

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Transformer
PR-MPNN
GCN
GGNN

Figure 4: Test accuracy of our
rewiring method on the TREES-
NEIGHBORSMATCH (Alon & Yahav,
2021) dataset, compared to the reported
accuracies from Müller et al. (2023).

5 EXPERIMENTAL EVALUATION

Here, we explore to what extent our probabilistic graph rewiring leads to improved predictive perfor-
mance on synthetic and real-world datasets. Concretely, we answer the following questions.

Q1 Can probabilistic graph rewiring mitigate the problems of over-squashing and under-reaching in
synthetic datasets?

Q2 Is the expressive power of standard MPNNs enhanced through probabilistic graph rewiring? That
is, can we verify empirically that the separating probability mass function of Section 4 can be
learned with PR-MPNNs and that multiple prior help?

Q3 Does the increase in predictive performance due to probabilistic rewiring apply to (a) graph-level
molecular prediction tasks and (b) node-level prediction tasks involving heterophilic data?

The repository of our code can be accessed at https://github.com/chendiqian/PR-MPNN.

Datasets To answer Q1, we utilized the TREES-NEIGHBORSMATCH dataset (Alon & Yahav, 2021).
Additionally, we created the TREES-LEAFCOUNT dataset to investigate whether our method could
mitigate under-reaching issues; see Appendix D for details. To tackle Q2, we performed experiments
with the EXP (Abboud et al., 2020) and CSL datasets (Murphy et al., 2019) to assess how much
probabilistic graph rewiring can enhance the models’ expressivity. In addition, we utilized the 4-
CYCLES dataset from Loukas (2020); Papp et al. (2021) and set it against a standard DropGNN
model (Papp et al., 2021) for comparison while also ablating the performance difference concerning
the number of priors and samples per prior. To answer Q3 (a), we used the established molecular
graph-level regression datasets ALCHEMY (Chen et al., 2019), ZINC (Jin et al., 2017; Dwivedi et al.,
2020), OGBG-MOLHIV (Hu et al., 2020a), QM9 (Hamilton et al., 2017), LRGB (Dwivedi et al., 2022b)
and five datasets from the TUDATASET repository (Morris et al., 2020). To answer Q3 (b), we used the
CORNELL, WISCONSIN, TEXAS node-level classification datasets (Pei et al., 2020).

Baseline and model configurations For our upstream model hu, we use an MPNN, specifically the
GIN layer (Xu et al., 2019). For an edge (v, w) ∈ E(G), we compute θvw = ϕ([hT

v ||hT
w]) ∈ R, where

[·||·] is the concatenation operator and ϕ is an MLP. After obtaining the prior θ, we rewire our graphs by
sampling two adjacency matrices for deleting edges and adding new edges, i.e., g(A(G),A(1),A(2)) :=
(A(G) − A(1)) + A(2) where A(1) and A(2) are two sampled adjacency matrices with a possibly
different number of edges, respectively. Finally, the rewired adjacency matrix (or multiple adjacency
matrices) is used in a downstream model fd : An ×Rn×d → Y , typically an MPNN, with parameters d
and Y the prediction target set. For the instance where we have multiple priors, as described in Section 3,
we can either aggregate the sampled adjacency matrices A(1), . . . ,A(N) into a single adjacency matrix
Ā that we send to a downstream model as described in Figure 1, or construct a downstream ensemble
with multiple aggregated matrices Ā1, . . . , ĀM .

All of our downstream models fd and base models are MPNNs with GIN layers. When we have access
to edge features, we use the GINE variant (Hu et al., 2020b) for edge feature processing. For graph-level
tasks, we use mean pooling, while for node-level tasks, we take the node embedding hT

v for a node v.
The final embeddings are then processed and projected to the target space by an MLP.

8

https://github.com/chendiqian/PR-MPNN

Under review

Table 2: Comparison between the base GIN model,
PR-MPNN, and other more expressive models on
the EXP dataset.

MODEL ACCURACY ↑
GIN 0.511±0.021

GIN + ID-GNN 1.000±0.000

OSAN 1.000±0.000

PR-MPNN (OURS) 1.000±0.000

Table 3: Comparison between the base GIN model
and probabilistic rewiring model on CSL dataset,
w/o positional encodings.

MODEL ACCURACY ↑
GIN 0.100±0.000

GIN + POSENC 1.000±0.000

PR-MPNN (OURS) 0.998±0.008

PR-MPNN + POSENC (OURS) 1.000±0.000

Table 4: Comparison between PR-MPNN and other approaches as reported in Giusti et al. (2023b). Our
model outperforms existing approaches while keeping a lower variance in most of the cases, except for
NCI1, where the WL Kernel is the best. We use green for the best model, blue for the second-best, and
red for third.

MODEL MUTAG PTC MR PROTEINS NCI1 NCI109

GK (k = 3) (SHERVASHIDZE ET AL., 2009) 81.4±1.7 55.7±0.5 71.4±0.3 62.5±0.3 62.4±0.3

PK (NEUMANN ET AL., 2016) 76.0±2.7 59.5±2.4 73.7±0.7 82.5±0.5 N/A
WL KERNEL (SHERVASHIDZE ET AL., 2011) 90.4±5.7 59.9±4.3 75.0±3.1 86.0±1.8 N/A

DGCNN (ZHANG ET AL., 2018) 85.8±1.8 58.6±2.5 75.5±0.9 74.4±0.5 N/A
IGN (MARON ET AL., 2019B) 83.9±13.0 58.5±6.9 76.6±5.5 74.3±2.7 72.8±1.5

GIN (XU ET AL., 2019) 89.4±5.6 64.6±7.0 76.2±2.8 82.7±1.7 N/A
PPGNS (MARON ET AL., 2019A) 90.6±8.7 66.2±6.6 77.2±4.7 83.2±1.1 82.2±1.4

NATURAL GN (DE HAAN ET AL., 2020) 89.4±1.6 66.8±1.7 71.7±1.0 82.4±1.3 83.0±1.9

GSN (BOURITSAS ET AL., 2022) 92.2±7.5 68.2±7.2 76.6±5.0 83.5±2.0 83.5±2.3

CIN (BODNAR ET AL., 2021) 92.7±6.1 68.2±5.6 77.0±4.3 83.6±1.4 84.0±1.6

CAN (GIUSTI ET AL., 2023A) 94.1±4.8 72.8±8.3 78.2±2.0 84.5±1.6 83.6±1.2

CIN++ (GIUSTI ET AL., 2023B) 94.4±3.7 73.2±6.4 80.5±3.9 85.3±1.2 84.5±2.4

PR-MPNN (10-FOLD CV) 98.4±2.4 74.3±3.9 80.7±3.9 85.6±0.8 84.6±1.2

For ZINC, ALCHEMY, and OGBG-MOLHIV, we compare our rewiring approaches with the base
downstream model, both with and without positional embeddings. Further, we compare to GPS
(Rampášek et al., 2022) and SAT (Chen et al., 2022), two state-of-the-art graph transformers. For
the TUDATASET, we compare with the reported scores from Giusti et al. (2023b) and use the same
evaluation strategy as in Xu et al. (2019); Giusti et al. (2023b), i.e., running 10-fold cross-validation
and reporting the maximum average validation accuracy. For different tasks, we search for the best
hyperparameters for sampling and our upstream and downstream models. See Table 8 in the appendix
for the complete description. For ZINC, ALCHEMY, and OGBG-MOLHIV, we evaluate multiple gradient
estimators in terms of predictive power and computation time. Specifically, we compare GUMBEL
SOFTSUB-ST (Maddison et al., 2017; Jang et al., 2017; Xie & Ermon, 2019), I-MLE (Niepert et al.,
2021), and SIMPLE (Ahmed et al., 2023). The results in terms of predictive power are detailed in Table 1,
and the computation time comparisons can be found in Table 9 in the appendix. Further experimental
results on QM9 and LRGB are included in Appendix F in the appendix.

Experimental results and discussion Concerning Q1, our rewiring method achieves perfect test
accuracy up to a problem radius of 6 on both TREES-NEIGHBORSMATCH and TREES-LEAFCOUNT,
demonstrating that it can successfully alleviate over-squashing and under-reaching, see Figure 4. For
TREES-LEAFCOUNT, our model can create connections directly from the leaves to the root, achieving
perfect accuracy with a downstream model containing a single MPNN layer. We provide a qualitative
result in Figure 3 and a detailed discussion in Appendix D. Concerning Q2, on the 4-CYCLES dataset, our
probabilistic rewiring method consistently outperforms DropGNN. This advantage is most pronounced
with 5 and 10 priors, where we achieve 100% task accuracy using 20 samples, as detailed in Figure 2.
On the EXP dataset, we showcase the expressive power of probabilistic rewiring by achieving perfect
accuracy, see Table 2. Besides, our rewiring approach can distinguish the regular graphs from the
CSL dataset without any positional encodings, whereas the 1-WL-equivalent GIN obtains only random
accuracy. Concerning Q3 (a), the results in Table 1 show that our rewiring methods consistently
outperform the base models on ZINC, ALCHEMY, and OGBG-MOLHIV and are competitive or better
than the state-of-the-art GPS and SAT graph transformer methods. On TUDATASET, see Table 4, our
probabilistic rewiring method outperforms existing approaches and obtains lower variance on most

9

Under review

of the datasets, with the exception being NCI1, where our method ranks second, after the WL kernel.
Hence, our results indicate that probabilistic graph rewiring can improve performance for molecular
prediction tasks. Concerning Q3 (b), we obtain performance gains over the base model and other
existing MPNNs, see Table 11 in the appendix, indicating that data-driven rewiring has the potential of
alleviating the effects of over-smoothing by removing undesirable edges and making new ones between
nodes with similar features. The graph transformer methods outperform the rewiring approach and
the base models, except on the TEXAS dataset, where our method gets the best result. We speculate
that GIN’s aggregation mechanism for the downstream models is a limiting factor on heterophilic data.
We leave the analysis of combining probabilistic graph rewiring with downstream models that address
over-smoothing for future investigations.

6 CONCLUSION

Here, we utilized recent advances in differentiable k-subset sampling to devise probabilistically rewired
message-passing neural networks, which learn to add relevant edges while omitting less beneficial
ones, resulting in the PR-MPNN framework. For the first time, our theoretical analysis explored
how PR-MPNNs enhance expressive power, and we identified precise conditions under which they
outperform purely randomized approaches. On synthetic datasets, we demonstrated that our approach
effectively alleviates the issues of over-squashing and under-reaching while overcoming MPNNs’ limits
in expressive power. In addition, on established real-world datasets, we showed that our method is
competitive or superior to conventional MPNN models and graph transformer architectures regarding
predictive performance and computational efficiency. Ultimately, PR-MPNNs represent a significant
step towards systematically developing more adaptable MPNNs, rendering them less susceptible to
potential noise and missing data, thereby enhancing their applicability and robustness.

ACKNOWLEDGMENTS

CQ and CM are partially funded by a DFG Emmy Noether grant (468502433) and RWTH Junior
Principal Investigator Fellowship under Germany’s Excellence Strategy. AM and MN acknowledge
funding by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2075 – 390740016, the support by the Stuttgart Center for Simulation Science
(SimTech), and the International Max Planck Research School for Intelligent Systems (IMPRS-IS).
This work was funded in part by the DARPA Perceptually-enabled Task Guidance (PTG) Program
under contract number HR00112220005, the DARPA Assured Neuro Symbolic Learning and Reasoning
(ANSR) Program, and a gift from RelationalAI. GVdB discloses a financial interest in RelationalAI.

10

Under review

REFERENCES

Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising power of
graph neural networks with random node initialization. arXiv preprint arXiv:2010.01179, 2020. 8, 20

Ralph Abboud, Radoslav Dimitrov, and Ismail Ilkan Ceylan. Shortest path networks for graph property
prediction. In Learning on Graphs Conference, pp. 5–1. PMLR, 2022. 2, 3, 21

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In International Conference on Machine Learning,
pp. 21–29. PMLR, 2019. 2, 3

Kareem Ahmed, Zhe Zeng, Mathias Niepert, and Guy Van den Broeck. Simple: A gradient estimator
for k-subset sampling. In International Conference on Learning Representations, 2023. 3, 4, 5, 7, 9

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications. In
International Conference on Learning Representations, 2021. 2, 3, 8, 20, 21

Laszlo Babai and Ludik Kucera. Canonical labelling of graphs in linear average time. In 20th Annual
Symposium on Foundations of Computer Science (sfcs 1979), pp. 39–46. IEEE, 1979. 4

László Babai, Paul Erdos, and Stanley M Selkow. Random graph isomorphism. SIaM Journal on
computing, 9(3):628–635, 1980. 6, 17, 18

Pradeep Kr Banerjee, Kedar Karhadkar, Yu Guang Wang, Uri Alon, and Guido Montúfar. Oversquashing
in gnns through the lens of information contraction and graph expansion. In 2022 58th Annual
Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1–8. IEEE, 2022. 2,
3

Albert-Laszlo Barabasi and Zoltan N Oltvai. Network biology: Understanding the cell’s functional
organization. Nature reviews genetics, 5(2):101–113, 2004. 1

Pablo Barceló, Egor V. Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan Pablo Silva.
The logical expressiveness of graph neural networks. In International Conference on Learning
Representations, 2020. 2, 3, 20

Jakub Bober, Anthea Monod, Emil Saucan, and Kevin N Webster. Rewiring networks for graph neural
network training using discrete geometry. arXiv preprint arXiv:2207.08026, 2022. 2, 3

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio, and
Michael Bronstein. Weisfeiler and lehman go topological: Message passing simplicial networks. In
International Conference on Machine Learning, pp. 1026–1037. PMLR, 2021. 9, 22

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(1):657–668, 2022. 9, 22

Marc Brockschmidt. Gnn-film: Graph neural networks with feature-wise linear modulation. In
International Conference on Machine Learning, pp. 1144–1152. PMLR, 2020. 21

Rickard Brüel-Gabrielsson, Mikhail Yurochkin, and Justin Solomon. Rewiring with positional encodings
for graph neural networks. arXiv preprint arXiv:2201.12674, 2022. 3

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables for
graph identification. Combinatorica, 12(4):389–410, 1992. 4

Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, and Petar Veličković.
Combinatorial optimization and reasoning with graph neural networks. Journal of Machine Learning
Research, 24(130):1–61, 2023. 1

Daniele Castellana and Federico Errica. Investigating the interplay between features and structures in
graph learning, 2023. 16

11

Under review

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph represen-
tation learning. In International Conference on Machine Learning, pp. 3469–3489. PMLR, 2022. 2,
3, 9

Guangyong Chen, Pengfei Chen, Chang-Yu Hsieh, Chee-Kong Lee, Benben Liao, Renjie Liao, Weiwen
Liu, Jiezhong Qiu, Qiming Sun, Jie Tang, et al. Alchemy: A quantum chemistry dataset for
benchmarking ai models. arXiv preprint arXiv:1906.09427, 2019. 8

Yu Chen, Lingfei Wu, and Mohammed Zaki. Iterative deep graph learning for graph neural networks:
Better and robust node embeddings. Advances in Neural Information Processing Systems, 33:
19314–19326, 2020. 16

Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew McCallum, Tom Mitchell, Kamal Nigam, and
Seán Slattery. Learning to extract symbolic knowledge from the world wide web. AAAI/IAAI, 3(3.6):
2, 1998. 20

George Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control. Signals
Syst., 5(4):455, 1992. 17

Pim de Haan, Taco S. Cohen, and Max Welling. Natural graph networks. Advances in Neural Information
Processing Systems, 33:3636–3646, 2020. 9, 22

Andreea Deac, Marc Lackenby, and Petar Veličković. Expander graph propagation. In Learning on
Graphs Conference, pp. 38–1. PMLR, 2022. 2, 3

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
Bronstein. On over-squashing in message passing neural networks: The impact of width, depth, and
topology. In International Conference on Machine Learning, pp. 7865–7885. PMLR, 2023. 2, 3

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020. 8

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Graph
neural networks with learnable structural and positional representations. In International Conference
on Learning Representations, 2022a. 21

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. Advances in Neural Information Processing
Systems, 35:22326–22340, 2022b. 2, 3, 8, 20, 22

David Easley, Jon Kleinberg, et al. Networks, crowds, and markets. Cambridge Books, 2012. 1

Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. Slaps: Self-supervision improves structure
learning for graph neural networks. Advances in Neural Information Processing Systems, 34:
22667–22681, 2021. 16

Bahare Fatemi, Sami Abu-El-Haija, Anton Tsitsulin, Mehran Kazemi, Dustin Zelle, Neslihan Bulut,
Jonathan Halcrow, and Bryan Perozzi. Ugsl: A unified framework for benchmarking graph structure
learning. arXiv preprint arXiv:2308.10737, 2023. 16

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete structures for
graph neural networks. In International Conference on Machine Learning, pp. 1972–1982. PMLR,
2019. 5, 16

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and Federico
Monti. Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198, 2020. 3

Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph learning.
Advances in Neural Information Processing Systems, 32, 2019. 2, 3, 22, 24

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message
passing for quantum chemistry. In International Conference on Machine Learning, pp. 1263–1272.
PMLR, 2017. 1, 4, 21

12

Under review

Lorenzo Giusti, Claudio Battiloro, Lucia Testa, Paolo Di Lorenzo, Stefania Sardellitti, and Sergio
Barbarossa. Cell attention networks. In 2023 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8. IEEE, 2023a. 9

Lorenzo Giusti, Teodora Reu, Francesco Ceccarelli, Cristian Bodnar, and Pietro Liò. Cin++: Enhancing
topological message passing. arXiv preprint arXiv:2306.03561, 2023b. 9, 22

Martin Grohe. Descriptive complexity, canonisation, and definable graph structure theory, volume 47.
Cambridge University Press, 2017. 4

Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni. Drew:
dynamically rewired message passing with delay. In International Conference on Machine Learning,
pp. 12252–12267. PMLR, 2023. 2, 3, 21, 22, 25

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, pp. 1024–1034, 2017. 8

Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson. A
generalization of vit/mlp-mixer to graphs. In International Conference on Machine Learning, pp.
12724–12745. PMLR, 2023. 2, 3

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
Neural Information Processing Systems, 33:22118–22133, 2020a. 8, 20

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. In International Conference on Learning Represen-
tations, 2020b. 8

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations, 2017. 7, 9

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure learning
for robust graph neural networks. arXiv preprint arXiv:2005.10203, 2020. 16

Wengong Jin, Connor Coley, Regina Barzilay, and Tommi Jaakkola. Predicting organic reaction
outcomes with weisfeiler-lehman network. Advances in Neural Information Processing Systems, 30,
2017. 8

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021. 1

Kedar Karhadkar, Pradeep Kr Banerjee, and Guido Montúfar. Fosr: First-order spectral rewiring for
addressing oversquashing in gnns. arXiv preprint arXiv:2210.11790, 2022. 2, 3

Anees Kazi, Luca Cosmo, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael M Bronstein. Differen-
tiable graph module (dgm) for graph convolutional networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(2):1606–1617, 2022. 16

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015. 4

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017. 1

Johannes Klicpera, Janek Groß, and Stephan Günnemann. Directional message passing for molecular
graphs. In International Conference on Learning Representations, 2020. 1

Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward
networks with a nonpolynomial activation function can approximate any function. Neural Networks,
6(6):861–867, 1993. 17

13

Under review

Meng Liu, Zhengyang Wang, and Shuiwang Ji. Non-local graph neural networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(12):10270–10276, 2021. 2, 3

Nian Liu, Xiao Wang, Lingfei Wu, Yu Chen, Xiaojie Guo, and Chuan Shi. Compact graph structure
learning via mutual information compression. In Proceedings of the ACM Web Conference 2022, pp.
1601–1610, 2022a. 16

Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, and Shirui Pan. Towards unsupervised
deep graph structure learning. In Proceedings of the ACM Web Conference 2022, pp. 1392–1403,
2022b. 16

Andreas Loukas. What graph neural networks cannot learn: depth vs width. In International Conference
on Learning Representations, 2020. 8

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation
of discrete random variables. In International Conference on Learning Representations, 2017. 7, 9

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. In Advances in Neural Information Processing Systems, pp. 2153–2164, 2019a. 9, 22

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In International Conference on Learning Representations, 2019b. 9, 22

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 4602–4609, 2019. 1, 3,
6, 17

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020. 8, 20

Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M Kriege, Martin Grohe,
Matthias Fey, and Karsten Borgwardt. Weisfeiler and leman go machine learning: The story so far.
arXiv preprint arXiv:2112.09992, 2021. 1, 3

Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to graph
transformers. arXiv preprint arXiv:2302.04181, 2023. 2, 3, 8

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling for
graph representations. In International Conference on Machine Learning, pp. 4663–4673. PMLR,
2019. 8, 20

Marion Neumann, Roman Garnett, Christian Bauckhage, and Kristian Kersting. Propagation kernels:
efficient graph kernels from propagated information. Machine learning, 102:209–245, 2016. 9

Mathias Niepert, Pasquale Minervini, and Luca Franceschi. Implicit mle: backpropagating through
discrete exponential family distributions. Advances in Neural Information Processing Systems, 34:
14567–14579, 2021. 3, 5, 7, 9

Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: Random dropouts
increase the expressiveness of graph neural networks. Advances in Neural Information Processing
Systems, 34:21997–22009, 2021. 6, 8

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In International Conference on Learning Representations, 2020. 8, 20,
22, 24

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique
Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural Information
Processing Systems, 35:14501–14515, 2022. 2, 3, 9

Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen Shao, Houssam Metni,
Clint van Hoesel, Henrik Schopmans, Timo Sommer, et al. Graph neural networks for materials
science and chemistry. Communications Materials, 3(1):93, 2022. 1

14

Under review

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph convolu-
tional networks on node classification. In International Conference on Learning Representations,
2020. 6

Avishkar Saha, Oscar Mendez, Chris Russell, and Richard Bowden. Learning adaptive neighborhoods
for graph neural networks. arXiv preprint arXiv:2307.09065, 2023. 16

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008a. 4

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
Computational capabilities of graph neural networks. IEEE Transactions on Neural Networks, 20(1):
81–102, 2008b. 1

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt. Efficient
graphlet kernels for large graph comparison. In Artificial Intelligence and Statistics, pp. 488–495.
PMLR, 2009. 9

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M Borgwardt.
Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011. 9

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop.
Exphormer: Sparse transformers for graphs. arXiv preprint arXiv:2303.06147, 2023. 2, 3

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint
arXiv:2111.14522, 2021. 2, 3, 22, 24

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks. In International Conference on Learning Representations, 2018. 1

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra which
appears therein. nti, Series, 2(9):12–16, 1968. 3, 4

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica.
Representing long-range context for graph neural networks with global attention. Advances in Neural
Information Processing Systems, 34:13266–13279, 2021. 2, 3

Sang Michael Xie and Stefano Ermon. Reparameterizable subset sampling via continuous relaxations.
International Joint Conference on Artificial Intelligence, 2019. 3, 5, 7, 9

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning, pp. 5453–5462. PMLR, 2018. 6

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
In International Conference on Learning Representations, 2019. 1, 3, 8, 9, 22

Rui Xue, Haoyu Han, MohamadAli Torkamani, Jian Pei, and Xiaorui Liu. Lazygnn: Large-scale graph
neural networks via lazy propagation. arXiv preprint arXiv:2302.01503, 2023. 2

Donghan Yu, Ruohong Zhang, Zhengbao Jiang, Yuexin Wu, and Yiming Yang. Graph-revised
convolutional network. In Machine Learning and Knowledge Discovery in Databases: European
Conference, pp. 378–393, 2021. 16

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018. 9, 22

Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data augmenta-
tion for graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 11015–11023, 2021. 16

15

Under review

Zhiyao Zhou, Sheng Zhou, Bochao Mao, Xuanyi Zhou, Jiawei Chen, Qiaoyu Tan, Daochen Zha, Can
Wang, Yan Feng, and Chun Chen. Opengsl: A comprehensive benchmark for graph structure learning.
arXiv preprint arXiv:2306.10280, 2023. 16

Dongcheng Zou, Hao Peng, Xiang Huang, Renyu Yang, Jianxin Li, Jia Wu, Chunyang Liu, and Philip S
Yu. Se-gsl: A general and effective graph structure learning framework through structural entropy
optimization. arXiv preprint arXiv:2303.09778, 2023. 16

A ADDITIONAL RELATED WORK

Graph structure learning The field of Graph Structure Learning (GSL) is a topic related to graph
rewiring. Motivated by robustness and more general purposes, several GSL works have been proposed.
Jin et al. (2020) optimizes a graph structure from scratch with some loss function as bias. More generally,
an edge scorer function is learned, and modifications are made to the original graph structure (Chen
et al., 2020; Yu et al., 2021; Zhao et al., 2021). To introduce discreteness and sparsity, Kazi et al.
(2022); Franceschi et al. (2019); Zhao et al. (2021) leverage Gumbel and Bernoulli discrete sampling,
respectively. Saha et al. (2023) incorporates end-to-end differentiable discrete sampling through the
smoothed-Heaviside function. Moreover, GSL also benefits from self-supervised or unsupervised
learning approaches; see, e.g., Zou et al. (2023); Fatemi et al. (2021); Liu et al. (2022a;b). For a
comprehensive survey of GSL, see Fatemi et al. (2023); Zhou et al. (2023). In the context of node
classification, there has been recent progress in understanding the interplay between graph structure and
features (Castellana & Errica, 2023).

The main differences to the proposed PR-MPNN framework are as follows: (a) for sparsification, existing
GSL approaches typically use a k-NN algorithm, a simple randomized version of k-NN, or model
edges with independent Bernoulli random variables. In contrast, PR-MPNN uses a proper probability
mass function derived from exactly-k constraints. Hence, we introduce complex dependencies between
the edge random variables and trade-off exploration and exploitation during training, and (b) GSL
approaches do not use exact sampling of the exactly-k distribution and recent sophisticated gradient
estimation techniques. However, the theoretical insights we provide in this paper also largely translate to
GSL approaches with the difference that sampling is replaced with an argmax operation and, therefore,
should be of independent interest to the GSL community.

B EXTENDED NOTATION

A graph G is a pair (V (G), E(G)) with finite sets of vertices or nodes V (G) and edges E(G) ⊆
{{u, v} ⊆ V (G) | u ̸= v}. If not otherwise stated, we set n := |V (G)|, and the graph is of order
n. We also call the graph G an n-order graph. For ease of notation, we denote the edge {u, v} in
E(G) by (u, v) or (v, u). A (vertex-)labeled graph G is a triple (V (G), E(G), ℓ) with a (vertex-)label
function ℓ : V (G) → N. Then ℓ(v) is a label of v, for v in V (G). An attributed graph G is a triple
(V (G), E(G), a) with a graph (V (G), E(G)) and (vertex-)attribute function a : V (G) → R1×d, for
some d > 0. That is, contrary to labeled graphs, we allow for vertex annotations from an uncountable set.
Then a(v) is an attribute or feature of v, for v in V (G). Equivalently, we define an n-order attributed
graph G := (V (G), E(G), a) as a pair G = (G,L), where G = (V (G), E(G)) and L in Rn×d is
a node attribute matrix. Here, we identify V (G) with [n]. For a matrix L in Rn×d and v in [n], we
denote by Lv· in R1×d the vth row of L such that Lv· := a(v). Furthermore, we can encode an n-order
graph G via an adjacency matrix A(G) ∈ {0, 1}n×n, where Aij = 1 if, and only, if (i, j) ∈ E(G).
We also write Rd for R1×d.

The neighborhood of v in V (G) is denoted by N(v) := {u ∈ V (G) | (v, u) ∈ E(G)} and the degree
of a vertex v is |N(v)|. Two graphs G and H are isomorphic and we write G ≃ H if there exists a
bijection φ : V (G) → V (H) preserving the adjacency relation, i.e., (u, v) is in E(G) if and only if
(φ(u), φ(v)) is in E(H). Then φ is an isomorphism between G and H . In the case of labeled graphs,
we additionally require that l(v) = l(φ(v)) for v in V (G), and similarly for attributed graphs. Further,
we call the equivalence classes induced by ≃ isomorphism types.

A node coloring is a function c : V (G) → Rd, d > 0, and we say that c(v) is the color of v ∈ V (G).
A node coloring induces an edge coloring ec : E(G) → N, where (u, v) 7→ {c(u), c(v)} for (u, v) ∈
E(G). A node coloring (edge coloring) c refines a node coloring (edge coloring) d, written c ⊑ d

16

Under review

if c(v) = c(w) implies d(v) = d(w) for every v, w ∈ V (G) (v, w ∈ E(G)). Two colorings are
equivalent if c ⊑ d and d ⊑ c, in which case we write c ≡ d. A color class Q ⊆ V (G) of a node
coloring c is a maximal set of nodes with c(v) = c(w) for every v, w ∈ Q. A node coloring is called
discrete if all color classes have cardinality 1.

C MISSING PROOFS

In the following, we outline missing proofs from the main paper.

Theorem C.1 (Theorem 4.1 in the main paper). For sufficiently large n, for every ε ∈ (0, 1) and k > 0,
we have for almost all pairs, in the sense of Babai et al. (1980), of isomorphic n-order graphs G
and H and all permutation-invariant, 1-WL-equivalent functions f : An → Rd, d > 0, there exists a
conditional probability mass function p(θ,k) that separates the graph G and H with probability at most
ε with respect to f .

Before proving the above result, we first need three auxiliary results. The first one is the well-known
universal approximation theorem for multi-layer perceptrons.

Theorem C.2 (Cybenko (1992); Leshno et al. (1993)). Let σ : R → R be continuous and not polynomial.
Then for every continuous function f : K → Rn, where K ⊆ Rm is a compact set, and every ε > 0
there is a depth-two multi-layer perceptron N with activation function σ(1) = σ on layer 1 and no
activation function on layer 2 (i.e., σ(2) is the identity function) computing a function fN such that

sup
x∈K

∥f(x)− fN (x)∥ < ε.

Building on the first, the second result shows that an MPNN can approximate real-valued node colorings
of a given finite graph arbitrarily close.

Lemma C.3. Let G be an n-order graph and let c : V (G) → Rd, d > 0, be a 1-WL-equivalent node
coloring. Then, for all ε > 0, there exists a (permutation-equivariant) MPNN f : V (G) → Rd, such
that

max
v∈V (G)

∥f(v)− c(v)∥ < ε.

Proof sketch. First, by (Morris et al., 2019, Theorem 2), there exists an 1-WL-equivalent MPNN
m : V (G) → Rd such that

c ≡ m.

Since the graph’s number of vertices, by assumption, is finite, the cardinality of the image K := m−1

is also finite. Hence, we can find a continuous function g : K → Rd such that (g ◦ m)(v) = c(v)
for v ∈ V (G). Since K is finite and hence compact and g is continuous, by Theorem C.2, we can
approximate it arbitrarily close with a two-layer multi-layer perceptron, implying the existence of the
MPNN f .

The third result lifts the previous result to edge colorings.

Lemma C.4. Let G be an n-order graph and let c : E(G) → Rd, d > 0, be a 1-WL-equivalent edge
coloring. Then, for all ε > 0, there exists a (permutation-equivariant) MPNN f : E(G) → Rd, such
that

max
e∈E(G)

∥f(e)− c(e)∥ < ε.

Proof sketch. The proof is analogous to the proof of Lemma C.3.

We note here that we can extend the above results to any finite subset of n-order graphs. We are now
ready to prove Theorem C.1.

17

Under review

Figure 5: Example graphs used in the theoretical analysis.

Proof sketch. Following Babai et al. (1980), for a sufficiently large order n, the 1-WL will compute a
discrete coloring for almost any n-order graph. Concretely, they showed that an algorithm equivalent to
the 1-WL computes a discrete coloring of graphs sampled from the Erdős–Rényi random graph model
G(n, 1/2) with probability of failure bounded by O(n−1/7). Since the G(n, 1/2) model assigns a
uniform distribution over all graphs, the 1-WL succeeds on “almost all” graphs.

By the above, and due to Lemmas C.3 and C.4, every node, and thereby any edge, can be assigned a
distinct arbitrary prior weight with an upstream MPNN. Consequently, there exists an upstream MPNN
that returns a high prior θij for exactly k edges (θi for exactly k nodes) such that sampling from the
exactly-k distribution returns these k edges (nodes) with probability at least

√
1− ε. Specifically,

we know that the upstream MPNN can return arbitrary priors θij , and we want to show that, given
some δ ∈ (0, 1), there exists at least one θ such that for a set S of k edges (nodes) of G, we have
pθ,k(S) ≥ δ.

Let m be the number of edges in the graph G That is, from our probability definition, we obtain
pθ(S) ≥ δZ. Without losing generality, let w1 and w2 be two prior weights with w1 > w2 such
that θi = w1 for the edges (nodes) in S and θi = w2 otherwise. Then pθ(S) ≥ δZ becomes
wk

1 ≥ δ(
∑k

i=0

(
k
i

)(
m−k
k−i

)
wi

1w
k−i
2). We use the upper bound Z ≤ wk

1 +(
(
m
k

)
− 1)w2w

k−1
1 and obtain

w2 ≤ (1− δ)w1δ
−1(

(
m
k

)
− 1)−1. Therefore, a prior θ exists, and we can obtain it by using the derived

inequality. Now, we can set δ =
√
1− ε. The sampled k edges (nodes) are then identical for both

graphs with probability at least
√
1− ε

2
= 1− ε and, therefore, the edges (nodes) that are removed are

isomorphic edges (nodes) with probability at least 1− ε. When we remove pairs of edges (nodes) from
two isomorphic graphs that are mapped to each other via an isomorphism, the graphs remain isomorphic
and, therefore, must have the same 1-WL coloring. Since the two graphs have the same 1-WL coloring,
an MPNN downstream model f cannot separate them.

Proposition C.5 (Proposition 4.2 in the main paper). Let ε ∈ (0, 1), k > 0, and let G and H be
graphs with identical 1-WL stable colorings. Let VG and VH be the subset of nodes of G and H
that are in color classes of cardinality 1. Then, for all choices of 1-WL-equivalent functions f , there
exists a conditional probability mass function p(θ,k) that separates the graphs G[VG] and H[VH] with
probability at most ε with respect to f .

Proof sketch. Since the graphs G[VG] and H[VH] have a discrete coloring under the 1-WL and
the graphs G and H have identical 1-WL colorings, it follows that there exists an isomorphism
φ : G[VG] → H[VH].

Analogous to the proof of Theorem 4.1, we can now show that there exists a set of prior weights that
ensures that the exactly-k sample selects the same subset of edges (nodes) from, respectively, the same
subset of edges from G1[V1] and G2[V2] (the same subset of nodes from VG and VH) with probability
at least

√
1− ϵ. Note that the cardinality of the sampled subsets could also be empty since the priors

could be putting a higher weight on nodes (edges) with non-discrete color classes.

Regarding uniform edge removal, consider the two graphs in Figure 5 (b) and (c). With a distribution
based on an MPNN upstream model, the probability of separating the graphs by removing edges in
the isomorphic subgraphs induced by the nodes with colors 4 to 5 + t can be made arbitrarily small
for any t. However, the graphs would still be separated through samples in the parts whose coloring
is non-discrete. In contrast, sampling uniformly at random separates the graphs in these isomorphic
subgraphs with probability converging towards 1 with increasing t.

18

Under review

Figure 6: The graphs used in the proof of Theorem C.6 for node sampling.

Figure 7: The graphs used in the proof of Theorem C.6 for edge sampling.

Theorem C.6. For every ε ∈ (0, 1) and every k > 0, there exists a pair of non-isomorphic graphs
G and H with identical and non-discrete 1-WL stable colorings such that for every 1-WL-equivalent
function f

(1) there exists a probability mass function p(k,θ) that separates G and H with probability at least
(1− ε) with respect to f ;

(2) removing edges uniformly at random separates G and H with probability at most ε with
respect to f .

Proof. We distinguish the two cases: (1) sampling nodes to be removed and (2) sampling edges to be
removed from the original graphs.

For case (1), where we sample nodes to be removed, consider the graphs in Figure 6. For k = 1, we
take the graphs (a) and (b). Both of these graphs have the same 1-WL coloring, indicated by the color
numbers of the nodes. To separate the graphs, we need to sample and remove one of the nodes with
color 1 or 2. Removing a node with color 3 would lead again to an identical color partition for the two
graphs. Removing nodes with color 1 or 2 is achievable by placing a high prior weight θu on nodes
of one of the corresponding color classes; see Lemma C.3. Without loss of generality, we choose all
nodes u in color class 2 and set the prior weight θu such that a node in this color class is sampled with
probability

√
1− ε. Since a random sampler would uniformly sample any of the nodes, we simply have

to increase the number t of nodes with color 3 such that the probability of randomly sampling a node of
the color classes 1 or 2 is smaller than or equal to

√
ϵ.

For k > 1, we construct the graphs depicted in Figure 6 (c) and (d) for k = 2. These are constructed by
first taking a (k + 1)-cycle and connecting to each node of the cycle the nodes with color class 1 in the
two ways shown in Figure 6 (c) and (d). Finally, we connect t nodes of color class 3 to each of the
nodes in the cycle. These graphs can be separated by sampling k nodes from either the color class 1
or 2. For instance, removing k nodes from color class 2 always creates k disconnected subgraphs of
size 2 in the first parameterized graph but not the second. By Lemma C.3, we know that we can find
an upstream model that leads to prior weights θu such that sampling k nodes from a color class has
probability at least

√
1− ϵ; see the proof of Theorem C.1. As argued before, by increasing the number

of nodes with color class 3, we can make the probability that a uniform sampler picks a node with color
classes 1 or 2 to be less than or equal to

√
ϵ.

For case (2), where we sample edges to be removed from the original graph, consider the graphs
in Figure 7. For k = 1, we take the graphs (a) and (b). Both of these graphs have the same 1-WL

19

Under review

coloring, indicated by the color numbers of the nodes. To separate the graphs, we need to sample from
each graph an edge (u, v) such that either C1

∞(u) = C1
∞(v) = 1 or C1

∞(u) = 1 and C1
∞(v) = 2.

Removing an edge between two nodes with color class 3 in both graphs would lead again to an identical
color partition of the two graphs. Removing an edge between the color classes (1, 1) and (1, 2) is
possible by Lemma C.4 and choosing a prior weight large enough such that the probability of sampling
an edge between these color classes is at least

√
1− ϵ; see the proof of Theorem C.1. Since a random

sampler would sample an edge uniformly at random, we simply have to increase the number of nodes
with color class 3 such that the probability of sampling an edge between the color classes (1, 2) or (1, 2)
is smaller than

√
ϵ.

For k > 1, we construct the graphs depicted in Figure 7(c) and (d) for k = 2. We first take a (k + 1)-
cycle and connect to each node of the said cycle the nodes with color classes 1 in the two different ways
shown in Figure 7(c) and (d). Finally, we again add pairs of connected nodes with color class 3. The
two graphs can be separated by sampling k edges between the color classes (1, 1), (1, 2), and (2, 2).
For instance, sampling k edges between nodes in color class 2 leads to a disconnected subgraph of size
3 in the first graph but not the second. By Lemma C.4, we know that we can learn an upstream MPNN
that results in prior edge weights θuv for all edges (u, v) where both u and v are in color class 2, such
that sampling k of these edges has probability at least

√
1− ϵ; see the proof of Theorem C.1. Again, by

increasing the number of nodes with color class 3, we can make the probability that a uniform sampler
picks an edge between the color classes (1, 1), (1, 2) or (2, 2) to be less than or equal to

√
ϵ.

Finally, we can also show a negative result, i.e., there exist graphs such that PR-MPNNs cannot do
better than random sampling.
Proposition C.7 (Proposition 4.4 in the main paper). For every k > 0, there exist non-isomorphic
graphs H and H with identical 1-WL colorings such that every probability mass function p(θ,k)
separates the two graphs with the same probability as the distribution that samples nodes (edges)
uniformly at random.

Proof. Any pair of graphs where the 1-WL coloring consists of a single color class suffices to show the
result. For instance, consider the graphs in Figure 5(d), where all nodes have the same color. In fact,
any pair of non-isomorphic d-regular graphs for d > 0 works here. An MPNN upstream model cannot
separate the prior weights of the nodes and, therefore, behaves as a uniform sampler.

D DATASETS

Here, we give additional information regarding the datasets. The statistics of the datasets in our paper
can be found in 5. Among them, ZINC, ALCHEMY, MUTAG, PTC MR, NCI1, NCI109, PROTEINS,
IMDB-B, and IMDB-M are from TUDatasets (Morris et al., 2020). Whereas PEPTIDES-FUNC and
PEPTIDES-STRUCT are featured in Dwivedi et al. (2022b). Besides, CORNELL, TEXAS and WISCONSIN
are WebKB datasets (Craven et al., 1998) also used in Pei et al. (2020). The OGB datasets are credited
to Hu et al. (2020a). Moreover, we also incorporate synthetic datasets from the literature. EXP dataset
consists of partially isomorphic graphs as described in Abboud et al. (2020), while the graphs in
the CSL dataset are synthetic regular graphs proposed in Murphy et al. (2019). The construction of
TREES-NEIGHBORSMATCH dataset is introduced in Alon & Yahav (2021).

Similar to the TREES-NEIGHBORSMATCH dataset, we propose our own TREES-LEAFCOUNT dataset.
We fix a problem radius R > 0 and retrieve the binary representation of all numbers fitting into 2R

bits. This construction allows us to create 2R unique binary trees by labeling the leaves with “0” and
“1” corresponding to the binary equivalents of the numbers. A label is then assigned to the root node,
reflecting the count of leaves tagged with “1”. From the resulting graphs, we sample to ensure an
equal class distribution. The task requires a model to predict the root label, thereby requiring a strategy
capable of conveying information from the leaves to the root.

We aim to have a controlled environment to observe if our upstream model hu can sample meaningful
edges for the new graph configuration. Conventionally, a minimum of R message-passing layers is
required to accomplish both tasks (Barceló et al., 2020; Alon & Yahav, 2021). However, a single-layer
upstream MPNN could trivially resolve both datasets, provided the rewired graphs embed direct pathways
from the root node to the leaf nodes containing the label information. To circumvent any potential bias
within the sampling procedure, we utilize the self-attention mechanism described in Section 3 as our

20

Under review

Table 5: Dataset statistics and properties for graph-level prediction tasks, †—Continuous vertex labels
following Gilmer et al. (2017), the last three components encode 3D coordinates.

DATASET
PROPERTIES

NUMBER OF GRAPHS NUMBER OF CLASSES/TARGETS ∅ NUMBER OF VERTICES ∅ NUMBER OF EDGES VERTEX LABELS EDGE LABELS

ALCHEMY 202 579 12 10.1 10.4 ✓ ✓
QM9 129 433 13 18.0 18.6 ✓(13+3D)† ✓(4)
ZINC 249 456 1 23.1 24.9 ✓ ✓
EXP 1 200 2 44.5 55.2 ✓ ✗
CSL 150 10 41.0 82.0 ✗ ✗
OGBG-MOLHIV 41 127 2 25.5 27.5 ✓ ✓
CORNELL 1 5 183.0 298.0 ✓ ✗
TEXAS 1 5 183.0 325.0 ✓ ✗
WISCONSIN 1 5 251.0 515.0 ✓ ✗
TREES-LEAFCOUNT(R = 4) 16 000 16 31 61 ✓ ✗
TREES-NEIGHBORSMATCH(R = 4) 14 000 7 31 61 ✓ ✗
PEPTIDES-FUNC 15 535 10 150.9 153.7 ✓ ✓
PEPTIDES-STRUCT 15 535 11 150.9 153.7 ✓ ✓
MUTAG 188 2 17.9 19.8 ✓ ✓
PTC MR 344 2 14.3 14.7 ✓ ✓
NCI1 4 110 2 29.9 32.3 ✓ ✗
NCI109 4 127 2 29.7 32.1 ✓ ✗
PROTEINS 1 113 2 39.1 72.8 ✓ ✗
IMDB-M 1 500 3 13.0 65.9 ✗ ✗
IMDB-B 1 000 2 19.7 96.5 ✗ ✗

upstream model hu, along with a single-layer GIN architecture serving as the downstream model fd.
For each problem radius, we sample exactly k = 2D edges. Indeed, our method consistently succeeded
in correctly rewiring the graphs in all tested scenarios, extending up to a problem radius of R = 6,
and achieved perfect test accuracy on both datasets. Figure 3 presents a qualitative result from the
TREES-LEAFCOUNT dataset, further illustrating the capabilities of our approach.

E HYPERPARAMETER AND TRAINING DETAILS

Experimental Protocol Table 8 lists our hyperparameters choices. For all our experiments, we use
early stopping with an initial learning rate of 0.001 that we decay by half on a plateau.

We compute each experiment’s mean and standard deviation with different random seeds over a
minimum of three runs. We take the best results from the literature for the other models, except for SAT
on the OGBG-MOLHIV, where we use the same hyperparameters as the authors use on ZINC. We evaluate
test predictive performance based on validation performance. In the case of the WEBKB datasets,
we employ a 10-fold cross-validation with the provided data splits. For PEPTIDES, OGBG-MOLHIV,
ALCHEMY, and ZINC, our models use positional and structural embeddings concatenated to the initial
node features. Specifically, we add both RWSE and LAPPE (Dwivedi et al., 2022a). We use the same
downstream model as the base model for the rewiring models.

The repository of our code can be accessed at https://github.com/chendiqian/PR-MPNN.

F ADDITIONAL EXPERIMENTAL RESULTS

Here, we report on the computation times of different variants of our probabilistic graph rewiring
schemes and results on synthetic datasets.

Training times We report the average training time per epoch in Table 9. The RANDOM entry refers to
using random adjacency matrices as rewired graphs.

Extended TUDatasets In addition to Table 4 in the main paper, we report the results of IMDB-B and
IMDB-M datasets in Table 7. We also propose a proper train/validation/test splitting and show the
results in Table 6.

QM9 We compare our PR-MPNN with multiple current methods on QM9 dataset, see Table 10. The
baselines are R-GNN in Alon & Yahav (2021), GNN-FiLM (Brockschmidt, 2020), SPN (Abboud et al.,
2022) and the recent DRew paper (Gutteridge et al., 2023). Following the settings of Abboud et al.
(2022) and Gutteridge et al. (2023), we train the network on each task separately. We use the normalized
regression labels for training and report the de-normalized numbers. Similar to Abboud et al. (2022) and
Gutteridge et al. (2023), we also exclude the 3D coordinates of the datasets. It is worth noting that our
PR-MPNN reaches the overall lowest mean absolute error on HOMO, LUMO, gap, and Omega tasks
while gaining at most 14.13× better performance compared with a base GIN model.

21

https://github.com/chendiqian/PR-MPNN

Under review

Table 6: Extended results between our probabilistic rewiring method and the other approaches reported
in Giusti et al. (2023b). Besides the 10-fold cross-validation, as in Giusti et al. (2023b); Xu et al. (2019),
we provide a train/validation/test split. In addition, we also provide results on the IMDB-B and IMDB-M
datasets. We use green for the best model, blue for the second-best, and red for third.

MODEL MUTAG PTC MR PROTEINS NCI1 NCI109 IMDB-B IMDB-M

PR-MPNN (10-FOLD CV) 98.4±2.4 74.3±3.9 80.7±3.9 85.6±0.8 84.6±1.2 75.2±3.2 52.9±3.2

PR-MPNN (TRAIN/VAL/TEST) 91.0±3.7 58.9±5.0 79.1±2.8 81.5±1.6 81.8±1.5 71.6±1.2 45.8±0.8

Table 7: Extended comparison on the IMDB-B and IMDB-M datasets from the TUDATASET collection.
We use green for the best model, blue for the second-best, and red for third.

MODEL IMDB-B IMDB-M

DGCNN (ZHANG ET AL., 2018) 70.0±0.9 47.8±0.9

IGN (MARON ET AL., 2019B) 71.3±4.5 48.6±3.9

GIN (XU ET AL., 2019) 75.1±5.1 52.3±2.8

PPGNS (MARON ET AL., 2019A) 73.0±5.7 50.4±3.6

NATURAL GN (DE HAAN ET AL., 2020) 74.8±2.0 51.2±1.5

GSN (BOURITSAS ET AL., 2022) 77.8±3.3 54.3±3.3

CIN (BODNAR ET AL., 2021) 75.6±3.2 52.5±3.0

PR-MPNN (10-FOLD CV) 75.2±3.2 52.9±3.2
PR-MPNN (TRAIN/VAL/TEST) 71.6±1.2 45.8±0.8

WebKB To show PR-MPNNs’s capability on heterophilic graphs, we carry out experiments on the
three WebKB datasets, namely CORNELL, TEXAS, and WISCONSIN, Table 11. We compare with
diffusion-based GNN (Gasteiger et al., 2019), Geom-GCN (Pei et al., 2020), and the recent graph
rewiring work SDRF (Topping et al., 2021). Besides the MPNN baselines above, we also compare them
against graph transformers. PR-MPNNs consistently outperform the other MPNN methods and are even
better than graph transformers on the TEXAS dataset.

LRGB We apply PR-MPNNs on the two Long Range Graph Benchmark tasks (Dwivedi et al.,
2022b), PEPTIDES-FUNC and PEPTIDES-STRUCT, which are graph classification and regression
tasks, respectively. The baseline methods are also reported in Gutteridge et al. (2023). Notably, on
PEPTIDES-STRUCT, PR-MPNNs reach the overall lowest mean absolute error.

22

Under review

Ta
bl

e
8:

O
ve

rv
ie

w
of

us
ed

hy
pe

rp
ar

am
et

er
s.

D
A

TA
S

E
T

H
ID

D
E

N
U

P
S

T
R

E
A

M
H

ID
D

E
N

D
O

W
N

S
T

R
E

A
M

L
A

Y
E

R
S

U
P

S
T

R
E

A
M

L
A

Y
E

R
S

D
O

W
N

S
T

R
E

A
M

K
A

D
D

K
R

M
L

A
D

D
H

E
U

R
D

R
O

P
O

U
T

N
P

R
IO

R
S

S
A

M
P

L
E

S
T

R
A

IN
/T

E
S

T

Z
IN

C
{3

2,
64

,9
6}

25
6

{2
,4

,8
}

4
[1

,1
28

]
[1

,1
28

]
25

6
D

IS
TA

N
C

E
.0

1
5

Q
M

9
64

{1
96

,2
56

}
8

4
{5

,2
0,

35
,5

0,
80

}
5

{1
00

,3
50

}
D

IS
TA

N
C

E
{.

1,
.5
}

{1
,2

}
{2

,3
,5

}
P

E
P

T
ID

E
S
-F

U
N

C
{1

28
,2

56
}

{1
28

,2
56

}
{4

,8
}

{4
,8

}
{1

6,
64

,2
56

,5
12

}
{1

6,
64

,2
56

,5
12

}
{1

28
,2

56
,5

12
,2

04
8}

D
IS

TA
N

C
E

{.
0,

.1
}

{1
,2

,5
}

{1
,2

,5
}

P
E

P
T

ID
E

S
-S

T
R

U
C

T
{1

28
,2

56
}

{1
28

,2
56

}
{4

,8
}

{4
,8

}
{1

6,
64

,2
56

,5
12

}
{1

6,
64

,2
56

,5
12

}
{1

28
,2

56
,5

12
,2

04
8}

D
IS

TA
N

C
E

{.
0,

.1
}

{1
,2

,5
}

{1
,2

,5
}

M
U

TA
G

{3
2,

64
}

{3
2,

64
,9

6}
{4

,8
,1

6}
{4

,8
}

{0
,5

,1
0,

25
}

{0
,5

,1
0,

25
}

25
6

D
IS

TA
N

C
E

{.
0,

.1
,.

2}
{2

,3
}

{2
,5

}
P

T
C

M
R

{3
2,

64
}

{3
2,

64
,9

6}
{4

,8
,1

6}
{4

,8
}

{0
,5

,1
0,

25
}

{0
,5

,1
0,

25
}

25
6

D
IS

TA
N

C
E

{.
0,

.1
,.

2}
{2

,3
}

{2
,5

}
N

C
I1

{3
2,

64
}

{3
2,

64
,9

6}
{4

,8
,1

6}
{4

,8
}

{0
,5

,1
0,

25
}

{0
,5

,1
0,

25
}

25
6

D
IS

TA
N

C
E

{.
0,

.1
,.

2}
{2

,3
}

{2
,5

}
N

C
I1

09
{3

2,
64

}
{3

2,
64

,9
6}

{4
,8

,1
6}

{4
,8
}

{0
,5

,1
0,

25
}

{0
,5

,1
0,

25
}

25
6

D
IS

TA
N

C
E

{.
0,

.1
,.

2}
{2

,3
}

{2
,5

}
P

R
O

T
E

IN
S

{3
2,

64
}

{3
2,

64
,9

6}
{4

,8
,1

6}
{4

,8
}

{0
,5

,1
0,

25
}

{0
,5

,1
0,

25
}

25
6

D
IS

TA
N

C
E

{.
0,

.1
,.

2}
{2

,3
}

{2
,5

}
IM

D
B

-M
{3

2,
64

}
{3

2,
64

,9
6}

{4
,8

,1
6}

{4
,8
}

{0
,5

,1
0,

25
}

{0
,5

,1
0,

25
}

25
6

D
IS

TA
N

C
E

{.
0,

.1
,.

2}
{2

,3
}

{2
,5

}
IM

D
B

-B
{3

2,
64

}
{3

2,
64

,9
6}

{4
,8

,1
6}

{4
,8
}

{0
,5

,1
0,

25
}

{0
,5

,1
0,

25
}

25
6

D
IS

TA
N

C
E

{.
0,

.1
,.

2}
{2

,3
}

{2
,5

}
C

O
R

N
E

L
L

[6
4,

25
6]

19
2

{2
,3

,4
}

3
[1

02
4,

20
48

]
[2

56
,5

12
]

40
96

S
IM

IL
A

R
IT

Y
.0

[1
,5

]
{1

,5
}

W
IS

C
O

N
S

IN
[6

4,
25

6]
19

2
{2

,3
,4

}
3

[1
02

4,
20

48
]

[2
56

,5
12

]
40

96
S

IM
IL

A
R

IT
Y

.0
[1

,5
]

{1
,5

}
T

E
X

A
S

[6
4,

25
6]

19
2

{2
,3

,4
}

3
[1

02
4,

20
48

]
[2

56
,5

12
]

40
96

S
IM

IL
A

R
IT

Y
.0

[1
,5

]
{1

,5
}

T
R

E
E

S
-L

E
A

F
C

O
U

N
T

32
32

1
1

N
L

E
A

F
S

A
L

L
-

A
L

L
.0

1
1

T
R

E
E

S
-N

E
IG

H
B

O
R

S
M

A
T

C
H

32
32

2
D

E
P

T
H

+
1

{2
0,

32
,6

4,
12

8,
25

6}
0

-
A

L
L

.0
1

1
C

S
L

32
12

8
{4

,8
,1

2}
2

1
0

1
D

IS
TA

N
C

E
.0

{1
,3

,5
}

{1
,1

0}
4-

C
Y

C
L

E
S

16
16

4
4

2
2

-
A

L
L

.0
{1

,5
,1

0}
{5

,1
0,

20
,3

0,
40

,5
0}

E
X

P
64

32
8

6
{1

,5
,1

0,
15

,2
0,

25
,5

0,
10

0}
{1

,5
,1

0,
15

,2
0,

25
,5

0,
10

0}
35

0
D

IS
TA

N
C

E
.0

{1
,5

,1
0,

25
}

{1
,5

,1
0}

23

Under review

Table 9: Computations time for rewiring approaches on ZINC. Average over five epochs. Number of
added edges: 80. Number of deleted edges: 20. Experiments performed on a machine with a single
Nvidia RTX A5000 GPU and a Intel i9-11900K CPU.

SAMPLER TIME/EPOCH (S)

RANDOM 8.54±0.04
GUMBEL SOFTSUB-ST 11.87±0.05
I-MLE 11.24±0.11
SIMPLE 11.53±0.07

Table 10: Performance PR-MPNN on QM9, in comparison with the base downstrem model (Base-GIN)
and other competing methods. The relative improvement of PR-MPNN over the base downstream
model is reported in the paranthesis. The metric used is MAE, lower scores are better. We note the best
performing method with green, the second-best with blue, and third with orange.

PROPERTY R-GIN+FA GNN-FILM SPN DRew-GIN BASE-GIN PR-MPNN

MU 2.54±0.09 2.38±0.13 2.32±0.28 1.93±0.06 2.64±0.01 1.99±0.02 (1.33×)
ALPHA 2.28±0.04 3.75±0.11 1.77±0.09 1.63±0.03 7.67±0.16 2.28±0.06 (3.36×)
HOMO 1.26±0.02 1.22±0.07 1.26±0.09 1.16±0.01 1.70±0.02 1.14±0.01 (1.49×)
LUMO 1.34±0.04 1.30±0.05 1.19±0.05 1.13±0.02 3.05±0.01 1.12±0.01 (2.72×)
GAP 1.96±0.04 1.96±0.06 1.89±0.11 1.74±0.02 3.37±0.03 1.70±0.01 (1.98×)
R2 12.61±0.37 15.59±1.38 10.66±0.40 9.39±0.13 23.35±1.08 10.41±0.35 (2.24×)
ZPVE 5.03±0.36 11.00±0.74 2.77±0.17 2.73±0.19 66.87±1.45 4.73±0.08 (14.13×)
U0 2.21±0.12 5.43±0.96 1.12±0.13 1.01±0.09 21.48±0.17 2.23±0.13 (9.38×)
U 2.32±0.18 5.95±0.46 1.03±0.09 0.99±0.08 21.59±0.30 2.31±0.06 (9.35×)
H 2.26±0.19 5.59±0.57 1.05±0.04 1.06±0.09 21.96±1.24 2.66 ±0.01 (8.26×)
G 2.04±0.24 5.17±1.13 0.97±0.06 1.06±0.14 19.53±0.47 2.24±0.01 (8.24×)
CV 1.86±0.03 3.46±0.21 1.36±0.06 1.24±0.02 7.34±0.06 1.44±0.01 (5.10×)
OMEGA 0.80±0.04 0.98±0.06 0.57±0.04 0.55±0.01 0.60±0.03 0.48±0.00 (1.25×)

Table 11: Quantitative results on the heterophilic and transductive WEBKB datasets. Best overall;
Second best; Third best. Rewiring outperforms the base models on all of the datasets. Graph
transformers have an advantage over both the base models and the ones employing rewiring.

HETEROPHILIC & TRANSDUCTIVE
CORNELL ↑ TEXAS ↑ WISCONSIN ↑

M
P

N
N

S

BASE 0.574±0.006 0.674±0.010 0.697±0.013
BASE W. PE 0.540±0.043 0.654±0.010 0.649±0.018
DIGL (GASTEIGER ET AL., 2019) 0.595±0.006 0.635±0.004 0.522±0.005
GEOM-GCN (PEI ET AL., 2020) 0.608± N/A 0.676± N/A 0.641± N/A
SDRF (TOPPING ET AL., 2021) 0.546±0.004 0.644±0.004 0.555±0.003
PR-MPNN (OURS) 0.659±0.040 0.827±0.032 0.750±0.015

G
T

S

GPS (LAPPE) 0.662±0.038 0.778±0.010 0.747±0.029
GPS (RWSE) 0.708±0.020 0.775±0.012 0.802±0.022
GPS (DEG) 0.718±0.024 0.773±0.013 0.798±0.090
GRAPHORMER (DEG) 0.683±0.017 0.767±0.017 0.770±0.019
GRAPHORMER (DEG + ATTN BIAS) 0.683±0.017 0.767±0.017 0.770±0.019

24

Under review

Table 12: Comparison between PR-MPNN and other methods as reported in Gutteridge et al. (2023).
Best overall; Second best; Third best. PR-MPNN obtains the best score on the PEPTIDES-STRUCT
dataset from the LRGB collection, but ranks below Drew on the PEPTIDES-FUNC dataset.

MODEL
PEPTIDES-FUNC PEPTIDES-STRUCT

AP ↑ MAE ↓
GCN 0.5930±0.0023 0.3496±0.0013

GINE 0.5498±0.0079 0.3547±0.0045

GATEDGCN 0.5864±0.0077 0.3420±0.0013

GATEDGCN+PE 0.6069±0.0035 0.3357±0.0006

DIGL+MPNN 0.6469±0.0019 0.3173±0.0007

DIGL+MPNN+LAPPE 0.6830±0.0026 0.2616±0.0018

MIXHOP-GCN 0.6592±0.0036 0.2921±0.0023

MIXHOP-GCN+LAPPE 0.6843±0.0049 0.2614±0.0023

TRANSFORMER+LAPPE 0.6326±0.0126 0.2529±0.0016
SAN+LAPPE 0.6384±0.0121 0.2683±0.0043

GRAPHGPS+LAPPE 0.6535±0.0041 0.2500±0.0005

DREW-GCN 0.6996±0.0076 0.2781±0.0028

DREW-GCN+LAPPE 0.7150±0.0044 0.2536±0.0015

DREW-GIN 0.6940±0.0074 0.2799±0.0016

DREW-GIN+LAPPE 0.7126±0.0045 0.2606±0.0014

DREW-GATEDGCN 0.6733±0.0094 0.2699±0.0018

DREW-GATEDGCN+LAPPE 0.6977±0.0026 0.2539±0.0007

PR-MPNN 0.6825±0.0086 0.2477±0.0005

25

	Introduction
	Related Work

	Background
	Probalistically rewired MPNNs
	Expressive Power of Probabilistically Rewired MPNNs
	Experimental Evaluation
	Conclusion
	Additional related work
	Extended notation
	Missing proofs
	Datasets
	Hyperparameter and Training Details
	Additional Experimental Results

