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1. Introduction

Probabilistic models are at the very core of modern machine learning (ML) and artificial
intelligence (AI). Indeed, probability theory provides a principled and almost universally
adopted mechanism for decision making in the presence of uncertainty. For instance, in
machine learning, we assume that our data was drawn from an unknown probability dis-
tribution. Getting access to this distribution, in any of its facets, is the “holy grail” of
statistical ML. It would reduce many machine learning tasks to simply performing proba-
bilistic inference. Similarly, many forms of model-based AI seek to directly represent the
mechanism that governs the world around us as a probability distribution in some form.

It is therefore no wonder that much attention in ML has been devoted to learning the
distribution back from the data. We fit more and more expressive probabilistic models
as density estimators that are increasingly close to the data-generating distribution. This
approach was popularized recently by progress in deep generative models such as generative
adversarial networks (Goodfellow et al., 2014), variational autoencoders (Rezende et al.,
2014; Kingma and Welling, 2013) and normalizing flows (Papamakarios et al., 2019). At the
same time, increasingly rich and expressive modeling languages that can concisely capture
complex distributions have been developed through efforts in statistics (Carpenter et al.,
2017), programming languages (Holtzen et al., 2020), cognitive science (Griffiths et al.,
2010) and AI (Milch et al., 2005; Domingos and Lowd, 2009; Fierens et al., 2015).

However, the increased expressiveness of these probabilistic models, and the ability of
modern neural density estimators of scaling learning to large amounts of data comes at a
tremendous price: the inability to perform reliable and efficient probabilistic inference in all
but the most trivial of probabilistic reasoning scenarios. Concretely, these aforementioned
models resort to various approximation techniques for answering basic questions about the
probability distributions they represent. Computing a marginal or conditional probability,
an expectation, or the mode of the distribution can only be done through approximations
with little to no guarantees. Ironically, as our models get closer to fitting the true distribu-
tion with high fidelity, we are also getting further away from our goal of solving problems by
probabilistic reasoning, to some extent nullifying the very purpose of probabilistic modeling
and learning.

This state of probabilistic generative models stands in stark contrast with the state
of the field at its nascence. In a ground-breaking decade, the 1960s saw the introduction
of the hidden Markov model (HMM) (Stratonovich, 1960; Baum and Petrie, 1966), the
Kalman filter (Kalman, 1960), early applications of naive Bayes classifiers (Bailey, 1965;
Boyle et al., 1966), and the Chow-Liu tree learning algorithm (Chow and Liu, 1968). These
classical probabilistic models have clear limitations: they are nowhere near as expressive
as the models available today. Yet they came with one distinctive and important virtue:
efficient algorithms for probabilistic reasoning. They were tractable probabilistic models
that would go on to support scientific and engineering breakthroughs for decades to come.

A trend in probabilistic AI and ML is to focus on designing and exploiting models that
can theoretically guarantee reliable and efficient probabilistic inference. These models often
go under the umbrella name of tractable probabilistic models (TPMs) and allow for complex
inference routines to be computed exactly and in polynomial time. Examples of “classical”
TPMs are Kalman filters (Musoff and Zarchan, 2009) and hidden Markov models (Koller
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and Friedman, 2009), tree distributions (Chow and Liu, 1968), and bounded-treewidth
PGMs (Bach and Jordan, 2002). Although extensively used not only in AI and ML but
also control theory, system engineering and statistics, these models are deemed to be be
limited in expressive power. More recently, a burgeoning new wave of TPMs has arrived,
promising an increase in expressive power and efficiency, with little to no compromise in
tractability. These include models such as arithmetic circuits (Darwiche, 2003), probabilistic
decision graphs (Jaeger, 2004), and-or search spaces (Marinescu and Dechter, 2005) and
multi-valued decision diagrams (Dechter and Mateescu, 2007), sum-product networks (Poon
and Domingos, 2011), cutset networks (Rahman et al., 2014) and probabilistic sentential
decision diagrams (Kisa et al., 2014).

In this work, we lay the foundations to describe, learn, and reason about these TPM for-
malisms under a single unified framework, which we name probabilistic circuits (PCs). PCs
are computational graphs that define a joint probability distribution as recursive mixtures
(sum units) and factorizations (product units) of simpler distributions (e.g., parametric
distributions such as Gaussians or Bernoullis). They are expressive deep generative models
as they indeed encode several layers of latent variables into large graphs with millions of
connections and parameters. Differently from the intractable neural estimators mentioned
above, however, PCs allow for exact probabilistic inference in time linear in the size of
the circuits and the cost of performing it can be theoretically certified when the circuit has
certain structural properties.

Specifically, we make the following contributions. First, we introduce the framework of
PCs as a unifying theoretical and practical tool that generalizes many previously introduced
TPM models, while abstracting away from their syntactic differences. Second, we formal-
ize and systematize many tractable probabilistic inference tasks as classes of functions,
named probabilistic queries, providing a useful abstraction to talk about the desiderata for
real-world probabilistic inference as well as to compare model classes w.r.t. their inference
capabilities. Third, we provide precise characterizations of when these query classes can
be efficiently computed on PCs, in terms of the presence of certain structural properties in
their computational graphs. Lastly, we collect previous connections and draw novel ones
between PCs and other representations such as polynomials, hierarchical mixture mod-
els, tensor factorizations, and logical circuits, ultimately questioning whether all tractable
representations could be represented as PCs and under which conditions.

The rest of the paper is organized as follows. Section 2 introduces the necessary back-
ground from probability theory and formalizes the notions of probabilistic query classes
and tractable representations. Section 3 builds the PC framework from the ground up and
discusses the computation of complete evidence queries with PCs. Marginal inference and
related query classes are formalized in Section 4, while also introducing the class of smooth
and decomposable PCs as tractable representations for them. Before discussing other query
classes of interest, Section 5 draws connections between PCs and other representations such
as (hierarchical) mixture models and (multi-linear) polynomials. The tasks of computing
the modes of distributions encoded by PCs are discussed in Sections 6 and 8. Section 7
discusses the notion of expressive efficiency and compares tractable PCs under this notion.
Section 9 introduces advanced query classes involving pairs of PCs, including the compu-
tations of expectations between PCs and metrics to quantify the distance between two PC
distributions such as the Kullback-Leibler divergence. Later, Section 10 introduces and
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discusses transformations over probability distributions encoded as PCs, and Section 11
provides the reader a compendium to translate the most popular TPM formalisms to PCs,
while discussing which structural properties—and hence tractable query classes—are car-
ried over. Finally, before concluding in Section 13, in Section 12 we trace the tractable
representations in the AI and ML literature back from logical circuits to generalizations to
other semi-rings.

2. Probabilistic Inference: Models, Queries, and Tractability

Probabilistic circuits are probabilistic models that are tractable for large classes of
queries. This section provides the necessary background to understand those key con-
cepts. First, we discuss how probabilistic models are compact representations of probability
distributions and introduce the probability notation used throughout this paper. Second,
we formalize probabilistic inference as computing quantities of interest by querying prob-
abilistic models. We will then categorize these queries into families, which will help us
characterize their computational differences. Third, we formally define what it means for a
family of queries to be tractable. We end this section by stating the scientific questions that
arise in this context and that will be answered in the remainder of this paper: for example,
what makes a probabilistic model tractable for a family of queries, and what is the price
one has to pay for this tractability?

2.1 Probabilistic Models

Probability theory offers a principled way to model and reason about the uncertainty over
the world we observe. Next, we briefly refresh probability calculus and its notation.1

The world is described in terms of its attributes (or features). Since we have uncertainty
about their values, we consider these attributes to be random variables (RVs). We denote
RVs by uppercase letters (X,Y ), and denote sets of RVs by bold uppercase letters (X,Y).
The domain of a RV X is the set of possible values that it can assume, denoted by val(X).
Values of RVs are denoted by a lowercase letter (x, y). When the RV is clear from context,
we will abbreviate assignments of the form X = x by simply writing x.

A state of the world (or a configuration, possible world, complete state) assigns a value
to each RV. A partial state assigns a value to some RVs. We denote partial or joint states
by bold lowercase letters (Y = y, or simply y). We will assume that all states x and sets
of RVs X are indexed by a subscript, i.e., xi and Xi. The state space val(X) of a set of n
RVs X consists of all possible states val(X1)× . . .× val(Xn).

A joint probability distribution over RVs X, denoted by p(X), quantifies the uncertainty
over states of X. When the set of variables X can be partitioned into subsets Y,Z, we
can equivalently write p(Y,Z). Formally, the state space of our RVs forms a sample space.
When we define a σ-algebra of events over this sample space, we obtain a measurable space.
Our joint probability distribution then corresponds to a probability measure associated with
such a measurable space, resulting in a probability space.

1. We refer the reader to Rosenthal (2006); Feller (2008); Koller and Friedman (2009) for additional back-
ground and an in-depth treatment of probability theory.
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Distributions over discrete RVs are described by probability mass functions (PMFs),
whereas distributions over continuous RVs are described by probability density functions
(PDFs). Mixed discrete-continuous distributions are used when dealing with both kinds of
RVs. To lighten the notation, we let the function p(X = x) return either a probability or a
probability density, depending on context. As most of the statements in this work hold in
either scenario, we only make the distinction explicit when necessary.

A probabilistic model is a particular representation of a probability distributions. For
a probabilistic model m that has parameters θ, we will use either pm(X) or pθ(X) to denote
the probability distribution that is represented by the probabilistic model.

Events are sets of states that are assigned a probability. In discrete distributions, each
(partial) state describes a basic event. Continuous random variables require more care:
their partial assignments do not generally have a probability, only a probability density.
Thus, to specify an event for a general RV X, we will say that its value comes from an
interval I, denoted X ∈ I. We will write X ∈ I to mean that each Xi in X has a value
from interval Ii. More complex types of events over multiple RVs—those that need to be
described in a formal logical language—are discussed in detail in Section 9.

We will assume familiarity with the standard transformations and rules of probability
that turn one distribution into another. For example, marginalization (or summing out,
integrating out) removes a variable from the scope of the distribution. The transformation
of conditioning removes all probability from states that do not conform to an observed
event, often called evidence, and re-normalizes all other probability mass accordingly.

2.2 Probabilistic Queries

Intuitively, a probabilistic model can be seen as a black box that we can ask questions about
the uncertainty around some states and events in the joint probability distribution. These
questions involve computing some quantities of interest of the joint probability distribution,
for instance the probability mass or density associated with an observed state, the mode of
the distribution, one of its moments, its entropy, etc.

Such questions are called queries in the computer science literature; a term commonly
used in databases (Vardi, 1982; Suciu et al., 2011; Van den Broeck et al., 2017), probabilistic
graphical models (Koller and Friedman, 2009; Dechter, 2019), and knowledge representa-
tion (Cali et al., 2010; Juba, 2019). Queries usually ask for quantities of interest after
transforming the distribution in some way. For example, one might ask for the mode of the
distribution after conditioning it on evidence and marginalizing out some variables.

Consider the following simple example of decision making under uncertainty.

Example 1 (Traffic jam distribution) Imagine being a commuter in Los Angeles who
needs to decide which route to take to work each day. To avoid traffic jams you could query
the probabilistic model m embedded in your navigation software. That is, the probabilistic
model m represents a joint probability distribution pm(X) over RVs X = {W,T, Jstr1 , . . . , JstrK}.
Here, R is a categorical RV with domain val(W) = {Rain, Snow, . . . ,Sun} for the Weather; T
is a continuous RV with domain val(T) = [0, 24) indicating the Time of day; and {Jstri}Ki=1

is a set of binary RVs, each indicating the presence of a traffic jam on the i-th street.

You might want to ask your navigator the following probabilistic inference queries.
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q1: What is the probability that there is a traffic jam on Westwood Blvd. and
that the weather is rainy?

q2: Which time of day is most likely to have a traffic jam on my way to work?

Both queries are a function of the distribution pm represented by the probabilistic model m
inside of your navigator. For instance, the result of query q1 is the probability mass of the
partial state that assigns W = Rain and JWestwood = 1:

pm(W = Rain, JWestwood = 1). (1)

The result of query q2 is the mode of the distribution over time T after conditioning the
distribution on a complex event, and marginalizing out all other variables:

arg max
t

pm
(
T = t

∣∣ ∨
i∈route Jstri

)
.

Here,
∨
i∈route Jstri is the event that at least one of the roads on my route to work is jammed.

As one might intuit, computing query q2 must be at least as hard as computing query q1:
both queries marginalize the distribution, but q2 also performs maximization while dealing
with events that are more complex logical constraints, not just partial states. By looking at
the types of transformations and distributional quantities computed by a query, it becomes
possible to group queries that have similar characteristics into query classes. They will
allow us to identify queries that present similar computational challenges, and to formally
define useful classes of tractable probabilistic models.

The following example query is representative of a simple but important query class,
called complete evidence queries (EVI).

Example 2 (EVI query) Consider again the traffic jam distribution pm(X) introduced in
Example 1. The query “What is the probability that at 12 o’clock on a sunny day there will
be a traffic jam only on Westwood Blvd.?” is answered by computing

pm(W=Sun,T=12.0, Jstr1 =0, . . . , JWestwood=1, . . . , JstrK =0),

where among the K roads, only the traffic jam RV JWestwood is set to 1 and all others to 0.

Definition 1 (EVI query class) The class of complete evidence queries (EVI) consists of
all queries that compute p(X = x), where p is a joint probability distribution over RVs X,
and x ∈ val(X) is a complete state (also called complete evidence).

Crucially, the EVI query’s state x is complete – it assigns a value to each RV in the distribu-
tion. For a given model m, answering an EVI query corresponds to computing the complete
likelihood of that model m given the example x. As such, EVI queries are at the core of
maximum-likelihood learning of probabilistic models (Koller and Friedman, 2009).

This paper will present a rich landscape of query classes that goes far beyond the EVI
class. For instance, the query q1 in Example 1 is an instance of a harder query class,
called marginal queries (MAR), whose goal is to compute the probability (or density) of a
partial state in the distribution p. We will formally define MAR and discuss its properties in
Section 4. Moreover, we will show that its computational challenges are shared with other
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interesting query classes such as conditional queries (CON) and computing the moments of
a distribution (MOM) (e.g., its mean or variance).

Instead of the moments of a distribution, we might be interested in its mode, that is, the
most likely complete state after conditioning the distribution on evidence given by a partial
state. Queries of this kind are called maximum a posteriori queries (MAP) and require
different computational tools than MAR, as we will discuss in Section 6.2

Complex decision making in the real-world might require even more sophisticated prob-
abilistic inference routines than EVI, MAR, or MAP queries. The marginal MAP (MMAP)
query class combines aspects of both MAR and MAP – it requires marginalization over one
set of RVs and finding the most likely partial state over another set of RVs. We will discuss
the MMAP class in Section 8 while relating it to other difficult classes; in particular the
information-theoretic query class of computing the (marginal) entropy of a distribution.

The last class of probabilistic queries we will touch upon in this work deal with prop-
erties of more than one single model. Such queries ask about the relationship between a
distribution and another complex object, which could be a second distribution or some
complex event or function. We place these queries under the umbrella class of pairwise
queries (PAIR), as they share many of the same computational properties. Examples of
PAIR queries discussed in Section 9 include the computation of the Kullback-Leibler di-
vergence (KLD) between two distributions, the expectation (EXP) of a function and the
probability of a complex logical event (PR), such as the traffic jam event in query q2 from
Example 1.

2.3 Tractable Probabilistic Inference

When we say that a probabilistic model is tractable , we are expecting it to provide two
types of guarantees. The first guarantee is that the model is able to perform exact inference:
the answers to queries are faithful to the model’s distribution, and no approximations are
involved in obtaining them.3 The second guarantee is that the query computation can be
carried out efficiently, that is, in time polynomial in the size of the probabilistic model.

Definition 2 (Tractable probabilistic inference) A class of queries Q is tractable
on a family of probabilistic models M iff any query q ∈ Q on a model m ∈ M can be
computed in time O(poly(|m|)). We also say that M is a tractable model for Q.

In Definition 2, the concept of efficiency translates to polytime complexity w.r.t. the
size of models in a class, |m|. Model size can be defined differently for different model
classes, but in all cases represents a proxy for the number of computations give the size
of the model’s input. For classical probabilistic graphical models like Bayesian networks
(BNs) and Markov random fields (MRFs), model size can be expressed in terms of the size
of their factors (Darwiche, 2009; Koller and Friedman, 2009). For models represented as
computational graphs, such as in neural density estimators (Papamakarios et al., 2019) and

2. MAP queries are also called most-probable explanation queries (MPE) in the Bayesian network literature.
3. As such, while probabilistic circuits are a form of deep generative model, this paper will not be considering

other deep generative models like GANs (Goodfellow et al., 2014) and RAEs (Ghosh et al., 2019), which
do not have an explicit probability distribution, or VAEs (Kingma and Welling, 2013) which do have a
well-defined density, but cannot compute it exactly and need to resort to variational approximations.
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our probabilistic circuits, model size will directly translate to the number of edges in the
graph.

The complexity of answering queries in the above definition depends only on one model
size. However, for some advanced query classes like PAIR which involve more than one
model, we would need to express the dependency w.r.t. all their sizes. In particular, for
certain queries in the PAIR class such as computing the probability of a complex event
involving disjunctions of simpler event, one of the models involved will be a compact rep-
resentation for such an event (e.g., compiled into a logical circuit, cf. Section 12). In those
cases we will refer to the size of the model encoding the query event, as the size of the query
and denote it as |q|.

2.4 Properties of Tractable Probabilistic Models

It is important to observe that Definition 2 does not state tractability as an absolute prop-
erty. Tractability can be defined for a family of models only w.r.t. a class of queries:
tractability is a spectrum. Indeed, a tractable representation for one query class might
not admit polynomial time inference for another query class. For a model class, we de-
fine its tractable band as the set of query classes for which the model class is a tractable
representation.

Example 3 (Tractable bands for Bayesian networks) LetMBN be the class of Bayesian
Networks over collections of discrete RVs. Then MBN is a tractable representation for
EVI (cf. Section 2.2) since all complete evidence queries can be computed in time linear
in the number of RVs considered. However MBN is not a tractable representation for
MAR, MAP, nor MMAP since computing queries from these classes are respectively #P-
complete (Cooper, 1990; Roth, 1996), NP-Hard and NPPP -complete (Park and Darwiche,
2004) problems.

From this perspective, different model classes can be compared, and ranked by their
usefulness for certain application domains, by the extent of their tractable bands. Moreover,
when it comes to different model classes with the same tractable bands, it is natural to
question whether there are some common aspects in their representations that are sufficient
or necessary to support tractable inference for those query classes.

In the next section by introducing the framework of probabilistic circuits (PCs) we
will provide a positive answer for many tractable representations. Specifically, the clear
operational semantics of PCs will help i) homogenize representation and notation for many
tractable representations and ii) provide a clean way to trace the tractable bands of a model
class by some structural properties they conform to. Table 1 characterizes the family of
probabilistic circuits supporting tractable inference of each query class by their structural
properties, as will be shown in future sections.

3. Probabilistic Circuits: Representation

We introduce probabilistic circuits (PCs) as a general and unified computational framework
for tractable probabilistic modeling.

This serves two major purposes. The first one is to unify the disparate formalisms
proposed so far in the literature for tractable models. Probabilistic circuits reconcile
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Table 1: Tractable inference of probabilistic circuits. Rows denote the following query
classes: marginal (MAR) and conditional (CON) inference, moments of a distribution
(MOM), maximum a-posteriori (MAP) and marginal maximum a-posteriori (MMAP) in-
ference, expectations (EXP) and Kullback-Leibler divergence (KLD). Marks signify that
a query class can be computed tractably given certain structure properties (columns):
smoothness (Smo.), consistency (Con.), decomposability (Dec.), structured-decomposability
(Str.Dec.), determinism (Det.), and marginal determinism (Mar.Det.).

Query Class Smo. Con. Dec. Str.Dec. Det. Mar.Det. Reference

MAR 3 3 Section 4.2
CON 3 3 Section 4.2
MOM 3 3 Section 4.3
MAP 3 3 Section 6

MMAP 3 3 3 Section 8
EXP 3 3 3 Section 9.2
KLD 3 3 3 3 Section 9.1

and abstract from the different graphical and syntactic formalisms of recently introduced
models such as arithmetic circuits (Darwiche, 2003), probabilistic decision graphs (Jaeger,
2004), and-or search spaces (Marinescu and Dechter, 2005) and multi-valued decision dia-
grams (Dechter and Mateescu, 2007), sum-product networks (Poon and Domingos, 2011),
cutset networks (Rahman et al., 2014) and probabilistic sentential decision diagrams (Kisa
et al., 2014). Additionally, more classical tractable models such as treewidth-bounded prob-
abilistic graphical models can be naturally cast in the probabilistic circuits framework (Dar-
wiche, 2009). We provide a vocabulary of translations from all these formalisms into PCs
in Section 11.

The second purpose of the PC framework is to enable reasoning over the tractable bands
of a model class in terms of some well-defined structural properties only. In turn, this allows
for a deeper theoretical understanding of which properties are necessary or sufficient for
tractable probabilistic representations at large. We introduce and discuss these properties
in the context of different query classes in Sections 4-9 and we question if all tractable
representations can be cast as PCs in Section 11.7.

In this section, we build the PC framework first in a bottom-up and intuitive fashion by
introducing the building blocks of a grammar that PCs provide for tractable probabilistic
modeling. Later, we consolidate these notions in a more formal, top-down introduction.

3.1 The Ingredients of Tractable Probabilistic Modeling

Probabilistic circuits encode joint probability distributions in a recursive way, by means
of a graph formalism. In essence, probabilistic circuits are computational graphs encoding
functions that characterize a distribution, for instance a PMF or a PDF. By evaluating
such a function w.r.t. to some inputs, a PC will encode the computation to answer certain
probabilistic queries, that is, to perform inference. We now introduce the minimal set of
computational units needed to build such graphs: distribution, product and sum units.
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3.1.1 Input Units: Simple Tractable Distributions

To begin, consider the smallest computational graph of this kind, consisting of a single
computational unit. This single unit can represent a whole probability distribution over
a bunch of RVs. We name it distribution unit, and later we will refer to it as input unit
as it will constitute the inputs of a whole PC. The computation encoded in such a unit,
i.e., the output it emits given some input, is determined by the query class considered and
parametric form of the distribution it encodes.

Example 4 (Tractable densities as computational units) Consider a distribution unit
encoding a Gaussian density p(X) = N (X;µ = 1, σ = 0.1) as represented on the left as
a circle and labeled by its RV. Then to answer some EVI query, when it is fed some ob-
served state X = 1.1 as evidence (orange), it will output the corresponding PDF N (X =
1.1; 1, 0.1) ≈ 2.41 (blue):

x

X

p(x) 1.1

X

2.41

Since a computational node defined in this way effectively acts as a black-box encap-
sulating a distribution function, this formalism is quite versatile. First, we do not need to
switch node type to answer queries from different classes. It would suffice to evaluate the
encoded distribution accordingly: e.g., evaluating a pointwise density for EVI as in Exam-
ple 4, marginalizing it over some interval for MAR, or returning its mode to answer MAP
queries. Second, we can plug any out-of-the-box probability distribution as long as it is a
tractable representation for the query class at hand. Moreover, note that we are not lim-
ited to normalized distributions, we just need the function encoded into a input unit to be
non-negative and assume it to be tractable for MAR to readily obtain its partition function.

Among the distributions with large tractable bands that can readily be represented by a
single distribution unit are the most commonly used univariate distributions, e.g., Bernoulli,
Categorical, Gaussian, Poisson, Gamma, and other exponential families. Computing EVI,
MAR and MAP queries for them can be done analytically by design.4 Distribution units
are not limited to univariate distributions, however, as many of the above families retain
tractability when extended to the multivariate case. Consider for instance the omnipresent
multivariate Gaussian distribution over RVs X. It still retains tractable conditioning and
marginalization in time cubic in |X| and constant-time maximization by design (the mean
is the mode).

As we can assume to always be able to encode simple distributions in single units this
way, distribution units constitute the base case of our recursive scheme to build PCs. The
other two units we introduce next provide the inductive step by allowing to compose more
and more complex PCs together.

4. When dealing with generalized MAR queries as in Definition 11 we will need to access the corresponding
cumulative distribution function (CDF) for these distributions. Sometimes this might not be computable
in closed form, as for Gaussians, however efficient accurate approximations will be available.
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3.1.2 Product Units: Independent Factorizations

Perhaps the simplest way to decompose a joint distribution into smaller ones is to have it
factorize; that is, to treat each smaller distribution to be independent from the others.

Definition 3 (Factorized models) Consider the probabilistic model m encoding a joint
probability distribution over a collection of RVs X =

⋃k
i=1 Xi partitioned into disjoint sets

Xi ∩Xj = ∅ for any i 6= j in 1, . . . , k where k > 1. Model m is a factorized model iff

pm(X) =
k∏
i=1

pmi(Xi)

where each pmi is a distribution over the subset of RVs Xi.

Having a joint distribution decomposing into smaller factors is the backbone assump-
tion made by classical PGMs, where the way in which the joint factorizes is dictated by the
dependency structure among the RVs, encoded in a graph formalism (Koller and Friedman,
2009). Among these, the simplest class of factorized models comprises fully-factorized dis-
tributions, where all RVs in the graph are disconnected; i.e., the joint distribution factorizes
into univariate marginal distributions.

Example 5 (Fully factorized distributions) Consider a multivariate Gaussian N (µ,Σ)
over RVs X1, X2, X3 with mean µ = (µ1, µ2, µ3) and diagonal covariance matrix Σ =
diag(σ1, σ2, σ3), whose graphical model is shown on the left.

X1

X2 X3

p(X1, X2, X3) = p(X1) · p(X2) · p(X3) =

= N (µ1, σ1) · N (µ2, σ2) · N (µ3, σ3)

Then its joint density p(X1, X2, X3) can be fully factorized as shown above on the right.

To represent a fully-factorized model as a computational graph we just need to introduce
a computational unit that performs a product over some input distribution units.

Example 6 (Factorizations as product units) Consider the factorized multivariate Gaus-
sian shown in Example 5. Then the computational graph below on the left encodes its joint
distribution. It comprises three input units, each modeling a univariate Gaussian N (µi, σi)
over RV Xi for i = 1, 2, 3, that feed a product unit.

X1

X2

X3

×

0.87

0.25

0.68

0.1

−0.1

−2.2

× 0.147
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To evaluate an EVI query p(x1, x2, x3) (in blue), the output of the product unit is obtained
by multiplying the outputs of the input units (in orange), p(Xi = xi) when evaluated for a
certain complete state x = {x1, x2, x3}. An example of the computations flowing through
the graph is shown above on the right for µ = {0, 1,−2} and Σ = diag(0.2, 0.5, 0.3) and for
the state x = {0.1,−0.1,−2.2}.

Factorizations as product units will be pivotal in several tractable inference scenarios
in the following sections, as they suggest a divite-et-impera strategy to perform inference:
“breaking down” complex inference problems into a collection of smaller ones. However, in
order to represent a factorized, but not fully-factorized, model—hence a potentially more
expressive model—we need product units to receive inputs not only from distribution units,
but also from a different kind of unit: sums. Sum units will in fact help model correlations
between factors.

3.1.3 Sum Units: Mixture Models

The idea to combine multiple simple distributions into a single model with increased ex-
pressiveness is at the core of mixture models (McLachlan and Peel, 2004). Here we focus
on finite mixture models5 with positive weights6 defined as follows.

Definition 4 (Mixture models) Let {pmi}ki=1 a finite collection of probabilistic models,
each defined over the same collection of RVs X. A mixture model is the probabilistic model
defined as the convex combination

pm(X) =

k∑
i=1

θipmi (X)

for a set of positive weights (called the mixture parameters) θi > 0, i = 1, . . . , k and∑k
i=1 θi = 1.

For continuous RVs, it is very well known that a sufficiently large Gaussian mixture
model (GMM) can approximate any continuous PDF arbitrarily well (Kostantinos, 2000).

Example 7 (Gaussian mixture models) Consider the mixture model (orange) of two
univariate Gaussians N (µ1 = −2, σ1 = 2) and N (µ2 = 2, σ2 = 1.5) (blue, dashed) as
depicted on the left.

5. Mixture models, especially in the Gaussian case, have been investigated by considering an infinite but
countable (Rasmussen, 2000) or uncountable (MacKay, 1995) number of components. The latter case has
been recently popularized by deep generative models with continuous latent variables such as variational
autoencoders (Kingma and Welling, 2013).

6. Mixtures with positive weights are also called monotonic and constitute the norm. While more exotic,
non-monotonic mixture models that guarantee densities that are always positive, can offer an exponential
saving in the number of components needed to represent a target distribution (Valiant, 1979b). That is,
non-monotonic mixtures are more expressive efficient than monotonic ones.

13
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p(
X

1)

p(X1) = θ1p1(X1) + θ2p2(X1) =

= θ1N (µ1, σ1) + θ2N (µ2, σ2)

Then its joint density p(X1) can be expressed as the weighted sum on the right for the two
positive real weights θ1 = 0.8 and θ2 = 0.2. Note that the mixture density is more expressive
than its components. In fact it captures two modes, something that is not possible doing
with the two univariate Gaussian components taken singularly.

The fact that even a mixture model over components encoding fully-factorized models
can capture non fully-factorized distributions comes from the fact that every mixture im-
plicitly encodes a categorical latent variable (LV) This LV acts as a selector over mixture
components and as such it is responsible for introducing correlations among the component
distributions. In fact, the weights in a mixture density can be interpreted as the prior
probabilities of setting such an LV to a value indicating a component, and the component
distributions as conditional distributions when conditioning happens on the selected value.

Example 8 (Latent variable interpretation of mixture) Consider the mixture model
of the two Gaussians in Example 7. Then, it marginalizes out an implicit categorical LV Z
having values in 1, 2 and its mixture density can be re-written as on the right.

−10 −5 0 5 10
X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1) p(X1) = θ1p1(X1) + θ2p2(X1) =

= p(Z = 1)p(X1 | Z = 1)+

p(Z = 2)p(X1 | Z = 2)

Each mixture component as selected by its corresponding LV index is shown above on the
left in a different color (purple or grey).

The distribution of a mixture model can be easily represented as computational graphs
by introducing a sum unit that computes the weighted average of the inputs it receives.
As weights denote mixture components, we graphically represent them as attached to the
edges connecting the sum unit to its inputs.

Example 9 (Mixtures as sum units) Consider the mixture of two Gaussians from Ex-
ample 7. The computational graph below (left), comprising an input distribution unit for
each univariate Gaussian component connected to a sum unit via edges weighted by the
mixture weights, represents the mixture density of Example 7.
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To evaluate an EVI query p(x1) (in blue), the output of the sum unit is obtained by
summing the outputs of the input units (in orange) pi(X1 = xi) weighted by wi for i = 1, 2
when evaluated for a certain complete state x = {x1}. An example of the computations
flowing through the graph is shown above on the right for the input state x1 = 1.

3.2 Probabilistic Circuits: Structure and Parameters

Now that all the building blocks are introduced, we are ready to rigorously define the syntax
of PCs as a whole, and introduce the terminology we will use throughout the paper. To
begin, it is convenient to distinguish between the structure of a PC and its parameterization,
as for classical PGMs.

Definition 5 (Probabilistic circuits (PCs)) A probabilistic circuit (PC) C over RVs X,
is a pair (G,θ), where G is a computational graph, also called the circuit structure that
is parameterized by θ, also called the circuit parameters, as defined next. The PC C
computes a function that characterizes a (possibly unnormalized) distrbution p(X).

Definition 6 (PC structure) Let C = (G,θ) be a PC over RVs X. G is a computational
graph in the form of rooted DAG, comprising computational units, also called nodes. The
standard evaluation ordering of G, also called feedforward order, is defined as follows.7 If
there is an edge n → o from unit n ∈ G to unit o ∈ G, we say n the input of o and o
its output. Let in(n) denote the set of all input units for unit n ∈ G and equivalently,
out(n) denotes the set of its outputs. The input units of C are all units n ∈ G for which
in(n) = ∅. Analogously, the output unit8 of C, also called its root, is the unit n ∈ G for
which out(n) = ∅. The structure G comprises three kinds of computational units: input
distribution units, product units and sum units, to which a scope is associated as formalized
in the following definitions.

7. The feedforward ordering in the above definition corresponds to the “bottom-up” ordering of several
alternative representations of circuits such as arithmetic circuits, sum-product networks and probabilistic
sentential decision diagrams (cf. Section 11) There, the natural ordering is assumed to be that of a
parent-child relationship, as borrowed from Bayesian networks nomenclature (Koller and Friedman,
2009; Darwiche, 2009). That is, for two units n and c in G, if n is a parent of c and c its child node,
then n is the output unit of c and c the input of n. Similarly, their “top-down” ordering corresponds to
a backward evaluation in our presentation.

Note that we adopt the dual-terminology of units-nodes, inputs-leaves and output-root for “back-
ward compatibility” with large portion of the previous literature. Furthermore, when plotting PCs as
computational graphs, e.g., in Example 6, we do not graphically show the direction of the arrows con-
necting inputs to the product to avoid clutter and overcome this ambiguity. Generally, we order inputs
before outputs, or equivalently children before parents, from left to right or from bottom to top. This is
a graphical convention we will adopt in all graphics in this paper.

8. The structure of a PC C can be generalized to have multiple output units, in which case C encodes
multiple functions sharing some computations as encoded in the computational graph they have in
common (Vergari et al., 2019a; Peharz et al., 2019).
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Definition 7 (PC structure: scope) Let C = (G,θ) be a PC over RVs X. The compu-
tational graph G is equipped with a scope function φ which associates to each unit n ∈ G a
subset of X, i.e., φ(n) ⊆ X. For each non-input unit n ∈ G, φ(n) = ∪c∈in(n)φ(c). The scope
of the root of C is X.

Definition 8 (PC structure: computational units) Let C = (G,θ) be a PC over RVs
X. Each unit n ∈ G encodes a non-negative function Cn over its scope: Cn : val(φ(n))→ R+.
An input unit n in C encodes a non-negative function that has a support supp(Cn) and is
parameterized by θn.9 A product unit n defines the product Cn(X) =

∏
c∈in(n) Cc(X). A

sum unit n defines the weighted sum Cn(X) =
∑

c∈in(n) θn,cCc(X) parameterized by weights

θn,c ≥ 0.10

Definition 9 (PC parameters) The set of parameters of a PC C is θ = θS ∪ θL where
θS is the set of all sum weights θn,c and θL is the set of parameters of all input units in C.

We ground the concepts introduced in the above definitions using the following example.

Example 10 (Probabilistic circuits) Consider the PC CA over continuous RVs X =
{X1, X2, X3, X4} whose structure G is shown below. Its input distribution units encode uni-
variate Gaussians, two distributions per RV, and are labeled by the RV in their scope (on
the left of each unit). This induces a labeling for all inner units. It is easy to verify that
the scope of the red sum unit is {X1, X2} and that the scope of the blue product unit is
{X1, X2, X3}. Sum weights are not shown to avoid clutter. Hence, its parameter set θA
comprises the Gaussian unit parameters θL = {(µji , σ

j
i )}i=1,...4,j=1,2 where j denotes one of

the two Gaussians, and sum weights θS = {θsc}s=1,...,9,c=1,2 where s indicates one of the nine
sum units in CA and c denotes one of its two inputs. The feedforward ordering is realized
by presenting input nodes before outputs, and the circuit’s output, the root, is the rightmost
sum unit in orange (whose scope is X).

X1

X1

X2

X2

×

×

X3

X3

×

×

X4

X4

×

×

9. Here we assume that supp(Cn) is the inherent support for a distribution unit n; i.e., it does not change
for arbitrary choices of parameters θn. The need for this distinction in structure versus parameterization
of a PC will be evident in section 6.

10. The assumption of having normalized weights, i.e.,
∑
c θn,c = 1, delivers the classical intuition on mixture

models defining normalized distributions. However, it is not needed because for PCs supporting MAR
inference we can always normalize the encoded distribution by locally re-normalizing weights (cf. Sec-
tion 4).
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Consider now another PC CB which has the same DAG as computational graph as CA
and parameters θB = θA but is labeled by a different scope function as shown below.

X1

X2

X3

X2

×

×

X1

X4

×

×

X3

X4

×

×

The different units in CA and CB that are highlighted by the same color share however the
same scope. Even if CA and CB have the same set of parameters and DAG structure, it is
easy to see that they encode two different functions. Section 4 discusses how this difference
makes CA amenable to tractable inference while CB is not.

3.3 Tractable Circuits for Complete Evidence Queries

Before moving to more challenging query classes in the next sections, we consider here the
task of evaluate a joint PMF, PDF or mixed mass-density functions as encoded by a PC
w.r.t. a complete state. Queries of this kind fall under the class of complete evidence EVI
queries, as introduced in Definition 1. Note that in the EVI query class we explicitly refer
to normalized distributions. We hence assume here that the PCs encode functions that are
normalized, postponing to the next section a discussion on how and when we can normalize
them if they are not.

Definitions 5-8 yield the semantics of probabilistic circuits as recursive grammars to
compose tractable probabilistic models. Indeed, Let Cn be the sub-circuit rooted at unit n
in a PC C, that is the computational graph having n as its output and as units all the units
that recursively provide inputs to units in it. Cn is also a PC, i.e., a computational graph
encoding a function over φ(n), and parameterized by θn. This aspect can be captured by
the following recursive definition:

Definition 10 (Recursive definition of PCs) A PC C over RVs X is one of the follow-
ing:

I) a tractable distribution over X encoded as a distribution unit,

II) a product of PCs over subsets of X: C(x) =
∏
i Ci(x), or

III) a positive weighted sum of PCs over subsets of X: C(x) =
∑

iwiCi(x), with wi > 0.

Hence, Definition 10 offers a natural way to answer an EVI query, by following the recursive
evaluation of the function encoded in the PC. This also guarantees a polynomial number of
computations if intermediate computations are cached at each recursive call.
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Algorithm 1 EVIQuery(C,x)

Input: a PC C = (G,θ) over RVs X and a complete state x ∈ val(X)
Output: C(x) := p(X = x)

1: N← FeedforwardOrder(G) . Order units, inputs before outputs
2: for each n ∈ N do
3: if n is a sum unit then rn ←

∑
c∈in(n) θn,crc

4: else if n is a product unit then rn ←
∏
c∈in(n) rc

5: else if n is an input distribution unit then rn ← Cn(xφ(n))

6: return rn . the value of the output of C

The iterative version to answer an EVI query p(x) for a PC C over RVs X is summarized
in Algorithm 1. After topologically ordering the DAG of C in a feedforward way, i.e., input
before output units, each unit n stores its computation in a local register rn. The output
p(x) can be read from the register of the circuit output, the last unit in the ordering, i.e., its
root. Examples 4, 6 and 9 in Section 3.1 provided a flavor of such a feedforward evaluation
for each computational unit. The following example glues them in a larger circuit.

Example 11 (EVI query computations) Consider the PC CA as shown in Example 10
when the univariate Gaussian units encode the following distributions, ordered from top to
bottom, N (µ1

1 = −1.0, σ1
1 = 2.0) and N (µ2

1 = −2.0, σ2
1 = 0.1) for X1, N (µ1

2 = 0.6, σ1
2 = 0.1)

and N (µ2
2 = 0.0, σ2

2 = 1.0) for X2, N (µ1
3 = −1.5, σ1

3 = 0.2) and N (µ2
3 = −1.0, σ2

3 = 0.5)
for X3 and N (µ1

4 = 0.0, σ1
4 = 1.0) and N (µ2

4 = 0.0, σ2
4 = 0.1) for X4. The sum weights are

reported on the corresponding edges in the picture below.
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Then, how to evaluate the EVI query p(x) for x = (−1.85, 0.5,−1.3, 0.2), according to Algo-
rithm 1, is shown above where intermediate computations as saved in each unit’s register,
are shown in the orange circles.

3.4 Beyond Simple PCs

The basic definition for PCs we provided in this section are enough to build a framework that
can unify several tractable probabilistic representations, as we will show in the following
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sections. In the circuit literature, this basic framework has been extended in a number
of interesting ways. We now provide a collection of pointers to these extensions for those
readers who are interested in going in depth with, and beyond, PCs. 11

Non-probabilistic circuits, still represented as computational graphs involving sums and
products go under the name of arithmetic circuits in computational complexity theory and
provide one of simplest and most elegant formalism to reason about the expressive efficiency
of model classes and algorithmic complexity (Shpilka and Yehudayoff, 2010).

In the following sections, many of the theoretical results we provide have their roots
in analogous results for arithmetic circuits or simpler Boolean circuits, encoding logical
formulas. We discuss in depth the strong (and causal!) connection between PCs and prob-
abilistic reasoning over logical formulas encoded as circuits, via weighted model counting
(WMC) (Darwiche and Marquis, 2002) in Section 12.2. Inspired by this link, extensions to
first-order logical representations have been investigated both for WMC-circuits (cf. Van den
Broeck (2013) for a survey) and for PCs (Webb and Domingos, 2013) for which learning rou-
tines have also been developed (Nath and Domingos, 2014; Niepert and Domingos, 2015).
Further generalizations and connections to tractable circuits to semirings not involving sum
and product operations are discussed in Section 12.1.

Inspired by results from complexity circuits, alternative computational graph structures
for PCs have been explored in order to increase their expressive efficiency. These include
PCs with computational units performing quotients (Sharir and Shashua, 2018) and with
sum units with possibly negative weights (Dennis, 2016) in order to realize non-monotonic,
but still positive, mixtures (Valiant, 1979b).

Our definitions for the structure and parameters of PCs can be generalized in a number
of ways. First, the scope function as introduced in Definition 7 is decoupled from the
computational graph of a PC. As such, it can be treated as an additional parameter that
can be learned from data independently Trapp et al. (2019), while the computational graph
becomes a template for a set of PCs

Second, parameters in a PC could be treated as first-class RVs, where providing a prior
distribution over them (e.g., a Dirichlet over the sum weights or a NIG over the parameters
of a Gaussian input unit) would yield a Bayesian interpretation of circuits. While appealing
from the perspective of robustly modeling uncertainty, inference in Bayesian PCs is gener-
ally intractable. Nevertheless, efficient approximations can be carried out by exploiting the
tractable inference of PCs as sub-routines for sampling (Vergari et al., 2019b; Trapp et al.,
2019) or approximations via variational (Zhao et al., 2016a) or moment-matching (Rashwan
et al., 2016; Jaini et al., 2016) optimization. This Bayesian treatment allows to generalize
sum units to mixtures with an infinite but countable number of components (Trapp et al.,
2019). An analogous take on modeling higher-order uncertainty in PCs comes from the
perspective of imprecise probabilities (Walley, 1991): scalar sum weights in PCs can be
generalized into interval representations yielding a circuit that encodes not a single distri-
bution but a credal set of distributions (Mauá et al., 2017; Antonucci et al., 2019).

Lastly, input units can be extended beyond simple tractable probability distributions.
While several kinds of different parametric (Jaini et al., 2016; Molina et al., 2017; Den-

11. Navigating this body of literature might be easier and more fruitful for readers after reading section 11,
as each of the works we point to refers to a disparate TPM representation and might adopt a very
different formalism and vocabulary for denoting the concepts we have introduced so far.
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nis, 2016; Vergari et al., 2019b) and non-parametric (Molina et al., 2018; Morettin et al.,
2020) distributions have been adopted as input units, more recent works focused on in-
tractable models like variational autoencoders (Tan and Peharz, 2019), or classifiers and
regressors (Trapp et al., 2020; Khosravi et al., 2020).

4. Tractable Circuits for Marginal Queries

In this section, we extend the PC framework to tractably answer an important class of
queries, marginals. We first formally define the MAR query class in Section 4.1, and later in
Section 4.2 we provide a precise characterization of the model class of PCs that are tractable
representations for the class via some structural properties over their computational graphs:
smoothness and decomposability. Furthermore, in Section 4.3 we show how these properties
enable tractable computations of different query classes that share the same computational
challenges of the MAR class, such as conditional queries and computing the moments of
a distribution. Finally, section 4.4 collects pointers to further readings about representing
and learning smooth and decomposable PCs and related tractable formalisms.

4.1 The MAR and CON Query Classes

Marginal queries are of paramount importance when we want to reason about states of the
world where not all RVs are fully observed. This might happen because we do not have
access to their values, as in the case of missing values in a patient record, or because we do
not care about specific values for them, as in our traffic jam scenario (cf. Section 2.2).

Example 12 (Marginal query) Consider the probability distribution pm defined over the
RVs X as in the traffic jam scenario in Example 1. Then question q1 can be answered by
the MAR query as defined in Equation 1 by computing

pm(W = Rain, JWestwood = 1) =

∫ 24

t=0

∑
j

pm(W = Rain,T = t, JWestwood = 1, J = j) dT.

where J indicates all the jam binary RVs with the exception of JWestwood and j is a state for
them.

As this example suggests, the key difference of marginal queries from complete evidence
ones is that they admit partial states as evidence. As this effectively amounts to computing
integrals and summations over complete evidence probabilities, we can define a more general
class of marginal queries where these operations12 are taken over subsets of the RV domains.

Definition 11 (MAR query class) Let p(X) be a joint distribution over RVs X. The
class MAR of marginal queries over p is the set of functions that compute:

p(E = e,Z ∈ I) =

∫
I
p(z, e) dZ (2)

12. For the sake of simplicity, from here on, we will adopt the more general integral symbol to subsume both
multi-dimensional finite integrals for continuous RVs and nested summations for discrete ones.
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where e ∈ val(E) is a partial state for any subset of RVs E ⊆ X, and Z = X \E is the set
of k RVs to be integrated over intervals I = I1 × · · · × Ik each of which is defined over the
domain of its corresponding RV in Z: Ii ⊆ val(Zi) for i = 1, . . . , k.

Note that the integration is over a Cartesian product of intervals (i.e., a hypercube). There-
fore, computing a marginal query involves integrating out k variables from the complete
evidence computation, i.e., solving a k-dimensional integral of the form:∫

I1

∫
I2
· · ·
∫
Ik
p(z1, z2, . . . , zk, e) dZk · · · dZ2 dZ1.

When RVs Z are marginalized over their whole domains, i.e., Ii = val(Zi), we retrieve the
classical definition of marginal queries (Darwiche, 2009; Koller and Friedman, 2009), denoted
by the shorthand p(E = e). Furthermore, the general query class MAR also includes queries
on the joint cumulative distribution function (CDF) of a distribution p when integration is
performed over open intervals for all RVs. Lastly, it naturally follows that EVI ⊂ MAR.

A query class that shares the same computational challenges of MAR is that of condi-
tional queries (CON), i.e., queries that compute the probability of a partial state conditioned
on another event also given as partial state.

Example 13 (Conditional query) Consider the probability distribution pm defined over
the RVs X as in the traffic jam scenario in Example 1. Then the question “What is the
probability that there will be a traffic jam only on Westwood Blvd. at 12 o’clock?” can be
answered by the following CON query:

pm(JWestwood = 1, J1 = 0, . . . , Jk−1 = 0 | T = 12.0)

where J1, . . . , Jk−1 are the traffic indicator for all streets with the exception of Westwood
Blvd.

One can easily define the class of conditional queries in terms of the marginal query
class by noting that any conditional query can be rewritten as a ratio of marginal queries.

Definition 12 (CON query class) Let p(X) be a joint distribution over RVs X. The class
of conditional queries CON is the set of queries that compute functions of the form

p(Q = q | E = e,Z ∈ I) =
p(Q = q,E = e,Z ∈ I)

p(Q ∈ val(Q),E = e,Z ∈ I)
=

∫
I p(q, e, z) dZ∫

val(Q)

∫
I p(q, e, z) dZ dQ

(3)

where e ∈ val(E) and q ∈ val(Q) are partial states any subsets of RVs Q,E ⊂ X, and
Z = X \ (E∪Q) is the set of k RVs to be integrated over intervals I = I1×· · ·×Ik each of
which is defined over the domain of its corresponding RV in Z: Ii ⊆ val(Zi) for i = 1, . . . , k.

Next, we define a class of PCs that deliver tractable inference for both MAR and CON.

21



4.2 Smooth and Decomposable PCs

Solving one of the definite multivariate integrals as those needed to answer queries from
MAR or CON is in general a #P-Hard problem (Baldoni et al., 2011) and it is no won-
der that this task is hard for many common probabilistic models such as Bayesian net-
works (Darwiche, 2009), Markov random fields (Koller and Friedman, 2009), variational
autoencoders (Rezende et al., 2014; Kingma and Welling, 2013) and normalizing flows (Pa-
pamakarios et al., 2019). However, restricting the computational graphs of PCs to have cer-
tain structural properties can guarantee a linear time computation for all possible queries
in MAR and CON. By looking at the simplest probabilistic models that can be turned
into PCs, we can understand what these properties are and how the computations can be
generalized to a general algorithmic scheme in PCs.

In the simplest case, answering MAR queries equates to collecting the output of the
single distribution unit that encodes the distribution.

Example 14 (Tractable densities for MAR) Consider an input distribution unit en-
coding a Gaussian density p(X) = N (X;µ = 1, σ = 0.1) as defined in Example 4. Consider
asking it to compute the MAR query p(X < 1.1), the input distribution unit will output
≈ 0.84:

[x,+∞)

X

p(X < x) [1.1,+∞)

X

0.84

or simply 1.0 when queried for its partition function Z; that is, integrating over all R:

val(X)

X

Z R
X

1.0

where the interval for integration is shown as an input connected with a dotted line.

Consider a factorized probabilistic model over the partitioning X = X1 ∪ . . . ∪XD of
the form pm(X) =

∏D
i=1 pmi(Xi) as introduced in Definition 3. Then, the marginalization

integral of Equation 2 can be “broken down” as a product of simpler integrals:∫
I1

pm1(z1, e1) dZ1

∫
I2

pm2(z2, e2)dZ2 · · ·
∫
ID

pmD(zD, eD) dZD. (4)

where the evidence RVs and the marginals are partitioned into the sets E = E1 ∪ . . . ∪ED

and Z = Z1 ∪ . . . ∪ ZD according to the partitioning of X and which also induces the
partitioning over the multivariate interval I1 × . . . × ID. That is, independence among
the factors enables the independent computation of the smaller integrals. Operationally, we
can then solve the sub-integrals of the inputs of a product unit and compose them into a
product in a divide-et-impera fashion.

Example 15 (Marginal queries for factorized models) Consider the factorized mul-
tivariate Gaussian introduced in Example 5 and whose PC representation from Example 6
is shown below on the left. Then the computational graph below on the right illustrates how
to compute the MAR query p(X2 = 0.2, X3 = −1.5) ≈ 0.14 (in blue).
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X1

X2

X3

×

1

.30

.48

R

0.2

−1.5

× 0.14

Lastly, consider a sum unit encoding a mixture model of the form pm(X) =
∑k

i=1 θipi(x)
as introduced in Definition 4. For such model, the integral of Equation 2 simplifies as the
weighted sum of integrals evaluated w.r.t. each mixture component:

k∑
i=1

θi

∫
I
pi(z, e) dZ. (5)

Again, this suggest that the integration of a PC encoding a mixture is deferred to computing
integration for the circuits that are inputs to the sum unit, weighting their results in the
sum output.

Example 16 (Marginal queries for mixture models) Consider the mixture of Gaus-
sians introduced in Example 7, whose PC representation has been introduced in Example 9
and is shown below on the left. Then the computational graph on the right illustrates how
to compute the MAR query p(−2 ≤ X1 ≤ 0) ≈ 0.354 (in blue).

X1

X1

θ1

θ2

.41

.14

[−2, 0]

[−2, 0]
0.354

0.8

0.2

A general scheme to compute MAR queries with PCs can therefore be found by recur-
sively repeating all these steps while evaluating the PC in the usual feedforward way, as the
next Definition specifies.

Definition 13 (MAR query computations) Let C be a PC over RVs X and e ∈ val(E)
a partial state for RVs E ⊆ X and let IZ = IZ1 × · · · × IZk be a multidimensional and
possibly open interval for RVs Z = X \ E. Then, we say that C computes the MAR query
p(E = e,Z ∈ IZ) (cf. Definition 11) if the output of C given e and IZ, denoted C(e;IZ)
is given by evaluating C according to Algorithm 2.

The general evaluation scheme of a PC for MAR queries, therefore differs from the
computation of complete evidence (cf. Algorithm 1) only in the evaluation of the input
distribution units (line 5 of Algorithm 2), where computations of a partial state is restricted
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Algorithm 2 MARQuery(C, e,IZ)

Input: a PC C = (G,θ) over RVs X, a partial state e ∈ val(E) with E ⊂ X and a set of
integration domains IZ for RVs Z = X \E

Output: C(x,IZ) := p(E = e,Z ∈ IZ)
1: N← FeedforwardOrder(G) . Order units, inputs before outputs
2: for each n ∈ N do
3: if n is a sum unit then rn ←

∑
c∈in(n) θn,crc

4: else if n is a product unit then rn ←
∏
c∈in(n) rc

5: else if n is an input distribution unit then rn ← Cn(eφ(n);IZφ(n))
6: return rn . the value of the output of C

to the scope of the input unit, denoted as Cn(eφ(n);IZφ(n)). In essence, it reverts to complete
evidence computations when Zφ(n) = ∅, i.e., the RVs to integrate are outside the scope of
input distribution unit n, or otherwise follows the base case as illustrated in Example 14.
Quite remarkably, certain PCs have the ability of delegating the computation of integrals
to input distributions as just illustrated for any possible MAR query.

Definition 14 A PC C encoding p(X) computes marginals if the partial state compu-
tation C(e;IZ) is equal to the distribution marginal

∫
IZ
p(e, z) dZ for all possible subsets

E ⊆ X and Z = X \E, partial states e ∈ val(E), and intervals I.

Note that a PC that does not compute marginals for a certain distribution p is not neces-
sarily intractable for certain marginal queries—there could be other polytime routines than
Algorithm 2 for those partial state computation. Instead, PCs that do compute marginals
allow every marginal integration to exactly decompose according the PC structure, in a top-
down fashion described in Examples 14–16 such that its feedforward evaluation retrieves
the exact query value. Intuitively, one can think of these PCs as compactly storing in
their computational graphs the set of all computational graphs computing the marginals
for every subset of RVs, partial states and intervals. A question still remains: when is a PC
guaranteed to compute marginals? The answer lies in restricting its computational graph,
enforcing two structural properties: decomposability and smoothness. The next definitions
and examples formally introduce and illustrate the class of decomposable and smooth PCs.

Definition 15 (Decomposability) A product node n is decomposable if the scopes of
its input units do not share variables: φ(ci) ∩ φ(cj) = ∅, ∀ ci, cj ∈ in(n), i 6= j. A PC is
decomposable if all of its product units are decomposable.

Example 17 (Decomposable PCs) Consider the PC CA as defined in Example 10. The
product unit highlighted in blue with scope {X1, X2, X3} is decomposable, as its two inputs
have scopes {X1, X2} and {X3}, respectively. It is easy to verify that all other products in
CA are decomposable as well, and therefore CA classifies as a decomposable PC. Consider
instead the blue product of the circuit CB: it is not decomposable as X2 appears in the scope
of both its inputs. Therefore CB is not a decomposable PC.
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All factorized models employed as simple PC examples are decomposable by design,
as to guarantee probabilistic independence each factor does not share RVs with the others.
However, note that a decomposable PC does not necessarily encode a factorized distribution
over its scope, even if all of its product units are decomposable. This is due to the presence
of sum units which introduce correlations among the distributions encoded by its input
sub-circuits.

Definition 16 (Smoothness) A sum node n is smooth if its inputs all have identical
scopes: φ(c) = φ(n), ∀ c ∈ in(n). A circuit is smooth if all of its sum units are smooth.

Example 18 (Smooth PCs) Consider the PC CA as defined in Example 10. The sum
unit highlighted in red with scope {X1, X2} is smooth, as its two inputs have the same
scope. As all other sum units in CA are smooth, CA is a smooth circuit. On the other hand,
consider instead the red sum in the circuit CB again with scope {X1, X2}; it is not smooth
as its inputs have scopes {X1} and {X2} respectively. Therefore CB is not a smooth circuit.

Commonly, smoothness is implicitly assumed when dealing with valid mixture models,
as was the case for all the GMM examples we used up to now. As a matter of fact, PCs
can be seen as a generalization of classical mixture models, more precisely as hierarchical
mixture models. As we will see later in Section 7, if a PC is decomposable but not smooth
we can smooth it in polytime, i.e., apply a transformation that outputs a smooth PC while
not altering its encoded distribution.

It is evident how decomposability is a sufficient property for tractable computation
of marginals in factorized models: when present, the decomposition of larger integrals is
always allowed over smaller and disjoint scopes (cf. Eq. 4). Equivalently, the safe exchange of
summation and integration over mixture components (cf. Eq. 5) comes from the applicability
of the Fubini Theorem. These properties in a PC, in addition to the assumption that input
distributions allow tractable marginals, are sufficient to guarantee the tractable computation
of any marginal query (Darwiche, 2003; Peharz et al., 2015).

Proposition 17 Let G be a circuit structure that is smooth and decomposable. Then for
any parameterization θ, the probabilistic circuit C = (G,θ) computes marginals.

Moreover, a CON query can be evaluated as a ratio of two MAR queries, as shown in Def-
inition 12. Thus, a circuit that allows tractable marginals also allows tractable conditional
inference by extension.

Corollary 18 Let C be a smooth and decomposable PC over RVs X encoding p(X). Suppose
the input distribution units of C allow tractable marginal inference. Then the CON query
p(Q = q | E = e,Z ∈ I) can be computed in time linear in the size of C for any subsets
Q,E ⊂ X and Z = X \ (E ∪Q), partial states q ∈ val(Q) and e ∈ val(E), and intervals I.

It is less apparent, however, if these properties are also necessary for such computations
to be efficient. As the next theorem shows, a PC needs to be smooth and decomposable to
tractably compute marginals.
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Theorem 19 Let G be a circuit structure such that for any parameterization θ, the proba-
bilistic circuit C = (G,θ) encodes a distribution over RVs X and computes marginals. Then,
G must be decomposable and smooth.

To prove Theorem 19, we first introduce the shallow representation of a probabilistic
circuit, which will prove to be handier to operate on. Any PC C over RVs X can be
“unrolled” into an equivalent PC S of the form

S(x) =
K∑
i=1

θi

Mi∏
j=1

Lij(x).

that is comprising a single sum unit over a (potentially exponential) number of product
units, K, each multiplying Mi input distribution units of C, denoted here as Lij . This shal-
low representation is insightful for understanding the relationships between PCs, mixture
models and polynomial representations, as will be discussed in depth in Section 5.

To turn a deep PC C into its shallow representation S, one can apply the distributive
law of multiplication over addition in the classical algebraic semiring recursively, inputs
before outputs. The construction follows the recursive definition of PCs (cf. Definition 10)
and proceeds as follows. If C is a single input distribution unit, its corresponding S will
comprise a sum unit over a single product unit which is weighted by θ = 1 and fed by
input distribution L := C. Alternatively, if C consists of a sum unit n over R sub-circuits
with weights θ1, . . . , θR, then its shallow representation S will comprise a single sum unit n′

whose inputs are all the product units appearing in the shallow representations S1, . . . ,SR
of its sub-circuits, whose weights are multiplied by θ1, . . . , θR. Instead, if C consists of a
product unit n over R sub-circuits, then its shallow representation is obtained by performing
the cross-product of the shallow representations S1, . . . ,SR of its sub-circuits. That is, each
product unit in S is obtained by multiplying R product units, one from each Si, and is
weighted by the product of their weights.

This above construction highlights that every shallow representation Sn for a sub-circuit
Cn shares its scope and that for every product unit n in C there are several product units in
S built by multiplying n with other units in C. We will call the units in S participating in
this 1-to-many mapping, corresponding products. Moreover, note that the shallow repre-
sentation S is obtained by manipulating the DAG structure of C, and thus the construction
is invariant to how the input distribution unit is evaluated. In particular, for any partial
state and interval, evaluating S and C according to Algorithm 2 return the same values.

We will first prove that a circuit that tractably computes marginals for any param-
eterization must be decomposable. The proof utilizes the following relationship between
decomposability of a PC and that of its shallow representation.

Proposition 20 Let C be a PC over RVs X and S its shallow representation. If S is
decomposable, then C is decomposable.

Proof Suppose C is not decomposable, then there must be at least one product unit n in C
that is not decomposable, i.e., at least two inputs units of n, say c1 and c2, have overlapping
scopes. This can happen for two reasons. First, the sub-circuits Cc1 and Cc2 could share at
least one input distribution unit L. In this case, all product units in S corresponding to n
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must multiply (at least) two copies of L, and thus they cannot be decomposable. Second,
the sub-circuit Cc1 could contain an input distribution unit L1 and Cc2 another unit L2 that
has an overlapping scope with L1. In this case, all product units in S corresponding to n
must multiply (at least once) L1 and L2, hence are not decomposable. In both cases, S will
not be decomposable.

Suppose that C is not decomposable. From Proposition 20, we know that its shallow
representation S is not decomposable either. Moreover, we know that there must exist
a product unit in S that either contains two copies of the same input distribution unit,
or two input units having overlapping scopes. Let Z be one of the shared variables in
such non-decomposable product unit. Consider now an arbitrary MAR query of the form
p(E = e, Z ∈ I) where e is a partial state on E = X \ {Z} and I an integration interval as
defined in Definition 11. Computing such a query by evaluating Algorithm 2 would yield
the following computation:

C(e; I) =

K∑
i=1

θi

Mi∏
j=1

Lij(eφ(Lij); Iφ(Lij))

=
K∑
i=1

θi

 ∏
j:Z 6∈φ(Lij)

Lij(eφ(Lij))

 ∏
j:Z∈φ(Lij)

∫
I
Lij(eφ(Lij), z)dZ

 . (6)

Note that because C is not decomposable, there must exist an i such that multiple input
units include Z in their scope (i.e., Z ∈ φ(Lij)). On the other hand, the MAR query
evaluates to

p(E = e, Z ∈ I) =

∫
I

K∑
i=1

θi

Mi∏
j=1

Lij(e, z)dZ

=
K∑
i=1

θi

 ∏
j:Z 6∈φ(Lij)

Lij(eφ(Lij))

∫
I

∏
j:Z∈φ(Lij)

Lij(eφ(Lij), z)dZ

 . (7)

Equations 6 and 7 are not equal in general for all choice of parameters, and thus Algorithm 2
does not necessarily return the marginal given a non-decomposable PC.

We will now show that a PC that supports tractable marginal computations is not
only decomposable but also smooth. Again, we leverage the following result about shallow
representations.

Proposition 21 Let C be a decomposable PC over RVs X and S its shallow representation.
If S is smooth, then C is smooth.

Proof Suppose C is not smooth. Then there must be at least one sum unit n in C that is not
smooth; i.e., there exists an input c of n such that an RV X ∈ φ(n) does not appear in φ(c).
By the recursive construction of shallow representations, Sc also does not include X in its
scope, and thus such is the case for at least one product unit of Sn. Moreover, the product
units of Sn either appear as is in S or are multiplied with other product units. However,
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because C is decomposable, multiplication with shared scopes never occurs; hence, no other
copy of RV X will be introduced in the scope of product units of Sn while completing the
construction of the shallow representation S. Therefore, there must exist a product unit of
S whose scope does not include X, and S cannot be smooth.

Next, suppose C is decomposable but not smooth. Then from Proposition 21, we know
that its shallow representation S is also not smooth and that there exists a product unit
of S whose scope does not include a variable in X, say Z. Let us again consider a MAR
query p(E = e, Z ∈ I) where e is a partial state on E = X \ {Z} and I is an interval on Z.
Suppose I refers the set of product units of S without Z in their scopes. Moreover, because
C—and by extension S—is decomposable, every product unit of S will have at most one
input distribution unit that depends on Z; w.l.o.g., let us denote such unit j = Mi. Then
the MAR query evaluates to

p(E = e, Z ∈ I) =

∫
I

K∑
i=1

θi

Mi∏
j=1

Lij(e, z)dZ

=
∑
i∈I

θi

Mi∏
j=1

Lij(eφ(Lij))

(∫
I
dZ

)
+
∑
i 6∈I

θi

Mi−1∏
j=1

Lij(eφ(Lij))

(∫
I
LiMi(eφ(LiMi )

, z)dZ

)
. (8)

On the other hand, evaluating Algorithm 2 would return

C(e; I) =

K∑
i=1

θi

Mi∏
j=1

Lij(eφ(Lij); Iφ(Lij))

=
∑
i∈I

θi

Mi∏
j=1

Lij(eφ(Lij)) +
∑
i 6∈I

θi

Mi−1∏
j=1

Lij(eφ(Lij))

(∫
I
LiMi(eφ(LiMi )

, z)dZ

)
. (9)

Equation 8 is not equal to Equation 9 in general. Hence, Algorithm 2 is not guaranteed
to compute the MAR query without smoothness. For instance, if Z is a discrete variable
and I = val(Z), each term for i ∈ I in Equation 9 is missing a factor of

∫
I dZ = |val(Z)|

compared to Equation 8, and thus the output of Algorithm 2 lower bounds the marginal.

Therefore, decomposability and smoothness precisely describe all circuit structures that
allow for marginals under any parameterization.

4.3 Tractable Computation of the Moments of a Distribution

In essence, smoothness and decomposability enable the tractable computation of the MAR
query class by breaking down a large integration problem to smaller and easy-to-compute
integrals. This powerful idea can be exploited to tractably compute other kinds of prob-
abilistic query classes involving multivariate integrals. For instance, this is the case for
computing the mean and the variance of a probability distribution, or more generally, any
of its moments.
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Algorithm 3 MOMQuery(C,k)

Input: a PC C = (G,θ) over D RVs X, degree parameters k ∈ ZD≥0

Output: MC(k)
1: N← FeedforwardOrder(G) . Order units, inputs before outputs
2: for each n ∈ N do
3: if n is a sum unit then rn ←

∑
c∈in(n) θn,crc

4: else if n is a product unit then rn ←
∏
c∈in(n) rc

5: else if n is an input distribution unit then rn ←MCn(kφ(n))

6: return rn . the value of the output of C

Definition 22 (MOM query class) Let p(X) be a joint distribution over RVs X = {X1, . . . , XD}.
The class MOM of moment queries over p is the set of functions that compute:

Mp(k) :=

∫
val(X)

xk11 x
k2
2 . . . xkDD p(x)dX (10)

where k = (k1, . . . , kD) is a vector of non-negative integers.

Example 19 (Moment query) Consider the D-dimensional multivariate Gaussians X ∼
N (µ,Σ), whose joint density is given by p(X). Then the first order moment Mp(k) for
ki = 1, kj = 0, ∀ j 6= i corresponds to the mean of Xi:

Mp(k) =

∫
val(X)

x0
1 . . . x

1
i . . . x

0
Dp(x)dX =

∫
val(X)

xip(x)dX = Ep[Xi] = µi.

Moreover, the second order moment Mp(k) for ki = kj = 1, kl = 0, ∀ l 6= i, j evaluates to:

Mp(k) =

∫
val(X)

x0
1 . . . x

1
i . . . x

1
j . . . x

0
Dp(x)dX =

∫
val(X)

xixjp(x)dX = Ep[XiXj ] = Σi,j+µiµj ,

using the fact that Σi,j, the covariance of Xi and Xj, is equal to Ep[XiXj ]− Ep[Xi]Ep[Xj ].

Evidently, the class of moment queries is closely related to that of marginal queries in
that they both involve multivariate integrals of the distribution. In fact, moment queries
can also be computed via a feedforward evaluation of a smooth and decomposable PC.

Proposition 23 Let C be a PC over RVs X = {X1, . . . , XD} and k = (k1, . . . , kD) be
non-negative integers. If C is smooth and decomposable, then Algorithm 3 given C and k
evaluates to the moment query MC(k).

Therefore, a smooth and decomposable PC can compute moment queries tractably as
long as the input distribution units support tractable computation of given moment query.

We now prove above proposition by induction. As the base case, if C(X) comprises a
single input distribution, then Algorithm 3 simply computes its moment of degree k.
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Next, suppose the root of C(X) is a smooth sum unit, i.e., C(X) =
∑n

i=1 θiCi(X). Then,
we can push the integration in Equation 10 down to the inputs of the sum unit:

MC(k) =

∫
val(X)

xk11 x
k2
2 . . . xkDD

n∑
i=1

θiCi(x)dX

=
n∑
i=1

θi

∫
val(X)

xk11 x
k2
2 . . . xkDD Ci(x)dX =

n∑
i=1

θiMCi(k).

Thus, if Algorithm 3 computes the moment of a sum unit’s inputs, it also computes the
moment of the sum unit.

Lastly, suppose the root of C(X) is a decomposable product unit, i.e., C(X) =
∏n
i=1 Ci(Xi)

for a partitioning of RVs X = X1 ∪ · · · ∪Xn. Then the multivariate integration in Equa-
tion 10 decomposes as the following, similar to the decomposition of MAR queries:

MC(k) =

∫
val(X)

xk11 x
k2
2 . . . xkDD

n∏
i=1

Ci(xi)dX

=

∫
val(X1)

. . .

∫
val(Xn)

xk1
1 . . .xkn

n

n∏
i=1

Ci(xi)dX1 . . . dXn

=

n∏
i=1

∫
val(Xi)

xki
i Ci(xi)dXi =

n∏
i=1

MCi(ki),

where ki is the vector consisting of entries of k that corresponds to RVs in Xi. Therefore,
Algorithm 3 returns the moment query of any unit if it correctly computes the moment of
its input units.

4.4 MAR and Beyond

Here we provide the interested readers additional pointers to relevant literature about the
topics touched in this section. Decomposability and smoothness are the two “barebone”
properties that the many TPMs that can be cast as PCs commonly assume (cf. Table 2 and
Section 11).

In the literature of sum-product networks (SPNs) (Poon and Domingos, 2011), smooth-
ness is called completeness. In their original formulation in Poon and Domingos (2011),
as probabilistic models over binary RVs, SPNs computing tractable MAR are called valid.
Sufficient conditions for validity in the case of binary RVs are smoothness and consistency,
where the latter is a generalization of decomposability. It was later shown by Peharz et al.
(2015) that decomposability and smoothness are in fact sufficient for a circuit with tractable,
but arbitrary, input nodes to tractably compute MAR. However, consistency still plays a
role in characterizing a tractable class of PCs, but for a different query class, MAP, as
we will show later in Section 6. Lastly, smoothness and decomposability are proven to be
sufficient and necessary conditions for a stricter version of validity, called stronger validity
by Martens and Medabalimi (2014). Their results leverage the link between SPNs and (set-
)multilinear polynomials (cf. Section 5) and properties of the latter representation. Our
theoretical result in this section arrives to an analogous, but with a slightly more general
conclusion, by extending it to all parameterization of a general PC.
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If a PC over discrete RVs is decomposable but not smooth, the latter property can be
enforced in polytime with a polynomial increase in its size (Darwiche, 2001b; Shih et al.,
2019). However, for a PC over continuous RVs with unbounded support the above algo-
rithms might yield a PC whose normalizing constant is unbounded.

Learning smooth and decomposable PCs, or variants thereof, from data has been ad-
dressed in a number of ways in the literature. From the interpretation of smooth sum
nodes as mixture models—and hence of PCs as deep mixture models (cf. Section 5)—it
follows that the likelihood function of their parameters is not concave, in general. Prac-
tical parameter learning schemes for smooth and decomposable PCs include expectation-
maximization (Peharz et al., 2016, 2020), variants of (stochastic) gradient descent (Peharz
et al., 2019; Jaini et al., 2018; Sharir et al., 2016), (online) Bayesian moment matching
alternatives (Rashwan et al., 2016; Jaini et al., 2016; Zhao et al., 2016b), (collapsed) vari-
ational optimization routines (Zhao et al., 2016a) or Gibbs sampling schemes for Bayesian
optimization (Vergari et al., 2019b; Trapp et al., 2019). Furthermore, the ability of smooth
and decomposable PCs to efficiently marginalize over any set of features helps devise hybrid
generative-discriminative classifiers (Peharz et al., 2019) and safe semi-supervised learning
schemes to train them (Trapp et al., 2017).

Analogously, the clear probabilistic semantic of smooth sums and decomposable prod-
ucts inspired many structure learning routines that leverage commonly adopted ML ap-
proaches to learn mixtures and (local) factorizations via clustering and independence test-
ing. The first notable approach is by Dennis and Ventura (2012) using k-means to group
RVs in a data matrix. Peharz et al. (2013) take a ”bottom-up” approach to learn PCs
by greedily merging candidate structures via an information-bottleneck criterion. Gens
and Pedro (2013) propose a general high-level scheme called LearnSPN which essentially
performs hierarchical co-clustering over the data matrix, by alternately clustering data
samples—corresponding to sum nodes—and splits on data columns—corresponding to prod-
uct nodes—via independence tests. Since then, there have been several improvements of
the basic LearnSPN scheme, such as regularization by employing multivariate input distri-
butions and ensembles (Vergari et al., 2015; Rooshenas and Lowd, 2014), by performing
an SVD-decomposition (Adel et al., 2015), merging tree-shaped PCs into DAG-shaped
ones (Rahman and Gogate, 2016), learning product nodes via multi-view clustering over
variables (Jaini et al., 2018), and lowering their complexity by approximate independence
testing (Di Mauro et al., 2018). Other variants of LearnSPN include learning PCs with
specific inductive biases in terms of the data likelihood distribution (Molina et al., 2017) or
on heterogeneous data (Molina et al., 2018; Vergari et al., 2019b).

5. The Many Faces of Probabilistic Circuits

We now present several interpretations of PCs that directly stem from their operational
semantics. They will help pose PCs in the broader landscape of probabilistic modeling and
will be useful in the following sections.13

13. Note that, if not stated otherwise, we introduce these interpretations in the context of unconstrained
PCs and as such, they hold also for constrained PCs, as they are proper subclasses of the unconstrained
case. Clearly, the interpretations we provide later for constrained PCs will not be valid for the superclass.
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5.1 PCs are not PGMs.

Even if they are probabilistic models expressed via a graphical formalism, PCs are not
PGMs in the classical sense (Koller and Friedman, 2009). In fact, classical PGMs such as
Bayesian networks and Markov random fields have a clear representational semantics, while
the semantics of PCs is clearly operational. That is, units in the computational graphs of
PCs directly represent how to evaluate the probability distributions they encode, i.e., how
to answer probabilistic queries. On the other hand, nodes in a graph of a PGM denote RVs.
Edges connecting units in PCs define the order of execution of operations in answering
a query, while in PGMs they encode the (conditional) independence assumptions known
between the RVs.

Evaluating a query in PGMs is a task demanded to external algorithms that come in
many flavors (e.g., variable elimination, message-passing, recursive conditioning, etc.) and
whose complexity can vary based on the structural property of the graph they exploit.
Section 11.1 will discuss how several PGMs can be readily cast as computational graphs
in the framework of PCs. The process of translating one graphical representation into the
other, while preserving the underlying probability distribution is called compilation.

5.2 PCs are neural networks.

If PCs do not share the same semantics of PGMs, they do with neural networks (NNs).
In fact, computational graphs in PCs are peculiar NNs where neurons are constrained
to be either input distribution, sum or product units. While sum units output linear
transformations of their inputs as in a common pre-activation function in perceptrons,
product units implement a form of multiplicative interaction (Jayakumar et al., 2019) which
can be found in attention mechanism and many modern gating units (Ha et al., 2016;
Bahdanau et al., 2014).

As such, a PC is a NN containing two forms of non-linearity: the first provided by the
input distribution units warping inputs via their densities or masses, the second by the
product units. It is possible to retrieve the interpretation of a more classical feedforward
perceptron where a non-linear transformation follows a linear transformation (without bias)
by reparameterizing computations in PCs to alternate between the linear and log domain
when considering sum and product units (Vergari et al., 2019a). Computational graphs
of constrained PCs are sparser than NNs. Mapping PCs to tensorized representations for
efficient GPU computations is therefore harder, although recent efforts are closing this
gap (Sharir et al., 2016; Vergari et al., 2019a; Peharz et al., 2019, 2020).

5.3 PCs are polynomials

The adoption of sum and product units as inner neurons in PCs yields the interpretation of
PCs as polynomial multivariate functions whose indeterminates are the density functions
encoded by the input distribution units. We already exploited this interpretation while
constructing bottom-up the shallow representation of a PC in order to prove Theorem 19.
In the following, we provide a more formal characterization in a top-down fashion, by firstly
introducing the notion of an induced sub-circuit.
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Definition 24 (Induced sub-circuit) Let C = (G,θ) be a PC over RVs X. An induced
sub-circuit T built from G is a DAG recursively built as follows. The output n of C is the
output of T . If n is a product unit in C, then every unit c ∈ in(n) and edge c→ n are in T .
If n is a sum unit in C, then exactly one of its input unit c and the corresponding weighted
edge c→ n are in T .

Note that each input distribution unit in a sub-circuit T of a graph G is also a input
unit in G. Furthermore, the DAG G can be represented as the collection {Ti}i of all the
induced sub-circuit one can enumerate by taking different input units at every sum unit in
G. The following example provides some intuition.

Example 20 (Induced sub-circuit) Consider the PC CA over RVs X = {X1, X2, X3, X4}
as shown in Example 10. Two possible induced sub-circuits in it are highlighted in green
and orange below.

X1

X1

X2

X2

×

×

X3

X3

×

×

X4

X4

×

×

It is easy to verify that the number of all distinct sub-circuits in PC CA is 32.

Given this “unrolled” representation of G as a collection of induced sub-circuits, we can
now define the polynomial representation of a PC C.

Definition 25 (Circuit polynomial) Let C = (G,θ) be a PC over RVs X. For a com-
plete state x ∈ val(X), C computes the following polynomial:

C(x) =
∑
Ti∈G

 ∏
θj∈θTi

θj

∏
c∈Ti
Cdcc (x) =

∑
Ti
θTi
∏
c∈Ti
Cdcc (x). (11)

where Ti ∈ G is a sub-circuit tree in the computational graph as previously defined, θTi is
the collection of weights attached to weighted edges in Ti, c ∈ Ti denotes one of its input
unit and dc denotes how many times an input unit is reachable in Ti.

Note that the number of induced sub-circuits, and hence terms in the polynomial rep-
resentation, can be exponential in number of the RVs. While this representation might
seem impractical, circuit polynomials facilitates the design of learning schemes (Zhao et al.,
2016b; Vergari et al., 2019b), help verifying properties and proving statements about PCs
(cf. section 4.2) and provides intuition about the expressiveness of PCs, as discussed next.
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A circuit polynomial is a multilinear polynomial when dc becomes 1 for all possible input
units. Additionally, it becomes set-multilinear (Shpilka and Yehudayoff, 2010) when the sets
of scopes of the input distributions participating in the polynomial terms are disjoint, i.e.,
when the circuit is decomposable (Martens and Medabalimi, 2014). Note that in such a case
the induced sub-circuit is a tree (and sometimes called induced tree (Zhao et al., 2015)).

5.4 PCs are hierarchical mixture models

As discussed in Section 3.2, a smooth14 sum unit in a PC encodes a mixture model whose
components are the distributions represented by its input sub-circuits. Moreover, as Ex-
ample 8 suggests, one can interpret a smooth PC as marginalizing out a categorical LV
associated to each of its sum units. As a result, PCs are hierarchical latent variable models,
and more precisely deep mixture models. In the following we discuss the LV semantics of
PCs and what it entails.

First, note that a circuit polynomial representation (cf. Definition 25) highlights how
the hierarchy over the discrete LVs in a PC can be collapsed into a single LV, corresponding
to the single sum unit in the PC shallow representation.The number of states that this
single LV could assume will correspond to the number of the induced sub-circuits of the PC
considered. In other words, a deep circuit compactly encodes a mixture with an exponential
number of components. This notion of compactness, or expressive efficiency, will be
rigorously formalized as function of model size in Section 7. Consequently, each finite and
shallow mixture model can be turned into a smooth and shallow PC (if each component
represents a tractable distribution). It is an open question under which conditions a shallow
mixture model can also be turned into a compact, deep (decomposable) PC in polytime.

The above duality of shallow and deep PCs translates into different ways of graphically
representing the dependencies among the associated LVs, i.e., retrieving an i-map structure
for the LV hierarchy (Koller and Friedman, 2009). Spanning from the induced-tree rep-
resentation of a PC, Zhao et al. (2015) translates the dependency structure of a PC into
a Bayesian network that is a bipartite graph, where LVs and observed RVs form the two
sets of nodes. From this perspective, there are no edges connecting the LVs, and these are
conditionally independent one from another given the observed RVs. Alternatively, Peharz
et al. (2016) build a DAG whose leaves are the observed RVs and each LV is a node de-
pending on all the other LVs that are associated to sum units that follow it in a feedforward
topological order. Retrieving a finer-grain dependency structure has been discussed in Butz
et al. (2020), where under certain assumptions concerning the PC being compiled from a
PGM (Darwiche and Marquis, 2002), it is possible to identify the original PGM structure
(with the LVs made explicit) in a process called decompilation.

Example 21 (PCs as hierarchical LV models) Consider the smooth and decomposable
PC C over RVs X = {X1, X2, X3} as depicted below on the left, whose sum units are la-
beled as s1, . . . , s5. Then, the corresponding LVs Z1, . . . .Z5 can be explicitly represented in
the bipartite Bayesian network in the center (Zhao et al., 2015) or in a DAG on the right

14. Here we assume smoothness because mixture models are classically combinations of homogeneous dis-
tributions, i.e., distributions over the same collection of RVs. While smoothness can easily be enforced
in a decomposable PC over discrete RVs (Darwiche, 2001b; Shih et al., 2019), the same may not be true
for continuous or non-decomposable PCs.
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where there is an edge between two LVs if there is an output-input relationship between the
corresponding sum units in the computational graph of C.

The interpretation of PCs as deep LV models suggests that the model likelihood of a PC
is non-convex. Therefore, circuit parameters are often learned via expectation-maximization
(EM) schemes (Dempster et al., 1977). Furthermore, explicitly representing the LVs that
a smooth and decomposable PC marginalizes out opens the way to exploit these circuits
as feature extractors for representation learning (Vergari et al., 2018, 2019a). In these sce-
narios, a useful theoretical tool to operate on is the augmented circuit A (Peharz et al.,
2016) associated to a smooth and decomposable PC C. An augmented PC materializes
the computation involving the LVs Z of its base PC into some additional units in its com-
putational graph. In other words, it encodes the joint distribution p(X,Z) and allows to
perform probabilistic inference on it with the usual PC inference routines. In a nutshell,
augmenting a PC C over RVs X into A is a two-step procedure that requires i) making
LVs Z explicit by introducing a collection of k indicator input distribution units for each
Zn ∈ Z associated to a sum unit n in C and having val(Zn) = k, ii) while properly connect-
ing them to “switch” on and off the inputs of n and finally iii) smoothing the augmented
circuit (Darwiche, 2001b; Shih et al., 2019), i.e., making sure each sum node in it is smooth
w.r.t. the newly introduced Z.

Example 22 (Augmented computational graph of a PC) Consider the fragment of
the computational graph of one PC C as depicted on the left, the circuit A on the right
shows C augmented w.r.t. its sum unit n. To augment a sum node n, first the categor-
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ical LV Zn with val(Zn) = {zn1, zn2, zn3} is made explicit by introducing indicator units
{JZn = zniK}3i=1. These indicators are multiplied to the inputs of n by the introduction of
auxiliary product units pi. To ensure smoothness of A, sum units that receive input from
n or from one of its outputs must be smooth w.r.t. Zn. If that is not the case, like for the
sum unit m in the figure, an additional sum unit n̄, also called the twin sum Peharz et al.
(2016) is introduced to collect the output of the indicator units and is linked as one input
to the non-smooth branch of the m.

For a smooth and decomposable PC C over X, its augmented computational graph for the
augmented joint distribution pA(X,Z) is not only smooth and decomposable, but also sat-
isfies another property called determinism, which we will discuss in Section 6. Furthermore,
if the input distributions of C were exponential families, then the augmented joint distri-
bution pA(X,Z) would be an exponential family as well.15 In such a case, optimizing the
parameters of C via EM is equivalent to follow the natural gradient induced by the Fisher
information metric of the underlying density Sato (1999).

5.5 Syntactic Transformations

As a PC encodes a function that characterizes a probability distribution in a computational
graph, a transformation w.r.t. that distribution, e.g., setting evidence or marginalization
as discussed in section 2.1, will also induce a transformation of the computational graph
of the PC. We will review these transformations over computational graphs in Section 5.6.
Conversely, one could transform the computational graph of a PC but without altering the
distribution function encoded in it. We call this kind of operations syntactical transforma-
tions, some of which we will review below. We say a PC is in its canonical form if any
application of the following syntactical transformation does not change the computational
graph structure.

First, we can easily make input distributions unique: if two distinct input distribution
units of a PC encode the same function, we can remove one and add its outputs to the set
of output units of the remaining unit.

Second, we can transform a PC to have alternating sum and product units without
changing its distribution; i.e., sum units are fed inputs only by product units or input
distribution units and vice versa. To achieve this ordering, one has to iteratively collapse
adjacent units of the same type until no such units are left. Consider two computational
units n and i in a PC C where both n and i are of the same kind (e.g., two sum units),
and i feeds n as well as other units c1, . . . , cP of the opposite type (e.g., , products). First,
we can copy i and disconnect this copy from n (it will still feed c1, . . . , cP ). Then, i can be
collapsed into n by redirecting all of its input units as inputs of n, thereby preserving the
distribution represented by C.

Lastly, sum weights of a PC in canonical form is assumed to be non-zero, as we can
always efficiently prune zero weights. That is, we can simply remove all edges with zero
weight and iteratively, outputs before inputs, remove units whose set of outputs is empty.

15. Note that this is not true for pC(X), in the same way that a mixture of exponential families is not an
exponential family distribution.
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Note that above syntactic transformations can be performed in time polynomial in the
size of the circuit. As such, in the following sections, we will assume a PC to be in its
canonical form unless specified otherwise.

5.6 Distribution Transformations

In progress.

5.7 Beyond Basic Representations

In progress.

6. Tractable Circuits for MAP Queries

This section introduces another family of tractable PCs, namely those that can tractably
answer MAP queries. We first formally define the class of MAP queries in Section 6.1, and
in Section 6.2 characterize the family of PCs that are tractable for MAP in terms of the
structural properties of their computational graphs—namely, determinism and consistency.

6.1 The MAP Query Class

As mentioned briefly in previous sections, MAP queries relate to the mode of a distribution,
as in the following example.

Example 23 Consider the probability distribution pm defined over the RVs X as in the
traffic jam example. Then the question “Which combination of roads is most likely to be
jammed on Monday at 9:30am?” can be answered by the following MAP query:16

arg max
j

pm(J = j,D = Mon,T = 9.5)

That is, we want to compute the mode of the distribution among states that agree with the
partial state D = Mon,T = 9.5.

Definition 26 (MAP query class) Let p(X) be a joint distribution over RVs X. The
class of maximum a posteriori queries (MAP) is the set of queries that compute:

arg max
q∈val(Q)

p(q | e) = arg max
q∈val(Q)

p(q, e) (12)

where e ∈ val(E), q ∈ val(Q) are partial states for an arbitrary partitioning of the RVs X;
i.e., Q ∪E = X and Q ∩E = ∅.

Note that the right-hand side of Equation 12 follows from the fact that maximization is
not affected by the normalization constant p(e). Sometimes one might be interested not

16. In the Bayesian networks literature, MAP queries are often referred to as most probable explanation
(MPE) queries (Darwiche, 2009) and MAP refers to marginal MAP queries (Koller and Friedman, 2009),
where one performs maximization on some subset of Q, marginalizing over the remaining variables (Koller
and Friedman, 2009).
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only in the mode value of the distribution but also in its associated probability or density.
To categorize these queries we can introduce a class in which the arg max operation is
replaced by a simple maximization.17 In fact, to categorize PCs that support tractable
MAP inference, we will ask whether they can compute the joint MAP probability, i.e.,
maxq p(q, e). As we will show later, we can also obtain the MAP state using only a single
additional pass through such PC.

6.2 Determinism and Consistency

It is well-known that answering a MAP query is in general NP-hard (Shimony, 1994),
including for many probabilistic graphical models. Nevertheless, analogous to tractable
MAR inference using PCs, enforcing certain structural properties allow us to answer MAP
queries in linear time in the size of the circuit. Again, we first study the simplest forms of
probabilistic circuits to understand the necessary properties.

For distribution units—the smallest type of PCs—answering MAP queries is as simple
as outputting the maximum value or the mode of the encoded distribution.

Example 24 (Tractable densities for MAP) Consider an input distribution unit en-
coding a Gaussian density p(X) = N (X;µ = 1, σ = 0.1) as defined in Example 4. Consider
asking it to compute the MAR query maxx p(x); the distribution unit will output the density
at its mode, which is equal to its mean 1.0:

X

maxx p(x)

X

3.989

Next, consider a factorized probabilistic model over the partitioning X = X1 ∪ . . . ∪
XD. Analogous to marginalization, the joint maximization problem of Equation 12 can be
decomposed in smaller ones which can be solved independently:

max
q∈val(Q)

p(Q = q,E = e) = max
q1∈val(Q1)

p(Q1 = q1, e1)× . . .× max
qD∈val(QD)

p(QD = qD, eD)

where the factors over RVs {Xi}Di=1 induce a corresponding partitioning {Qi, ei}Di=1 over
query RVs Q and evidence e.

Example 25 (MAP queries for factorized models) Consider the factorized multivari-
ate Gaussian from Example 6 shown below on the left. Then the computational graph below
on the right illustrates how to compute the MAP query maxx1,x2 p(x1, x2, X3 = −1.5) ≈ 0.24
(in blue).

17. If one wants to query the MAP probability and not just the MAP state (i.e., max instead of arg max),
then the query and its complexity depends on whether one conditions on the evidence or not (de Campos,
2020). In this section, we focus on querying the MAP state, or equivalently the MAP probability without
conditioning.
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Lastly, the simplest type of sum units is the mixture model. Consider the mixture of
Gaussians from Example 9, shown below on the left. To compute the MAP query maxx p(x),
one may suggest to maximize each mixture component independently, analogous to how the
integrals are “broken down” to each component. The computational graph on the right il-
lustrates the output of such computation in blue.
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However, this is not equal to the answer maxx p(x) = 0.161. Simply put, one cannot com-
pute the maximum of a convex combination (i.e., mixture) by taking the convex combina-
tion of the maximum values of each component. Furthermore, even if the component model
classes are tractable representations for MAP, the induced mixture class is not tractable
for MAP. Recall from Example 8 that we can interpret a mixture model by associating a
categorical latent variable (LV) that acts as a switch in selecting the mixture components.
This allows us to see why MAP is hard for mixture models over RVs X: maximization
over X requires to first marginalize Z and hence corresponds to performing marginal MAP
inference (de Campos, 2011).

While computing MAP inference is hard in general for mixture models, it is tractable
for a subclass, represented as sum units satisfying a structural property called determinism.
Before we discuss the properties necessary for tractable MAP inference, let us define what
it means for a circuit to compute MAP, using the notion of maximizer circuits.

Definition 27 (Distribution maximizer) Let CL be an input function of a PC, charac-
terizing some distribution, then its associated function maximizer, denoted as Cmax

L , com-
putes maxy∈val(Y) CL(y) where Y = φ(n).

Recall from Section 3.1 that input units support tractable computation of MAP queries.
Thus, evaluating a distribution maximizer is also tractable.

Definition 28 (Maximizer circuit) For a given circuit C = (G,θ) over RVs X, let
Cmax = (Gmax,θmax) be its maximizer circuit where: (1) Gmax is obtained by replacing ev-
ery sum node n in G with a max node, i.e., computing the function Cn(X) = maxc∈ch(n) θn,cCc(X);
and (2) θmax is obtained by replacing every input distribution with its distribution maxi-
mizer.
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Algorithm 4 MAP(C, e)

Input: a PC C = (G,θ) over RVs X and a partial state e ∈ val(E) for E ⊆ X
Output: maxq∈val(Q) C(q, e) for Q = X \E

N← FeedforwardOrder(G) . Order units, inputs before outputs
for each n ∈ N do

if n is a sum unit then rn ← maxc∈in(n) θn,crc
else if n is a product unit then rn ←

∏
c∈in(n) rc

else if n is an input unit then rn ← Cmax
n (eφ(n))

return rn . the value of the output of C

Definition 29 Given a probabilistic circuit C and its maximizer circuit Cmax, we say Cmax

computes the MAP of C if Cmax(y) = maxz C(y, z) for all subset Y ⊆ X and Z = X \Y
and its instantiation y.

Equivalently, we say that C computes the MAP if the output of Algorithm 4 given C and
any evidence e is equal to the MAP query maxq C(q, e).

Let us now introduce a structural property that enables tractable MAP computations.

Definition 30 (Determinism) A sum node is deterministic if, for any fully-instantiated
input, the output of at most one of its children is nonzero. A circuit is deterministic if all
of its sum nodes are deterministic.

Determinism is our first structural property that constrains the output of a node, in-
stead of its scope. Note that it is still a restriction on the circuit structure and not its
parameters, as the inherent support of leaf nodes given by the structure cannot be altered
by the parameters. Chan and Darwiche (2006) showed that maximizer circuits of smooth,
decomposable, and deterministic circuits compute the MAP. That is, these properties are
sufficient conditions for MAP computations using maximizer circuits.

We now turn our focus to identifying the necessary conditions. First, we observe that
decomposability is not in fact necessary, and that a strictly weaker restriction, namely con-
sistency, is enough. We adopt the notion of consistency introduced by Poon and Domingos
(2011) for Boolean variables and generalize it to arbitrary (continuous or discrete) random
variables as the following:

Definition 31 (Consistency) A product node is consistent if each variable that is shared
between multiple children nodes only appears in a single leaf node, in the subcircuit rooted
at the product node.18 A circuit is consistent if all of its product nodes are consistent.

Clearly, any decomposable product node is also consistent by definition.

Proposition 32 Let G be a circuit structure that is consistent and deterministic. Then for
any parameterization θ, the probabilistic circuit C = (G,θ) computes MAP.

18. Recall from Section 5.5 that we assume the circuits to be in their canonical form, and thus input
distribution units are unique.
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We will prove above proposition by inductively showing that Algorithm 4 outputs the
MAP for any consistent and deterministic PC. As the base case, if C is a single distribution
unit, the algorithm returns the output of its distribution maximizer which computes MAP
by definition. Next, suppose the output unit of C is a consistent product unit and that
Algorithm 4 correctly answers the MAP query for input units to the output unit. Given
a query maxq C(q, e), let Qshared and Eshared be the variables in Q and E, respectively,
that appear in more than one input unit. Moreover, we say Qi and Ei are the variables
that are in the scope of only the i-th input unit; i.e., Q = Qshared ∪ Q1 ∪ · · · ∪ Qk and
E = Eshared ∪ E1 ∪ · · · ∪ Ek. Because the PC is consistent, each variable in Qshared must
appear in exactly one distribution unit. Therefore, maximizing each of the k input units
independently will result in a consistent MAP state for Qshared; then the MAP query on C
can be expressed as:

max
q
C(q, e) = max

qshared,q1,...,qk

k∏
i=1

Ci(qshared, qi, eshared, ei) =
k∏
i=1

max
qshared,qi

Ci(qshared, qi, eshared, ei).

That is, Algorithm 4 correctly computes the MAP for C. Furthermore, say the output unit
of C is a deterministic sum unit, and again assume that Algorithm 4 computes MAP for
its input units. Given any complete evidence, at most one of the input units will return
a nonzero value, and thus the sum output unit will evaluate to either zero or the nonzero
input, behaving like a maximizer unit. Thus, the MAP query on C can be broken down as
follows:

max
q
C(q, e) = max

q

k∑
i=1

θiCi(q, e) = max
q

max
i
θiCi(q, e) = max

i
max
q
Ci(q, e).

Hence, Algorithm 4, with a single feedforward pass, computes the MAP probability for any
consistent and deterministic PC.

To conclude the proof that consistency and determinism are sufficient conditions to
tractably answer MAP queries, we describe how to retrieve the MAP state via a backward
pass through the PC. After evaluating the circuit as in Algorithm 4 for the MAP probability,
we can simply follow the edges that contributed to the output and collect the modes at the
input distribution units. Concretely, the MAP state of a sum unit is simply the MAP state
of its input unit with the maximum value:

arg max
q

C(q, e) = arg max
q

θiCi(q, e), where i = arg max
i=1,...,k

max
q

θiCi(q, e).

The MAP state of a product unit is obtained by concatenating the MAP states of its inputs,
as each input will assign a state to a subset of variables. Note that thanks to consistency,
any shared variable will be assigned the same state by input units with such variable in
their scopes:

arg max
q

C(q, e) =

{
arg max
qshared,qi

Ci(qshared, qi, eshared, ei)

}
i=1,...,k

.

This concludes the proof that any consistent and deterministic PC can answer MAP
queries tractably. We will next show that these are indeed necessary conditions for tractable
MAP inference.
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Theorem 33 Suppose G is a circuit structure such that for any parameterization θ, the
maximizer circuit Cmax = (Gmax,θmax) computes the MAP of C = (G,θ). Then, G must be
consistent and deterministic.

We will prove above theorem by first showing necessity of consistency then determinism.
Let the scope of C be X, and consider the MAP query maxx∈val(X) C(x), i.e., MAP with no
evidence e. Maximizer circuit Cmax computes the MAP if and only if any product unit n
with inputs in(n) satisfies maxx Cn(x) =

∏
c∈in(n) maxx Cc(x). Suppose there exists an incon-

sistent product unit n. Let c1 and c2 denote its inputs where a variable X appears in input
distribution units L1 and L2, respectively. We can assume w.l.o.g that c1 and c2 are con-
sistent, and thus arg maxx Cc1(x) (resp. arg maxx Cc2(x)) must agree with arg maxx CL1(x)
(resp. arg maxx CL2(x)) on the assignment to X. However, we can parameterize the input
distributions at L1 and L2 such that their respective MAP assignments do not agree on the
value of X. In other words, the maximizer circuit can return a value that does not corre-
spond to a consistent assignment of the variables. Therefore, any circuit that computes the
MAP must be consistent.

Next, we show that such circuit must also deterministic, by adapting the proof from Choi
and Darwiche (2017) that any smooth, decomposable circuit computing the MAP must also
be deterministic. Suppose G is not deterministic, and let n be a non-deterministic sum unit.
Hence, there exists one or more complete assignments (denote the set of such assignments
X ) such that more than one input units of n evaluate to non-zero values. Since G must be
consistent, at least one of those inputs must make the output of the PC be non-zero. To
show this, suppose all inputs in X lead to a circuit output of zero. Then there must exist
a unit in the path from n to the circuit output unit that is always multiplied with a unit
that outputs 0 for all inputs in X . Note that the variables not in the scope of n can be
assigned freely, and thus the output of zero must be caused by assignments to variables in
the scope of n. This is only possible if the circuit is inconsistent. Thus, the PC structure
does not prohibit the assignments in X from leading to a non-zero output of the PC. Then
we can choose the parameters of the PC such that its MAP state is some x in X . To
evaluate the circuit output C(x), unit n must perform addition of more than one non-zero
inputs. In other words, using the polynomial interpretation of the PC as in Section 5.3, the
output of C given x cannot be given by a single induced sub-circuit, but rather is a sum of
multiple induced sub-circuits. On the other hand, any evaluation of the maximizer circuit
corresponds to an induced sub-circuit, because every sum unit has been transformed into
a max unit which selects exactly one of its inputs (see Definition 24). Thus, one cannot
retrieve the MAP probability C(x) by transforming it into a maximizer unit, that is, without
performing additions.

7. Expressive Efficiency

As discussed in Section 5.4, probabilistic circuits can encode mixture models, and in par-
ticular Gaussian mixture models (GMMs) if the input distribution units encode Gaussian
densities. Thus, PCs, just like GMMs, are universal approximators of probability densities;
i.e., they are expressive. However, expressiveness does not describe how compactly a model
can encode a distribution. For example, the shallow representation of a PC (i.e., its circuit
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polynomial), as described in Section 5.3, may be exponentially larger than the original deep
PC, even though both are equally expressive.

In order to characterize the ability of PCs to compactly model distributions, we utilize
the notion of expressive efficiency, also often referred to as succinctness (Darwiche and
Marquis, 2002).

Definition 34 (Expressive efficiency) Let M1 and M2 be two families of probabilistic
circuits. We sayM1 is as expressive efficient asM2 if there exists a polynomial function
f such that every PC C2 ∈M2 has a circuit C1 ∈M1 that represents the same distribution
and has size |C1| ≤ f(|C2|).

Recall that tractability of a family of models is defined with respect to the size of the model
(cf. Definition 2). Hence, expressive efficiency is an essential property when characterizing
and comparing tractable probabilistic models. For instance, suppose two families of PCs
are both tractable for a query class of interest, say MAR, and that one is more expressive
efficient than the other. In such a case, one may prefer to use the former circuit family, as
MAR inference would be more efficient on it than on the latter.

This section studies the expressive efficiency of the two families of tractable PCs we have
seen so far: namely, smooth and decomposable PCs for MAR inference, and consistent and
deterministic PCs for MAP inference. We will explore how each of the structural properties
affect expressive efficiency and directly compare the expressive efficiency of the two tractable
circuit families.

7.1 Expressive Efficiency of Circuits for Marginals

We first study the effect of smoothness and decomposability on the expressive efficiency
of PCs. As proven in Section 4, a smooth and decomposable PC allows for tractable
computation of marginal queries, i.e., in time polynomial in the size of the circuit. Because
marginal queries are well known to be #P-hard (Roth, 1996), this immediately implies that
not every distribution can be compactly represented by a smooth and decomposable PC,
unless the polynomial hierarchy collapses.

On the other hand, one can easily smooth a probabilistic circuit while preserving decom-
posabiilty. Suppose C2 is a decomposable PC over RVs X. Then a smooth and decomposable
PC C1 can be constructed from C2 as the following. For every non-smooth sum unit n, we
replace each of its inputs c with a product unit c′ that takes as input c and newly introduced
input distribution units:

c′ = c ·
∏

X∈φ(n)\φ(c)

u(X), (13)

where u(X) is an unnormalized uniform distribution over X that outputs 1 for every value
of X.19 For instance, u(X) for a Boolean variable X can be written as JX = 1K + JX = 0K.
Clearly, the resulting circuit is smooth as all inputs of n have the same scope, and it is still
decomposable as the newly added product units are over disjoint variable sets. Moreover,
the smoothed circuit C1 still represents the same distribution as C2, i.e., for every complete

19. Here we assume that the partition function of the original PC is finite, which is reasonable if one intends
to compute marginals using the circuit.
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evidence x, C1(x) = C2(x). This can be argued recursively using the fact that every unit
c of C1 that is replaced as in Equation 13 still returns the same value for any complete
evidence query:

Cc′(x) = Cc(x) ·
∏

X∈φ(n)\φ(c)

u(x) = Cc(x) · 1.

Lastly, constructing C1 as above incurs a polynomial—quadratic, to be specific—size increase
as Equation 13 adds at most |X| number of edges and will be applied at most |C2| times.
Therefore, the family of smooth and decomposable circuits are equally expressive efficient
as that of decomposable ones.

Moreover, combining the fact that smooth and decomposable PCs are strictly less expres-
sive efficient than unconstrained ones and are equally expressive efficient as decomposable
ones, we can infer that decomposable PCs must also be strictly less expressive efficient than
unconstrained PCs (unless the polynomial hierarchy collapses). Note that we have yet to
address the expressive efficiency of smooth PCs compared to unconstrained ones. We will
show in the next section that smoothing a non-decomposable circuit is in fact hard.

7.2 Expressive Efficiency of Circuits for MAP

Next, we study the expressive efficiency of circuits when enforcing consistency and deter-
minism, the necessary and sufficient conditions for tractable MAP inference.

Theorem 35 There exists a function with a circuit of linear size that can compute the MAP
but no poly-size circuit that computes its MAR. (Assuming that the polynomial hierarchy
does not collapse)

Consider a circuit C of the following form over Boolean variables X = {X1, . . . , Xn},Y =
{Y1, . . . , Yr}:

r∏
i

(Yi · Zi1 + (¬Yi) · Zi2), (14)

where each Zij ∈ X. Note that above circuit is consistent and deterministic, and thus allows
for computation of MAP using its maximizer circuit. Next, we will show that computing
the marginal of above function is a #P-hard problem. The proof is by reduction from SAT′

which was shown to be #P-complete by Valiant (1979a).

• SAT′: Given a monotone 2CNF
∧r
i (Zi1 ∨ Zi2) where Zij ∈ X, output

|{(x, t) : t ∈ {1, 2}r,x makes Zi,ti true ∀ i}|.

Note that for a given x, the number of (x, t) that is counted by SAT′ is 0 if x does
not satisfy the 2CNF formula, and otherwise 2m where m is the number of clauses i such
that both literals Zi1 and Zi2 are set to true. Given a monotone 2CNF, let us construct a
consistent and deterministic circuit by changing the logical AND into a product unit, OR
into a sum unit, and adding auxiliary variables Yi for each clause as in Equation 14. Then
for any given x, the marginal C(x) (with Y unobserved) computes

∏
(Zi1 +Zi2) which is 0

if x does not satisfy the formula and 2m otherwise; the marginal C(.) is then the solution to
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the original SAT′ problem. Hence, there cannot exist a poly-sized circuit for this function
that allows marginals, unless the polynomial hierarchy collapses. Furthermore, this implies
that the family of smooth and decomposable PCs are not as expressive efficient as that of
consistent and deterministic PCs.

In addition, above proof in fact shows the following stronger result: a consistent and
non-decomposable circuit cannot be smoothed efficiently, unless the polynomial hierarchy
collapses. Consider the following circuit obtained by marginalizing out Y from Equation 14,
which was used as an intermediate step to prove Theorem 35:

∏r
i (Zi1 +Zi2). This PC over

Boolean RVs X is consistent but not decomposable. As shown previously, computing the
partition function of this PC (i.e., MAR inference) corresponds to the solution to a SAT′

problem, which is #P-hard. Moreover, smoothness and consistency are in fact sufficient
conditions for tractable MAR inference for PCs over Boolean RVs (Poon and Domingos,
2011). Therefore, there exists no polynomial sized smooth and consistent circuit for above
consistent PC, unless the polynomial hierarchy collapses.

Note that Theorem 35 may not be surprising considering the fact that answering MAP
queries is an NP-complete problem (Shimony, 1994), whereas MAR inference is #P-complete.
That is, one may expect the family of PCs that can tractably answer a harder class of queries,
namely MAR, to be more expressive efficient. However, not only are smooth and decom-
posable PCs unable to readily answer MAP queries via maximizer circuit representations,
but they are in fact not strictly more expressive efficient than the PCs for tractable MAP.

Theorem 36 (Choi and Darwiche (2017)) There exists a function with linear-size cir-
cuit that can compute marginals but no poly-size circuit that computes its MAP. (Assuming
that the polynomial hierarchy does not collapse)

We briefly describe the proof to above theorem shown in Choi and Darwiche (2017). Any
naive Bayes network over discrete RVs can be represented as a linear-size smooth and de-
composable probabilistic circuit (see Section 11.1). The marginal feature distribution from a
naive Bayes distribution can be represented as a PC by marginalizing out the class variable,
i.e., setting all input distribution units for the class variable to 1. A poly-size circuit that
computes the MAP of this marginal distribution then computes the marginal MAP of the
original naive Bayes in polytime. However, marginal MAP is known to be NP-hard for naive
Bayes (de Campos, 2011). Therefore, even though marginal inference is computationally
harder than MAP inference, there still exist distributions with compact PC representation
for tractable marginals but not tractable MAP. Furthermore, this immediately implies that
the family of consistent and deterministic PCs are strictly less expressive efficient than
unconstrained PCs.

8. Tractable Circuits for Marginal MAP Queries

Let us next study tractable circuits for more advanced query classes, an example being
the class of marginal MAP queries. We first formally define the query class and intro-
duce a structural property—marginal determinism—that will enable tractable inference of
marginal MAP queries in conjunction with previously discussed properties.
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8.1 The MMAP Query Class

As briefly discussed in Section 2.2, marginal MAP queries subsume aspects of both marginal
and MAP inference.

Example 26 Consider the probability distribution pm defined over the RVs X as in the
traffic jam example. Then the question “Which combination of roads is most likely to be
jammed on Monday?” can be answered by the following marginal MAP query:

arg max
j

pm(J = j,D = Mon),

where J denote the set of traffic jam indicator variables.

In other words, we wish to find the state that maximizes the distribution that agrees with
D = Mon while marginalizing out the Time variable. Note the close resemblance to the
query in Example 23: in fact the only difference is that T is neither a query variable nor in
the evidence. Next, we define a generalized version of the marginal MAP query class and
show how this subsumes the more classical definition.

Definition 37 (MMAP query class) Let p(X) be a joint distribution over RVs X. The
class of marginal MAP queries MMAP is the set of queries that compute:

arg max
q∈val(Q)

p(Q = q | E = e,Z ∈ I) = arg max
q∈val(Q)

∫
I
p(q, e, z) dZ (15)

where Q, E, and Z form a partitioning of RVs X, e ∈ val(E) is a partial state, and
I = I1×· · ·×Ik are intervals, each of which is defined over the domain of its corresponding
RV in Z: Ii ⊆ val(Zi) for i = 1, . . . , k.

Similar to MAP queries, the right-hand side of Equation 15 holds because maximization
is not affected by the normalization constant p(E = e,Z ∈ I). Moreover, as shown for
marginal queries, the integral over I consists of k integrals as follows:

arg max
q∈val(Q)

∫
I1

∫
I2
· · ·
∫
Ik
p(q, e, z1, z2, . . . , zk) dZk · · · dZ2 dZ1.

When Q and E are clear from context, we use the shorthand arg maxq p(q, e) to im-
plicitly denote marginalizing Z = X \ (Q ∪ E) over their domains val(Z), analogous to the
shorthand for marginal queries. This corresponds to a more commonly used definition of
marginal MAP for PGMs.

The class of marginal MAP queries clearly subsumes both MAP and marginal queries
by setting the query variable set Q to X and ∅, respectively. Again, we will show that
marginal MAP queries can be computed tractably via bottom-up evaluations of circuits.
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Algorithm 5 MMAP(C, e,I)

Input: a PC C = (G,θ) over RVs X, a partial state e ∈ val(E) for E ⊆ X, and a set of
integration domains I for Z ⊆ X.

Output: maxq∈val(Q) C(q, e,I) for Q = X \ (E ∪ Z)
N← FeedforwardOrder(G) . Order units, inputs before outputs
for each n ∈ N do

if n is a sum unit then
if φ(n) ∩Q = ∅ then rn ←

∑
c ∈ in(n)θn,crc

else if φ(n) ∩Q 6= ∅ then rn ← maxc∈in(n) θn,crc

else if n is a product unit then rn ←
∏
c∈in(n) rc

else if n is an input unit then rn ← C+,max
n (eφ(n);IZφ(n))

return rn . the value of the output of C

8.2 Marginal Determinism

Definition 38 (Sum-maximizer circuit) Let C = (G,θ) be a probabilistic circuit over
RVs X. We say C+,max = (G+,max,θmax) is a sum-maximizer circuit for C if: (1)
G+,max is obtained by replacing a subset of sum nodes with max nodes; and (2) θmax is ob-
tained by replacing every input distribution with its distribution marginal maximizer, which
marginalizes out some variables and maximizes over others.

Definition 39 Given a subset of variables Q ⊆ X, we say a sum-maximizer circuit C+,max

computes the marginal MAP of C over Q if C+,max(e; I) = maxq
∫
I C(z, q, e) dZ for

any subset E ⊆ X and instantiation e, and intervals I on Z = X \ (E ∪Q).

First, if a circuit computes the marginal MAP with no query variables (i.e., computes
marginals), we know that it must be smooth and decomposable from Theorem 19. In
addition, if a circuit computes the marginal MAP with X as the query variable set (i.e.,
computes MAP), then it must be consistent and deterministic from Theorem 33. Neverthe-
less, unlike for MAR or MAP queries, whether a circuit computes the marginal MAP query
depends on a subset of query variables Q. Therefore, the structural properties that allow
for tractable marginal MAP computation also depend on such subset.

Definition 40 (Marginal determinism) Given a subset of variables Q ⊆ X, a sum node
is marginal deterministic w.r.t. Q if for any partial state q ∈ val(Q), the output of at
most one of its input units is nonzero. A circuit is marginal deterministic w.r.t. Q if all
sum nodes containing variables in Q are marginal deterministic.

Just like determinism, marginal determinism is also a structural property as it is a
restriction on the supports of certain nodes restricted to the set of variables Q, which are
determined by the inherent support of input distribution units and the computational graph
structure. We are now ready to prove the sufficient conditions for tractable computation of
marginal MAP queries using circuits.
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Proposition 41 Suppose G is a circuit structure that is smooth, decomposable, and marginal
deterministic w.r.t. a subset of variables Q ⊆ X. Let G+,max be obtained from G by replac-
ing any sum node whose scope includes variables in Q with max nodes. Then, for any
parameterization θ, C+,max = (G+,max,θmax) computes the marginal MAP of C = (G,θ)
over Q.

We prove above statement by induction. First, an input unit for Q, Z, or E variable is
maximized, marginalized, or complete-evidence computed, respectively; this computes the
correct marginal MAP for the input distributions.

Next, suppose the inputs of the root node compute the marginal MAP of the correspond-
ing subcircuits. The root node can then be one of three types: max, sum, and product.
Consider a max node. Then Q must be non-empty by construction of sum-maximizer cir-
cuits. The root computes the marginal MAP due to smoothness and marginal determinism
as follows:

max
q

∫
I
C(Z, q, e) dZ = max

q

∫
I

∑
i

θiCi(Z, q, e) dZ

= max
q

∑
i

θi

∫
I
Ci(Z, q, e) dZ = max

q
max
i
θi

∫
I
Ci(Z, q, e) dZ (16)

= max
i
θi

(
max
q

∫
I
Ci(Z, q, e) dZ

)
= max

i
θiCi+,max(e; I) = C+,max(e; I)

Equation 16 is obtained using marginal determinism: for each q, at most one term i will
be non-zero, and thus the sum is equivalent to maximization. Furthermore, if the root is a
sum node, Q must be empty by construction. Therefore, the sum-maximizer circuit does
not have any max node. Such circuit then computes the marginal, which is equivalent to
marginal MAP given no Q variables. Lastly, suppose the root is a decomposable product
node where the variable sets Z,Q,E are partitioned into Zi,Qi,Ei, respectively, for each
child note i = 1, . . . , k. Then it also computes the marginal MAP as follows:

max
q

∫
I
C(Z, q, e) dZ = max

q1,...,qk

∫
I

∏
i

Ci(Zi, qi, ei) dZ

= max
q1,...,qk

∏
i

(∫
Ii
Ci(Zi, qi, ei) dZi

)
=
∏
i

(
max
qi

∫
Ii
Ci(Zi, qi, ei) dZi

)
=
∏
i

Ci+,max(ei; Ii) = C+,max(e; I)

We can apply above observations recursively down to the input distribution units to conclude
the proof of Proposition 41. Hence, assuming that computing marginal MAP is tractable
for each input distribution, it is also tractable for the PC.

Nevertheless, while smoothness, decomposability, and marginal determinism lead to
tractable computation of marginal MAP queries, these conditions are not always neces-
sary for a sum-maximizer circuit to compute MMAP of its associated probabilistic circuit.
Consider the following circuit for example.
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×

×

X1

X1

X2

¬X2

w1

w2

w3

w4

For Q = {X2}, above circuit is not marginal deterministic as the output unit (in blue) is
not marginal deterministic w.r.t. to X2. However, the sum-maximizer circuit where just the
sum node over X2 (in orange) is replaced with a max node computes the marginal MAP
over Q. We can easily see this from the circuit polynomial:

C(x1, x2) = w1f1(x1)(w3Jx2 = 1K + w4Jx2 = 0K) + w2f2(x1)(w3Jx2 = 1K + w4Jx2 = 0K)
= (w1f1(x1) + w2f2(x1)) · (w3Jx2 = 1K + w4Jx2 = 0K),

where f1, f2 denote the leaf distributions on X1. Because the circuit polynomial decomposes,
the marginal MAP over Q is:

max
x2

∫
C(x1, x2)dX1 = max

x2
(w3JX2 = 1K + w4JX2 = 0K)

∫
(w1f1(x1) + w2f2(x1))dX1

= max{w3, w4}
(
w1

∫
f1(x1)dX1 + w2

∫
f2(x1)dX1

)
.

Note that this is exactly the polynomial computed by the sum-maximizer circuit described
previously. Therefore, the properties in Proposition 41 are not the necessary conditions for
tractable MMAP computation, which are currently left open.

Remark 42 Approaches to similar Algorithm 5 were first proposed by Huang et al. (2006)20

and Oztok and Darwiche (2015) for PCs over Boolean RVs. We relax the structural con-
straints required to apply the algorithm. In particular, they require that every sum node is
associated with a variable (or a set of variables) with respect to which it is marginal deter-
ministic, and that variables appear in the circuit in such an order that no node whose scope
includes a variable in Q is an input to a node that is not associated with any variable in
Q. Such circuit must not only be marginal deterministic w.r.t. Q but is also deterministic,
while Proposition 41 does not require the PC to be deterministic to apply Algorithm 5.

8.3 Tractable Computation of Information-Theoretic Measures

We have shown how marginal determinism can be leveraged to break down a hard query
such as marginal MAP. Here we demonstrate how to exploit this idea to tractably compute
other types of queries—namely, information-theoretic measures such as marginal entropy
and mutual information.

20. Huang et al. (2006) proposed an algorithm to compute upper bounds on marginal MAP probability on
decision DNNFs, but it can be inferred that given a certain variable ordering in the circuit, the algorithm
exactly computes MMAP.
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Given a probabilistic circuit C representing a normalized distribution over RVs X, its
marginal entropy over the set of RVs Y ⊆ X is defined as:21

HC(Y) = −
∫
val(Y)

pC(y) log pC(y)dY.

Proposition 43 Suppose C is a PC over variables X that is smooth, decomposable, and
marginal deterministic w.r.t. Y. Then its marginal entropy HC(Y) can be computed in time
linear in its size, if its input distributions allow tractable computation of marginal entropy.

First, because C is smooth and decomposable, it computes marginals, and the marginal
entropy can be written in terms of the partial state computation as follows:

HC(Y) = −
∫
val(Y)

pC(y) log pC(y)dY = −
∫
val(Y)

C(y) log C(y)dY.

If the root of C is a decomposable product node C(X) =
∏
i Ci(Xi), and Z = X \Y then:

HC(Y) = −
∫
val(Y)

(∏
i

C(yi)
)

log

(∏
i

C(yi)
)
dY = −

∑
i

∫
val(Y)

(∏
i

C(yi)
)

log C(yi) dY

=
∑
i

(
−
∫
val(Yi)

Ci(yi) log Ci(yi) dYi

)∏
j 6=i

∫
val(Yj)

Cj(yj) dYj

 =
∑
i

HCi(Yi)
∏
j 6=i

Zj

where Zj denotes the partition function for Cj . On the other hand, if the root of C is sum

node that is smooth and marginal deterministic w.r.t. Y such that C(X) =
∑k

i=1wiCi(X):

HC(Y) = −
∫
val(Y)

(
k∑
i=1

wiCi(y)

)
log

(
k∑
i=1

wiCi(y)

)
dY

= −
k∑
i=1

wi

∫
val(Y)

Jy ∈ supp(Ci)|YKCi(y) log

(
k∑
i=1

wiCi(y)

)
dY (17)

= −
k∑
i=1

wi

∫
supp(Ci)|Y

Ci(y) log(wiCi(y))dY (18)

= −
k∑
i=1

wi

(∫
supp(Ci)|Y

Ci(y) log Ci(y)dY +

∫
supp(Ci)|Y

Ci(y) log(wi)dY

)

=
k∑
i=1

wi (HCi(Y)− log(wi) · Zi)

where again Zi is the partition function for Ci. The key idea is in Equations 17 and 18
which hold due to marginal determinism. A marginal deterministic sum node represents a
mixture of components whose supports, restricted to Y, are non-overlapping. Hence, we

21. Note that for continuous and mixed continuous-discrete RVs, this is the definition of the differential
entropy and for discrete RVs it is the classical information theory entropy.
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can break down the computation of marginal entropy, which involves computing a logarithm
of a mixture, into computations over the smaller components. Recursively applying above
results, we can tractably compute the marginal entropy as long as it is tractable for the
input distribution units.

An immediate implication of Proposition 43 is the tractable computation of joint en-
tropy (Shih and Ermon, 2020), a special case of marginal entropy over the entire set of
variables X.

Corollary 44 Suppose C is a smooth, deterministic, and decomposable PC over variables
X. Then its joint entropy HC(X) can be computed in time linear in its size, if its input
distributions allow tractable computation of entropy.

This follows directly from the fact that marginal determinism w.r.t. X is equivalent to
determinism.

In addition, tractable computation of marginal entropy also leads to that of a number
of other information-theoretic measures. For instance, consider the mutual information
between subsets of variables. Formally, given a probabilistic circuit C representing a nor-
malized distribution over RVs X and Y,Z ⊂ X, the mutual information between Y and Z
is defined as:

MIC(Y; Z) =

∫
val(Z)

∫
val(Y)

pC(y, z) log
pC(y, z)

pC(y)pC(z)
dY dZ.

It is easy to check that mutual information can also be written in terms of marginal entropy:

MIC(Y; Z) = HC(Y) + HC(Z)−HC(Y ∪ Z).

Therefore, if C is smooth, decomposable and marginal deterministic w.r.t. Y, Z and Y∪Z,
then we can tractably compute MIC(Y; Z).

8.4 Expressive Efficiency of Circuits for Marginal MAP

Unlike the structural properties in previous sections, marginal determinism is defined with
respect to a subset of variables Q ⊆ X. Thus, the expressive efficiency of PCs for tractable
marginal MAP naturally also depends on the set Q. Specifically, for each Q, we consider
the family of PCs that are smooth, decomposable, and marginal deterministic w.r.t. Q.

First, the family of tractable MMAP circuits for Q = ∅ corresponds to that of smooth
and decomposable PCs (i.e., tractable circuits for MAR), whereas for Q = X it corresponds
to smooth, decomposable, and deterministic PCs (i.e., tractable for both MAR and MAP).
As we saw in Section 7.2, the former is strictly more expressive efficient than the latter.
Next we consider the expressive efficiency of PCs that are tractable for MMAP w.r.t. some
non-empty Q ⊂ X.

Recall that any naive Bayes network over discrete RVs can be represented by a linear-
sized smooth, deterministic, and decomposable PC. Such circuit is tractable for MMAP
w.r.t. both Q = ∅ and Q = X. Nevertheless, marginal MAP w.r.t. Q = X \ {C}, the set of
variables excluding the class variable, is known to be NP-hard for naive Bayes (de Campos,
2011). Therefore, the family of PCs tractable for MMAP w.r.t. some Q is not necessarily
as expressive efficient as those for MMAP w.r.t. either a subset or superset of Q.
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Lastly, let us remark on why we allow the dependence on query variable set Q when
determining tractability of PCs for MMAP. Indeed, the family of tractable PCs for MAR
or MAP was required to be tractable for all possible subsets E. To answer this, we look to
the expressiveness of marginal deterministic PCs. Let us consider the family of PCs that
are smooth, decomposable, and marginal deterministic w.r.t. all possible subsets Q ⊆ X.
Clearly, a fully factorized distribution, i.e., a PC with decomposable product units and no
sum units, satisfies this property. If a PC in this family has a sum unit, its input units must
have the same scope by smoothness, and it must be marginal deterministic with respect to
every variable in its scope. Thus, the support of the sum node n =

∑
i ni will be of the

form ⊔
i

∏
X∈φ(n)

Si,X ,

where Si,X ⊂ val(X) such that Si,X ∩Sj,X = ∅ for any i 6= j. In other words, the supports of
the input units will not only be disjoint but will be a Cartesian product of disjoint subsets
on each variable. An immediate consequence is that the support of such sum node cannot
be val(φ(n)). Therefore, this family of PCs cannot contain any distribution whose support
is val(X) without being fully factorized,22 and thus is not expressive.

9. Tractable Circuits for Pairwise Queries

In the previous sections, we have discussed a number of queries that operate on a single
distribution. However, one may also wish to describe properties of a pair of distributions;
for instance, how similar two given distributions over the same set of RVs are.

In this section, we study some examples of such pairwise queries, and show how proba-
bilistic circuits can again be used for tractable computation of such queries. Similar to how
single-distribution queries were computed via bottom-up evaluations of circuits satisfying
certain structural properties, we will show that many pairwise queries can also be tractably
computed in a bottom-up fashion by considering pairs of circuit nodes.

9.1 Kullback–Leibler Divergence

An example of pairwise query is the Kullback–Leibler (KL) divergence, which is a way to
measure how different two distributions are.

Example 27 Consider the probability distribution pm defined over the RVs X as in the
traffic jam example. Then the question “How different is the distribution of traffic jam on
a rainy day compared to a sunny day?” can be answered by the following KLD query:

KL(pm(. |W=Rain) ‖ pm(. |W=Sun)) =

∫
val(X)

pm(x |W = Rain) log
pm(x |W = Rain)

pm(x |W = Sun)
dX.

Formally, the KL divergence (also called relative entropy) between probabilistic circuits
C and C′ representing normalized distributions over RVs X is defined as:

KL(C ‖ C′) =

∫
val(X)

C(x) log
C(x)

C′(x)
dX.

22. Here we assume that trivially satisfying the structural constraints by representing the distribution in a
single distribution unit is not tractable for MMAP.
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(a) A structured decomposable circuit
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(b) A vtree

Figure 1: A structured decomposable PC over X = {X1, X2, X3} and its corresponding
vtree.

Let us now introduce the key structural property that enables tractable pairwise query
computation.

Definition 45 (Structured decomposability) A circuit is structured decomposable
if it is decomposable and any pair of its product nodes n and m with the same scope decom-
poses in the same way: (φ(n) = φ(m)) ⇒ (∀ i, φ(in(n)i) = φ(in(m)i)) for some ordering of
input units.

Figure 1a shows an example PC that is structured decomposable. Note that the defi-
nition of structured decomposability implies that product nodes with the same scope have
the same number of inputs. The decomposition of variables can be described using a vtree :
a tree structure whose leaves correspond to (possibly sets of) variables, with each variable
appearing exactly once in a vtree leaf node.23 Then a circuit is structured decomposable if
every product node decomposes according to (i.e., normalized for) an internal vtree node.
That is, the scope of the i-th input unit is precisely the variables appearing under the i-th
sub-vtree node. Consider, for example, Figure 1b which depicts the vtree that the circuit
in Figure 1a is normalized for. Each product node is highlighted as the same color as its
corresponding vtree node. Furthermore, each input distribution unit of a structured de-
composable PC corresponds to a leaf node in the associated vtree; i.e., its scope is exactly
the variable(s) appearing in its corresponding vtree node.

Structured decomposability allows us to easily describe whether two probabilistic circuits
have compatible scopes at each level; that is, whether they are normalized for the same vtree.
This is a key property we exploit in tractably computing pairwise queries, such as the KL
divergence query.

Proposition 46 Suppose C and C′ are probabilistic circuits over variables X that are
smooth, deterministic, and structured decomposable w.r.t. the same vtree. Then the KL

23. A vtree was initially defined as a full binary tree whose leaves are in one-to-one correspondence with
variables (Pipatsrisawat and Darwiche, 2008). We adopt a more general definition that allows for more
than two children nodes and subsets of variables as leaves. The notion of structured decomposability is
also generalized in a similar fashion.
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divergence KL(C ‖ C′) can be computed tractably, given that it is tractable on the input
distributions.

First, observe that the KL divergence is bounded only if supp(C) ⊆ supp(C′), and is
defined as infinite if there is an assignment x with non-zero C(x) but zero C′(x) probability.
As it will later become clear, it is useful to consider the intersectional divergence (Liang
and Van den Broeck, 2017) between circuits:

DI(C ‖ C′) =

∫
supp(C)∩supp(C′)

C(x) log
C(x)

C′(x)
dX.

If KL divergence is bounded, then it is equal to the intersectional divergence. We will later
show that checking whether the KL divergence is bounded can also be done tractably using
circuits.

We now proceed to show how to compute the intersectional divergence tractably, by
considering the implications of structural properties at product and sum units. First, we
assume C and C′ are in their canonical forms, as noted in Section 5.5; in particular, they
have alternating sums and products. This ensures that the PCs are of the same depth and
that each recursive step of the algorithm considers a pair of sub-circuits whose roots are of
the same type and are structured decomposable w.r.t. the same vtree.

Now suppose that the roots are structured decomposable product units with k inputs.
Structured decomposability w.r.t. a shared vtree dictates that the variables are partitioned
the same way in both circuits. We say the i-th children, namely Ci and C′i, depend on
variables Xi. Then the divergence decomposes as the following:

DI(C ‖ C′) =

∫
supp(C)∩supp(C′)

(∏
i

Ci(xi)
)

log

∏
j Cj(xj)∏
j C′j(xj)

dX

=

∫
supp(C1)∩supp(C′1)

· · ·
∫
supp(Ck)∩supp(C′k)

(∏
i

Ci(xi)
)∑

j

log
Cj(xj)
C′j(xj)

dXk . . . dX1

=
∑
j

(∫
supp(Cj)∩supp(C′j)

Cj(xj) log
Cj(xj)
C′j(xj)

dXj

)∏
i 6=j

∫
supp(Ci)∩supp(C′i)

Ci(xi)dXi

=
∑
j

DI(Cj ‖ C′j)
∏
i 6=j

∫
supp(Ci)∩supp(C′i)

Ci(xi)dXi. (19)

Thus, the intersectional divergence of product units can be computed using divergence of
their input units and marginals over the intersections of supports. Next, for smooth and
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deterministic sum units:

DI(C ‖ C′) =

∫
supp(C)∩supp(C′)

∑
i

θiCi(x) log

∑
i θiCi(x)∑
j θ
′
jC′j(x)

dX

=
∑
i

θi

∫
supp(C)∩supp(C′)

Jx ∈ supp(Ci)KCi(x) log

∑
i θiCi(x)∑
j θ
′
jC′j(x)

dX (20)

=
∑
i

θi

∫
supp(Ci)∩(tjsupp(C′j))

Ci(x) log
θiCi(x)∑
j θ
′
jC′j(x)

dX (21)

=
∑
i,j

θi

∫
supp(Ci)∩supp(C′j)

Ci(x) log
θiCi(x)

θ′jC′j(x)
dX (22)

=
∑
i,j

θi

(
log

θi
θ′j

∫
supp(Ci)∩supp(C′j)

Ci(x)dX +DI(Ci ‖ C′j)
)
. (23)

Equations 20 and 21 hold due to determinism of C; whereas, Equation 22 is derived
from C′ being deterministic, thus its support partitioned into supports of its input units:
supp(C′) = tjsupp(C′j). The intersectional divergence again breaks down into that of input
units and marginals over intersections of supports. Hence, if we can tractably compute the
marginal probability of a PC over the support of another PC, we can tractably compute
the intersectional divergence.

Such marginals can be computed tractably by assumption for input distribution units
and by the following equations for product and sum units, respectively.∫

supp(C′)

∏
i

Ci(xi)dX =
∏
i

∫
supp(C′i)

Ci(xi)dXi (24)∫
tjsupp(C′j)

∑
i

θiCi(x)dX =
∑
i,j

θi

∫
supp(C′j)

Ci(x)dX (25)

This is very similar to computing the marginal over a Cartesian product of intervals. The key
difference is that the integration is over a more complex domain, defined by the structure
of another circuit. Moreover, recall that the intersectional divergence computes the KL
divergence only if the support of C is a subset of the support of C′. This holds when∫
supp(C)∩supp(C′) C(x)dX = 1, which we can compute tractably for smooth, deterministic,

and structured decomposable circuits. Therefore, we have all the ingredients for tractable
computation of KL divergence. We can use a recursive algorithm with caching, shown in
Algorithm 6, to compute the marginal of a circuit w.r.t. another and then the KL divergence
between them in polynomial time. This concludes the proof of Proposition 46.

To conclude this section, we note that above result also allows for tractable computa-
tion of other information-theoretic measures using probabilistic circuits. For example, we
can tractably compute the cross entropy of probabilistic circuits using its relation to KL
divergence. The cross entropy between two normalized PCs C and C′ over RVs X is defined
as

H(C, C′) = −
∫
val(X)

C(x) log C′(x)dX.
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Algorithm 6 KLD(C, C′) . Cache recursive calls to achieve polynomial complexity

Require: smooth, deterministic, and structured decomposable PCs C and C′
if InterMAR(C, C′) < 1 then return ∞ else return InterDiv(C, C′)
function InterMAR(n,m)

if n,m are input units then return Cn(supp(C′m))
else if n,m are product units then return

∏
i InterMAR(ni,mi)

else if n,m are sum units then return
∑

i,j θi · InterMAR(ni,mj)

function InterDiv(n,m)
if n,m are input units then return DI(Cn ‖ C′m)
else if n,m are product units then

return
∑

i InterDiv(ni,mi)
∏
j 6=i InterMAR(nj ,mj)

else if n,m are sum units then
return

∑
i,j θi(InterDiv(ni,mj) + log θi

θ′j
· InterMAR(ni,mj))

From this definition, we can easily derive the following expression of cross entropy in terms
of entropy and KL-divergence:

H(C, C′) = HC(X) + KL(C ‖ C′).

Thus, we can tractably compute the cross entropy between two PCs if they are smooth,
deterministic, and structured decomposable w.r.t. the same vtree (assuming tractable com-
putation on input distributions), as these properties imply tractable computation of joint
entropy (see Corollary 44) as well as KL divergence.24

9.2 Expectation

Let us next study another type of pairwise query—expectation—whose tractable computa-
tion is enabled by structured decomposability. For example, consider the traffic jam scenario
from Section 2.2; expectation queries will allow us to answer questions such as “How likely
is my route to work have traffic jam on a weekday?”

Definition 47 (EXP query class) Let C be a normalized PC over RVs X, and C′ another
PC over the same set of variables. Then the expectation of C′ w.r.t. C is:

EC [C′] =

∫
val(X)

C(x) · C′(x) dX. (26)

The EXP query class is quite general and can represent a range of queries depending on
the function or distribution defined by C′. In this section, we focus on a notable example
that was hinted to earlier: the probability of logical events (Choi et al., 2015). While the
query classes considered so far dealt with probabilities of events given by assignments or

24. In fact, we can tractably compute the cross entropy H(C, C′) if both PCs are smooth and structured
decomposable and C′ is deterministic; that is, C need not be deterministic. We omit the details of the
proof here, but how the cross entropy over sum units breaks down can easily be derived in steps similar
to Equations 21–23.
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Cartesian products of simple intervals, we now turn our attention to probabilities of events
with a more intricate structure.

We will represent events as logical formulas involving conjunctions and disjunctions,
with atoms consisting of assignments (equality) for discrete RVs and inequality constraints
over continuous RVs.25 For instance the following event over RVs X = X1, X2

(X1 = ν1) ∧ ((X2 ≥ ν2) ∨ (X2 ≤ ν3))

denotes the subset {x1, x2 | x1 =ν1, x2 ∈ val(X2)}∩({x1, x2 | x1 ∈ val(X1), x2 ∈ val(X2), x2 ≥
ν2}∪{x1, x2 | x1 ∈ val(X1), x2 ∈ val(X2), x2 ≤ ν3}) over the state space of X for ν1 ∈ val(X1)
and ν2, ν3 ∈ val(X2).

Suppose C is a PC over RVs X, and a circuit C′ defines a logical formula α over X.
Then the expectation EC [C′] precisely computes the probability of event given by α w.r.t.
the distribution defined by C, denoted pC(α). We have in fact already seen an example of
such query: the class of marginal queries. For instance, consider the following query for the
probability of a logical event:

p(X1 = 2 ∧ (X2 ≥ 5) ∧ (X2 ≤ 10)).

Above query can be compactly written as

p(X1 = 2, 5 ≤ X2 ≤ 10) = p(X1 = 2, X2 ∈ [5, 10]),

which corresponds to a MAR query. In other words, a marginal query computes the prob-
ability of an event given by a conjunction of literals. Formally, the marginal probability
pC(e,I) for a given evidence e ∈ val(E) and intervals I = I1 × · · · × Ik s.t. Ii ∈ val(Zi),
where each interval Ii is of the form ai ≤ Zi < bi, can be interpreted as the probability of
a logical formula α where

α =
∧
e∈e

(E = e) ∧
∧
i

(ai ≤ Zi) ∧ (Zi < bi).

Note that α is simply a linear-sized conjunction, and as shown in Section 4, marginal
queries can be tractably computed without constructing a second circuit that represents α.
Nevertheless, the expectation query can be useful to compute probabilities of more complex
events. For instance, recall the earlier example query for “the probability of a traffic jam
on my route to work on a weekday.” This query can be written as:

p

(
¬(D = Sat ∨ D = Sun) ∧

∨
i∈route

Jstri

)
.

We refer to Section 12.2 on details about representing a logical formula with a PC, exploiting
the connection to logical circuits.

25. This logical language to describe events is a fragment of the Satisfiability Modulo Theory (SMT) lan-
guage (Barrett and Tinelli, 2018) where literals are constrained to be univariate predicates. Computing
the probability of events involving multivariate SMT literals, e.g., (X + Y ≤ 5) involving additional
predicates such as linear arithmetic ones over the reals, poses additional and non-trivial computational
challenges, and goes beyond the scope of this work. We refer the reader interested in these advanced
classes of probabilistic queries to the literature of weighted model integration (Belle et al., 2015) where
tractable representations for them have been recently investigated (Zeng and Van den Broeck, 2019;
Zeng et al., 2020).
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Algorithm 7 Exp(n,m) . Cache recursive calls to achieve polynomial complexity

Require: smooth and structured decomposable PC nodes n and m
if n is an input unit then return ECn [C′m]
else if n,m are product units then return

∏
iExp(ni,mi)

else if n,m are sum units then return
∑

i,j θiθ
′
jExp(ni,mj)

Proposition 48 Suppose C and C′ are probabilistic circuits over variables X, and are
smooth and structured decomposable w.r.t. the same vtree. Then EC [C′], the expectation of
C′ w.r.t. C, can be computed tractably, if the expectation of input distributions is tractable.

Analogous to computation of KL divergence, the expectation query on a pair of PC
nodes can be broken down into that of their inputs. First, if the roots are product units
such that C(x) =

∏k
i=1 Ci(xi) (similar for C′), we have:

EC [C′] =

∫
C(x) · C′(x) dX =

∫ (∏
i

Ci(xi)
)(∏

i

C′i(xi)
)
dX

=

∫ ∏
i

Ci(xi)C′i(xi) dX =
∏
i

(∫
Ci(xi)C′i(xi) dXi

)
=
∏
i

ECi [C′i].

In other words, the expectation of structured decomposable product units is simply the
product of expectation of their input units.

Next, if the roots are sums, then their children nodes all depend on the same set of
variables (namely X) by smoothness. Hence, the expectation can be broken down as follows:

EC [C′] =

∫
C(x) · C′(x) dX =

∫ (∑
i

θiCi(x)

)∑
j

θ′jC′j(x)

 dX

=

∫ ∑
i,j

θiθ
′
jCi(x)C′j(x) dX =

∑
i,j

θiθ
′
j

∫
Ci(x)C′j(x) dX =

∑
i,j

θiθ
′
jECi [C′j ].

Therefore, the expectation of smooth sum nodes can be computed as a weighted sum of the
expectations of each pair of children nodes.

We can apply above observations recursively down to the distribution units, as shown
in Algorithm 7. Again, the algorithm assumes that both circuits are in their canonical
forms, with alternating sum and product units at each layer. Moreover, nodes may have
multiple outputs, resulting in multiple recursive calls with the same pair of circuit nodes.
These values can be cached to avoid redundant computations. Then, the complexity of
the algorithm is loosely upper-bounded by O(|C| · |C′|) assuming tractable computation of
expectations for distribution units.
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