
Einsum Networks: Fast and Scalable Learning of

Tractable Probabilistic Circuits

Robert Peharz 1 Steven Lang 2 Antonio Vergari 3 Karl Stelzner 2 Alejandro Molina 2 Martin Trapp 4

Guy Van den Broeck 3 Kristian Kersting 2 Zoubin Ghahramani 5

Abstract

Probabilistic circuits (PCs) are a promising av-

enue for probabilistic modeling, as they permit a

wide range of exact and efficient inference rou-

tines. Recent “deep-learning-style” implementa-

tions of PCs strive for a better scalability, but are

still difficult to train on real-world data, due to

their sparsely connected computational graphs. In

this paper, we propose Einsum Networks (EiNets),

a novel implementation design for PCs, improving

prior art in several regards. At their core, EiNets

combine a large number of arithmetic operations

in a single monolithic einsum-operation, leading

to speedups and memory savings of up to two

orders of magnitude, in comparison to previous

implementations. As an algorithmic contribution,

we show that the implementation of Expectation-

Maximization (EM) can be simplified for PCs,

by leveraging automatic differentiation. Further-

more, we demonstrate that EiNets scale well to

datasets which were previously out of reach, such

as SVHN and CelebA, and that they can be used

as faithful generative image models.

1. Introduction

The central goal of probabilistic modeling is to approxi-

mate the data-generating distribution, in order to answer

statistical queries by means of probabilistic inference. In

recent years many novel probabilistic models based on deep

neural networks have been proposed, such as Variational

Autoencoders (VAEs) (Kingma & Welling, 2014) (formerly

known as Density Networks (MacKay, 1995)), Normal-

izing Flows (Rezende & Mohamed, 2015; Papamakarios

1Eindhoven University of Technology 2Technical University
of Darmstadt 3University of California, Los Angeles 4Graz Uni-
versity of Technology 5University of Cambridge, Uber AI Labs.
Correspondence to: Robert Peharz <r.peharz@tue.nl>, Steven
Lang <steven.lang.mz@gmail.com>.

Proceedings of the 37
th International Conference on Machine

Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

et al., 2019), Autoregressive Models (ARMs) (Larochelle &

Murray, 2011; Uria et al., 2016), and Generative Adversar-

ial Networks (GANs) (Goodfellow et al., 2014). While all

these models have achieved impressive results on large-scale

datasets, i.e. they have been successful in terms of represen-

tational power and learning, they unfortunately fall short

in terms of inference, a main aspect of probabilistic model-

ing and reasoning (Pearl, 1988; Koller & Friedman, 2009).

All of the mentioned models allow to draw unbiased sam-

ples, enabling inference via Monte Carlo estimation. This

strategy, however, becomes quickly unreliable and computa-

tional expensive for all but the simplest inference queries.

Also other approximate inference techniques, e.g. varia-

tional inference, are often biased and their inference quality

might be hard to analyse. Besides sampling, only ARMs

and Flows support efficient evaluation of the probability

density for a given sample, which can be used, e.g., for

model comparison and outlier detection.

However, even for ARMs and Flows the following in-

ference task is computationally hard: Consider a den-

sity p(X1, . . . , XN) over N random variables, where N
might be just in the order of a few dozens. For example,

X1, . . . , XN might represent medical measurements of a

particular person drawn from the general population mod-

eled by p(X1, . . . , XN). Now assume that we split the vari-

ables into three disjoint sets Xq, Xm, and Xe of roughly

the same size, and that we wish to compute

p(xq |xe) =

∫
p(xq,x

′
m,xe)dx

′
m∫ ∫

p(x′
q,x

′
m,xe)dx

′
qdx

′
m

, (1)

for arbitrary values xq and xe. In words, we wish to predict

query variables Xq , based on evidence Xe = xe, while ac-

counting for all possible values of missing variables Xm, by

marginalizing them. Conditional densities like (1) highlight

the role of generative models as “multi-purpose predictors”,

since the choice of Xq , Xm, and Xe can be arbitrary. How-

ever, evaluating conditional densities of this form is notori-

ously hard for any of the models above, which represents a

principal drawback of these methods.

These shortcomings in terms of inference have motivated a

growing stream of research on tractable probabilistic mod-

els, where inference queries like (1) can be computed ex-

Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits

actly and efficiently (in polynomial time). One of the most

prominent families of tractable models are probabilistic

circuits (PCs),1 which represent probability densities via

computational graphs of i) mixtures (convex sum nodes),

ii) factorizations (product nodes), and iii) tractable distri-

butions (leaves, input nodes). Key structural properties of

PCs are smoothness and decomposability (Darwiche, 2003),

which ensure that any integral, like those appearing in (1),

can be computed in linear time of the circuit size. These

structural constraints, however, make it hard to work with

PCs in practice, as they lead to highly sparse and cluttered

computational graphs, which are inapt for current machine

learning frameworks. Furthermore, PCs are typically imple-

mented in the log-domain, which slows down learning and

inference even further.

In this paper, we propose a novel implementation design

for PCs, which ameliorates these practical difficulties, and

allows to evaluate and train PCs of up to two orders of

magnitude faster than previous “deep-learning-style” imple-

mentations (Pronobis et al., 2017; Peharz et al., 2019). The

central idea is to compute all product and sum operations on

the same topological layer using a single monolithic einsum

operation.2 In that way, the main computational work is

lifted by a parallel operation for which efficient implemen-

tations, both for CPU and GPU, are readily available in

most numerical frameworks. In order to ensure numerical

stability, we extend the well-known log-sum-exp-trick to

our setting, leading to the “log-einsum-exp” trick. Since

our model implements PCs via a hierarchy of large einsum

layers, we call our model Einsum Network (EiNet).

As further contributions, we present two algorithmic

improvements for training PCs. First, we show that

Expectation-Maximization (EM), the canonical maximum-

likelihood learning algorithm for PCs (Peharz, 2015; Desana

& Schnörr, 2016; Peharz et al., 2017), can be easily imple-

mented via automatic differentiation, readily provided by

most machine learning frameworks. Second, we leverage

stochastic online EM (Sato, 1999) in order to further im-

prove the learning speed of EiNets, or, enable EM for large

datasets at all. In experiments we demonstrate that EiNets

can rapidly learn generative models for street view house

numbers (SVHN) and CelebA. To the best of our knowledge,

this is the first time that PCs have been successfully trained

on datasets of this size. EiNets are capable of producing

high-quality image samples, while maintaining tractable

inference, e.g. for conditional densities (1).

1We adopt the name probabilistic circuits, as suggested by
(Vergari et al., 2019), which serves as an umbrella term for many
structurally related models, like arithmetic circuits, sum-product
networks, cutset networks, etc. See Section 2 for details.

2The einsum operation implements the Einstein notation of
tensor-product contraction, and unifies standard linear algebra op-
erations like dot product, outer product, and matrix multiplication.

2. Probabilistic Circuits

Probabilistic circuits (PCs) are a family of probabilistic mod-

els which allow a wide range of exact and efficient inference

routines. The earliest representatives of PCs are arithmetic

circuits (ACs) (Darwiche, 2002; 2003), which are based on

decomposable negation normal forms (DNNFs) (Darwiche,

1999; 2001), a tractable representation for propositional

logic formulas. Further members of the PC family are sum-

product networks (SPNs) (Poon & Domingos, 2011), cutset

networks (CNs) (Rahman et al., 2014), and probabilistic

sentential decision diagrams (PSDDs) (Kisa et al., 2014).

The main differences between different types of PCs are i)

the set of structural constraints assumed and corresponding

tractable inference routines, ii) syntax and representation,

and iii) application scenarios. In order to treat these models

in a unified fashion, we adopt the umbrella term probabilis-

tic circuits suggested by (Vergari et al., 2019), and distin-

guish various instantiates of PCs mainly via their structural

properties.

Definition 1 (Probabilistic Circuit). Given a set of ran-

dom variables X, a probabilistic circuit (PC) P is a tuple

(G, ψ), where G, denoted as computational graph, is an

acyclic directed graph (V,E), and ψ : V 7→ 2X, denoted as

scope function, is a function assigning some scope (i.e., a

sub-set of X) to each node in V . For internal nodes of

G, i.e. any node N ∈ V which has children, the scope

function satisfies ψ(N) = ∪N′∈ch(N)ψ(N
′), where ch(N)

denotes the set of children of N. A leaf of G computes a

probability density3 over its scope ψ(L). All internal nodes

of G are either sum nodes (S) or product nodes (P). A

sum node S computes a convex combination of its children,

i.e. S =
∑

N∈ch(S) wS,N N, where
∑

N∈ch(S) wS,N = 1, and

∀N ∈ ch(S) : wS,N ≥ 0. A product node P computes a

product of its children, i.e. P =
∏

N∈ch(P) N.

PCs can be seen as a special kind of neural network, where

the first layer computes non-linear functions (probability

densities) over sub-sets of X, and all internal nodes com-

pute either weighted sums (linear functions) or products

(multiplicative interactions). Each node N in a PC sees only

a sub-set of the inputs, namely variables in its scope ψ(N).
The output of a PC is typically a single root node Nroot

(i.e., a node without parents), for which we assume full

scope ψ(Nroot) = X. We define a density P(x) propor-

tional to the output: P(x) := Nroot(x)∫
Nroot(x)dx

. PCs as defined

here encode a density, but do not permit tractable inference

yet. In particular, the normalization constant is hard to com-

pute. Various tractable inference routines “can be bought”

by imposing structural constraints, which we review next.

3This subsumes probability mass functions by assuming an
adequate underlying counting measure, and also hybrid discrete-
continuous densities by assuming an adequate underlying product
measure of counting and Lebesgue measures.

Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits

Decomposability. A PC is decomposable, if for each prod-

uct node P ∈ V it holds that ψ(N) ∩ ψ(N′) = ∅, for

N,N′ ∈ ch(P), N 6= N′, i.e. a PC is decomposable if

children of product nodes have pairwise disjoint scope.

Smoothness. A PC is smooth, if for each sum node S ∈ V
it holds that ψ(N) = ψ(N′), for N,N′ ∈ ch(S), i.e. a PC is

smooth if children of sum nodes have identical scope.

In smooth and decomposable PCs, any node is by induc-

tion a properly normalized density (over its scope), since i)

leaves are densities by assumption, ii) sum nodes are mix-

ture densities, and iii) product nodes are factorized densities.

The most important consequence of decomposability and

smoothness is that integrals which can be written as nested

single-dimensional integrals—in particular the normaliza-

tion constant—can be computed in linear time of the circuit

size (Peharz et al., 2015). This follows from the fact that any

single-dimensional integral i) commutes with a sum-node

and ii) affects only a single child of a product-node. Conse-

quently, all integrals can be distributed to the PC’s leaves,

i.e. we simply need to perform integration at the leaves

(which is assumed to be tractable), and evaluate the internal

nodes in a single feedforward pass. Smooth and decom-

posable PCs admit a natural interpretation as latent variable

models (Zhao et al., 2015; Peharz et al., 2017), which ad-

mits a natural sampling procedure via ancestral sampling

and maximum-likelihood learning via EM (Peharz, 2015;

Desana & Schnörr, 2016; Peharz et al., 2017). Smooth

and decomposable PCs are often referred to as sum-product

networks (SPNs) (Poon & Domingos, 2011).

In this paper, we consider only smooth and decomposable

PCs (aka SPNs), which allow efficient marginalization and

conditioning. A further structural property, not considered

in this paper, is determinism (Darwiche, 2003) which al-

lows for exact probability maximization (most-probable-

explanation), which is NP-hard in non-deterministic PCs

(de Campos, 2011; Peharz et al., 2017). Moreover, PCs can

be equipped with structured decomposability (Pipatsrisawat

& Darwiche, 2008; Khosravi et al., 2019a), which allows cir-

cuit multiplication and structured expectations (Shen et al.,

2016; Khosravi et al., 2019b).

3. Einsum Networks

3.1. Vectorizing Probabilistic Circuits

An immediate way to yield a denser and thus more efficient

layout for PCs is to vectorize them. To this end, we re-define

a leaf L to be a vector of K densities over ψ(L), rather than

a single density. For example, a leaf computing a Gaussian

density is replaced by a vector [N (·|θ1), . . . ,N (·|θK)]T ,

each N (·|θk) being a Gaussian over ψ(L), equipped with

private parameters θk. A product node is re-defined to

be an outer product ⊗N∈ch(P)N, containing the products

of all possible combinations of densities coming from the

child vectors. Since the number of elements in outer prod-

ucts grows exponentially, we restrict the number of chil-

dren to two (this constraint is frequently imposed on PCs

for simplicity). Finally, we re-define sum nodes to be a

vector of K weighted sums, where each individual sum

operation has its private weights and computes a convex

combination over all the densities computed by its children.

The vectorized version of PCs is frequently called a region

graph (Dennis & Ventura, 2012; Trapp et al., 2019a) and

has been used in previous GPU-supporting implementations

(Pronobis et al., 2017; Peharz et al., 2019). It is easily veri-

fied, that our desired structural properties—smoothness and

decomposability—carry over to vectorized PCs.

For the remainder of the paper, we use symbols S, P, L for

the vectorized versions, and refer to them as sum nodes,

product nodes, and leaf nodes, respectively, or also simply

as sums, products and leaves. To any single entry in these

vectors we explicitly refer to as entry, or operation. In prin-

ciple, the number of entries K could be different for each

leaf or sum, which would, however, lead to a less homoge-

neous PC design. Therefore, in this paper, we assume for

simplicity the same K for all leaves and sums. Furthermore,

we make some simplifying assumptions about the struc-

ture of G. First, we assume a structure alternating between

sums/leaves and products, i.e. children of sums can only

be products, and children of products can only be sums or

leaves. Second, we also assume the root of the PC is a sum

node. These assumptions are commonly made in the PC

literature and are no restriction of generality. Furthermore,

we also assume that each product node has at most one

parent (which must be a sum due to alternating structure).

This is also not a severe structural assumption: If a product

has two or more sum nodes as parents, then, by smoothness,

these sum nodes have all the same scope. Consequently,

they could be simply concatenated to a single sum vector.

Of course, since in this paper we assume a constant length

K for all sum and leaf vectors, this assumption requires a

large enough K.

3.2. The Basic Einsum Operation

The core computational unit in EiNets is the vectorized PC

excerpt in Fig. 1, showing a sum node S with a single prod-

uct child P, which itself has two children N and N′ (shown

here as sum nodes, but they could also be leaves). Nodes N

and N′ compute each a vector of K densities, the product

node P computes the outer product of N and N′, and the

sum node S computes a matrix-vector product Wvec(P).
Here, W is an element-wise non-negative K ×K2 matrix,

whose rows sum to one, and vec(P) unrolls P to a vector

of K2 elements. Previous PC implementations (Pronobis

et al., 2017; Peharz et al., 2019), are also based on this

core computational unit. For numerical stability, however,

Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits

Figure 1. Basic einsum operation in EiNets: A sum node S, with a

single child P, which itself has 2 children. All nodes are vectorized,

as described in Section 3.1, and here illustrated for K = 5.

they use a computational workaround in the log-domain:

The outer product is transformed into an “outer sum” of

log-densities (realized with broadcasting), the matrix multi-

plication is implemented using a broadcasted sum of logW
and vec(logP), to which then a log-sum-exp operation is

applied, yielding log S. This workaround introduces signifi-

cant overhead and needs to allocate the products explicitly.

Mathematically, the PC excerpt in Fig. 1 is a simple multi-

linear form, naturally expressed in Einstein notation:

Sk = WkijNiN
′
j . (2)

Here we have re-shaped W into a K × K × K tensor,

normalized over its last two dimensions, i.e. Wkij ≥ 0,∑
i,jWkij = 1. The signature in (2) mentions three indices

i, j and k labeling the axes of N, N′, and W. Axes with

the same index get multiplied. Furthermore, any indices not

mentioned on the left hand side get summed out. General-

purpose Einstein summations are readily implemented in

most numerical frameworks, and usually denoted as einsum

operation.

However, applying (2) in a naive way would quickly lead

to numerical underflow and unstable training. In order to

ensure numerical stability, we develop a technique similar to

the classical “log-sum-exp”-trick. We keep all probabilistic

values in the log-domain, but the weight-tensor W is kept

in the linear domain. Consequently, we need a numerically

stable computation for

log Sk = log
∑

i,j

Wkij exp(logNi) exp(logN
′
j). (3)

Let us define a = maxi logNi and a′ = maxj logN
′
j .

Then, it is easy to see that (3) can also be computed as

a+a′+log
∑

i,j

Wkij exp(logNi−a) exp(logN
′
j−a

′). (4)

A sufficient condition for numerical stability of (4) is that

all sum-weights Wkij > 0, since in this case the maximal

values in vectors exp(logN− a) and exp(logN′ − a′) are

Algorithm 1 Topological Layers

1: Input: PC graph G = (V,E)
2: Let L, S, P be the set of all leaves, sum nodes, product

nodes in V , respectively

3: M ← {}
4: layers = []
5: while M 6= S ∪ P do

6: lS = {S ∈ S : S /∈M ∧ ∀P ∈ pa(S) : P ∈M}
7: layers← concatenate([lS], layers)
8: M ←M ∪ lS
9: lP = {P ∈ P : P /∈M ∧ ∀S ∈ pa(P) : S ∈M}

10: layers← concatenate([lP], layers)
11: M ←M ∪ lP
12: end while

13: layers← concatenate([L], layers)
14: Return layers

guaranteed to be 1, leading to a positive argument for the log.

This is not a severe requirement, as positive sum-weights are

commonly enforced in PCs, e.g. by using Laplace smooth-

ing or imposing a positive lower bound on the weights.

Given twoK-dimensional vectors N, N′ and theK×K×K
weight-tensor W, our basic einsum operation (4) requires

2K exp-operations, K log-operations, O(K3) multiplica-

tions and O(K3) additions. We need to store 3K values for

N, N′, S, while the product operations are not stored explic-

itly. In contrast, the indirect implementations of the same

operation in (Pronobis et al., 2017; Peharz et al., 2019) need

O(K3) additions, K3 exp-operations and K log-operations.

These implementations also store 3K values for N, N′, S,

and additional K2 values for the explicitly computed prod-

ucts. While our implementation is cubic in the number of

multiplications, the previous implementations need a cu-

bic number of exp-operations. This partially explains the

speedup of EiNets in our experiments in Section 4. However,

the main reasons for the observed speedup are i) an opti-

mized implementation of the einsum operation, ii) avoiding

the overhead of allocating product nodes, and iii) a higher

degree of parallelism, as discussed in the next section.

3.3. The Einsum Layer

Rather than computing single vectorized sums, we can do

better by computing whole layers in parallel. To this end,

we organize the PC graph G in layers using Algorithm 1,

which is essentially a top-down breadth-first search. We

first partition the set of nodes V into the sets L, S, and P,

containing all leaves, all sums and all products, respectively.

We initialize an empty set M , which stores the “marked”

nodes during the execution of the algorithm. We also initial-

ize an empty list layers which will contain the result of the

algorithm, a topologically ordered list of sets of nodes.

Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits

Figure 2. Example of an einsum layer, parallelizing the basic ein-

sum operation.

In line 6, we construct the set lS of unmarked sum nodes

(i.e. S /∈ M), but whose parents (denoted as pa(S)), have

already been marked. Note that in the first iteration of the

while-loop, lS will only contain the root of the EiNet. The

set lS is then inserted as head of the list layers and all nodes

in lS are marked as visited. A similar procedure, but for

product nodes, is performed in lines 9–11, yielding node

set lP. Note that, since we assume that each product node

has only one parent (cf. Section 3.1), lP will be exactly the

set of children of the sum nodes in lS (constructed in line

6 within the same while-iteration). If we assume for the

moment that all sum nodes in lS have exactly one child, then

lP and lS form a consecutive pair of product and sum layers,

as illustrated in Fig. 2. The central technique in this paper

is an efficient and parallel computation of these two layers.

The last step of Algorithm 1, line 13, is to insert the set of

all leaf nodes as head of the list layers. It is easy to check

that layers will be a topologically ordered list of layers,

ordered from leaves to root.

Let us now consider an excerpt as in Fig. 2, consisting of L
sum nodes, where each of the sum nodes has a single child.

We first collect all the vectors of the “left” product children

in an L×K matrix N and similarly all the “right” product

children in an L ×K matrix N
′, where “left” and “right”

are arbitrary but fixed assignments. We further extend the 3-

dimensional weight-tensor W from (2) to a 4-dimensional

L×K×K×K tensor, where the slice Wl : : : contains the

weights for the lth vectorized sum node. The result of all L
sums—i.e. in totalL×K sum operations—can be performed

with a single einsum operation: Slk = WlkijNliN
′

lj . Note

the similarity to (2), and the additional parallelism by simply

introducing an additional index l. It is straight-forward to ex-

tend the log-einsum-exp trick (see Section (3.2)) to this op-

eration, in order to ensure numerical stability. Constructing

the two matrices N and N
′ requires some book-keeping and

introduces some computational overhead stemming from

extracting and concatenating slices from the log-probability

tensors below. This overhead is essentially the symptom

of the sparse and cluttered layout of PCs. The main com-

putational work, however, is then performed by a highly

parallel einsum operation. In order to allow sum nodes with

multiple children we use a simple technique explained next.

Figure 3. Decomposing a layer of sum nodes with multiple chil-

dren (left) into two consecutive sum layers (right).

3.4. The Mixing Layer

In order to compute sum nodes with multiple children, we

express any sum node with several children as a cascade

of 2 vectorized sum operations. In particular, for a sum

node S with C children, we introduce C new sum nodes

S1, . . . , SC , each adopting one of the children as a single

child. Subsequently, the results of Sc, c ∈ {1, . . . , C}, get

mixed in an element-wise manner, i.e. Sk =
∑C
c=1 w

cSck.

This decomposition is essentially an over-parameterization

(Trapp et al., 2019b) of the original sum nodes, and rep-

resents the same functions. This principle is illustrated in

Fig. 3, where a sum node S1 with 3 children and a sum

node S2 with 2 children, are expressed using 5 sum nodes,

each with a single child, followed by element-wise mixtures

(drawn as sum nodes in boxes).

These element-wise mixtures can also be implemented with

a single einsum operation, which we denote as mixing layer.

To this end, let M be the number of sum nodes having

more than one child, and D the maximal number of chil-

dren (e.g. D = 3 in Fig. 3). We collect the K-dimensional

probability vectors computed by the first sum layer in a

D ×M ×K tensor, where the first axis is zero-padded for

sum nodes with less thanD children. The mixing layer com-

putes then a convex combination over the first dimension of

this tensor. Constructing this tensor unfortunately involves

some copy overhead, and wastes also some computation

due to zero padding. However, allowing for sum nodes with

multiple children lets us express a much wider range of

structures than e.g. random binary trees, which is the only

structure considered in (Peharz et al., 2019).

3.5. Exponential Families as Input Layer

For the leaves of EiNets we use log-densities of exponential

families (EFs), which have the form

log p = log h(x) + T (x)T θ −A(θ), (5)

where θ are the natural parameters, h is the so-called base

measure, T is the sufficient statistic and A is the log-

normalizer. Many parametric distributions can be expressed

as EFs, e.g. Gaussian, Binomial, Categorical, Beta, etc. In

order to facilitate learning using EM, we keep the parame-

Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits

ters in their expectation form φ (Sato, 1999). The natural

parameters θ and expectation parameters φ are one-to-one,

and connected via φ = ∂A(θ)/∂θ and θ = ∂H(φ)/∂φ,

where H denotes entropy. This dual parameterization al-

lows us to implement EM on the abstract level of EFs, while

particular instances of EFs are easily implemented by pro-

viding h, T , A, and the conversion θ(φ). All EF densities

can be computed in parallel with a handful of operations,

e.g. inner product T (x)T θ, evaluating A(θ), etc. After

having computed EFs for single variables, the leaves are

modeled as fully factorized, i.e. each leaf is of the form

log L(x) =
∑
X∈ψ(L) log pL,X(x), where log pL,X(x) is

the log EF density belonging to L and X , for each X in the

scope of L.

3.6. Expectation-Maximization (EM)

A natural way to learn PCs is the EM algorithm, wich is

known to rapidly increase the likelihood, especially in early

iterations (Salakhutdinov et al., 2003). EM for PCs was

derived in (Peharz et al., 2015; Desana & Schnörr, 2016;

Peharz et al., 2017), leading to the following update rules

for sum-weights and leaves:

nS,N(x) =
1

P(x)

∂P

∂S
N(x), pL(x) =

1

P(x)

∂P

∂L
L(x),

(6)

wS,N ←
wS,N

∑
x
nS,N(x)∑

x,N∈ch(S) nS,N(x)
, φL ←

∑
x
pL(x)T (x)∑
x
pL(x)

,

(7)

where the sums in (7) range over all training examples x. In

(Peharz et al., 2017) and (Peharz et al., 2019), the derivatives
∂P
∂S

and ∂P
∂L

required for the expected statistics nS,N and pL
were computed with an explicitly implemented backwards-

pass, performed in the log-domain for robustness. Here we

show that this implementation overhead can be avoided by

leveraging automatic differentiation.

Recall that EiNets represent all probability values in the log-

domain, thus the PC output is actually logP(x), rather than

P(x). Calling auto-diff on logP(x) yields the following

derivative for each sum-weight wS,N (omitting argument

x): ∂ logP

wS,N
= 1

P

∂P
∂S

∂S
∂wS,N

= 1
P

∂P
∂S

N, which is exactly nS,N

in (6), i.e. auto-diff readily provides the required expected

statistics for sum nodes. In many frameworks, auto-diff

readily accumulates the gradient by default, as required in

(7), leading to an embarrassingly simple implementation for

the E-step. For the M-step, we simply multiply the result of

the accumulator with the current weights, and renormalize.

Furthermore, recall that the leaves are implemented as log-

densities of an EF. Taking the gradient yields: ∂ logP

∂ logL =
1
P

∂P
∂ logL = 1

P

∂P
∂L
L, which is pL in (6). Thus, auto-diff

also implements most of the EM update for the leaves. We

simply need to accumulate both pL and pL T over the whole

dataset, and use (7) to update the expectation parameters φ.

Note, that both sum nodes and leafs can be updated using

the same calls to auto-diff.

The classical EM algorithm uses a whole pass over the

training set for a single update, which is computationally

wasteful due to redundancies in the training data (Bottou,

1998). Similar to stochastic gradient descent (SGD), it is

possible to define a stochastic version for EM (Sato, 1999).

To this end, one replaces the sums over the entire dataset in

(7) with sums over mini-batches, yielding wmini
S,N and φmini

L
.

The full EM update is then replaced with gliding averages

wS,N ← (1− λ)wS,N + λwminiS,N (8)

φL ← (1− λ)φL + λφminiL , (9)

where λ ∈ [0, 1] is a step-size parameter. This stochastic

version of EM introduces two hyper-parameters, step-size

λ and the batch-size, which need to be set appropriately.

Furthermore, unlike full-batch EM, stochastic EM does

not guarantee that the training likelihood increases in each

iteration. However, stochastic EM updates the parameters

after each mini-batch and typically leads to faster learning.

Sato (1999) shows an interesting connection between

stochastic EM and natural gradients (Amari, 1998). In par-

ticular, for any EF model P (X,Z), where X are observed

and Z latent variables, performing (8) and (9) is equivalent

to SGD, where the gradient is pre-multiplied by the inverse

Fisher information matrix of the complete model P (X,Z).
The difference to standard natural gradient is, that the natu-

ral gradient is defined via the inverse Fisher of the marginal

P (X) (Amari, 1998), rather than P (X,Z). Sato’s analysis

also applies to EiNets, since smooth and decomposable PCs

are EFs of the form P (X,Z) (Peharz et al., 2017), where

the latent variables are associated with sum nodes. Thus,

(8) and (9) are in fact performing SGD with (a variant of)

natural gradient.

4. Experiments

We implemented EiNets in PyTorch (Paszke et al., 2019).

Code accompanying this paper can be found in a stand-

alone repository;4 moreover, the code will be incorporated

and further developed in SPFlow (Molina et al., 2019), a

general-purpose PC library.5

4.1. Efficiency Comparison

In order to demonstrate the efficiency of EiNets we compare

with the two most prominent deep-learning implementa-

tions of PCs, namely LibSPN (Pronobis et al., 2017) and

4https://github.com/cambridge-mlg/

EinsumNetworks
5https://github.com/SPFlow/SPFlow

https://github.com/cambridge-mlg/EinsumNetworks
https://github.com/cambridge-mlg/EinsumNetworks
https://github.com/SPFlow/SPFlow

Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits

0

10

20

30

40

100 101

Training time (sec/epoch)

10−2

10−1

100

101

GP
U

m
em

or
y

(G
B)

K

EiNets (x)
SPFlow (+)
LibSPN (*)

10−1 100 101 102

Training time (sec/epoch)

10−1

100

D (depth)

10−1 100 101 102

Training time (sec/epoch)

10−2

10−1

100

101

R (# replicas)

Figure 4. Illustration of training time and peak memory consumption of EiNets, SPFlow and LibSPN when training randomized binary

PC trees, and varying hyper-parameters K (number of densities per sum/leaf), depth D, and number of replica R, respectively. The blob

size directly corresponds to the respective hyper-parameter under change. The total number of parameters ranged within 10k− 9.4M (for

varying K), 100k − 5.2M (for varying D), and 24k − 973k (for varying R). For LibSPN, some settings exhausted GPU memory and

are therefore missing.

Table 1. Test log-likelihoods of various baselines and EiNets, on 20

binarized datasets. For each dataset, the best performing method

is underlined. Results which are not statistically different from the

best method (using a one sided t-test, p = 0.05) are in boldface.

For oBMM and CCCP, no detailed results were available, so no

significance testing was done with these methods.

dataset oBMM CCCP Learn-SPN ID-SPN RAT-SPN EiNet

nltcs -6.070 -6.029 -6.110 -6.020 -6.011 -6.015

msnbc -6.030 -6.045 -6.113 -6.040 -6.039 -6.119

kdd-2k -2.140 -2.134 -2.182 -2.134 -2.128 -2.183

plants -15.140 -12.872 -12.977 -12.537 -13.439 -13.676

jester -53.860 -52.880 -53.480 -52.858 -52.970 -52.563

audio -40.700 -40.020 -40.503 -39.794 -39.958 -39.879

netflix -57.990 -56.782 -57.328 -56.355 -56.850 -56.544

accidents -42.660 -27.700 -30.038 -26.983 -35.487 -35.594

retail -11.420 -10.919 -11.043 -10.847 -10.911 -10.916

pumsb-star -45.270 -24.229 -24.781 -22.405 -32.530 -31.954

dna -99.610 -84.921 -82.523 -81.211 -97.232 -96.086

kosarek -11.220 -10.880 -10.989 -10.599 -10.888 -11.029

msweb -11.330 -9.970 -10.252 -9.726 -10.116 -10.026

book -35.550 -35.009 -35.886 -34.137 -34.684 -34.739

each-movie -59.500 -52.557 -52.485 -51.512 -53.632 -51.705

web-kb -165.570 -157.492 -158.204 -151.838 -157.530 -157.282

reuters-52 -108.010 -84.628 -85.067 -83.346 -87.367 -87.368

20ng -158.010 -153.205 -155.925 -151.468 -152.062 -153.938

bbc -275.430 -248.602 -250.687 -248.929 -252.138 -248.332

ad -63.810 -27.202 -19.733 -19.053 -48.472 -26.273

SPFlow (Molina et al., 2019). LibSPN is natively based on

Tensorflow (Abadi M. et al., 2015), while SPFlow supports

multiple backends. For our experiment, we used SPFlow

with Tensorflow backend. We used randomized binary trees

(RAT-SPNs) (Peharz et al., 2019) as a common benchmark:

These PC structures are governed by two structural param-

eters, the split-depth D and number of replica R: Starting

from the root sum node, they split the whole scope X into

two randomized balanced parts, recursively until depth D,

yielding a binary tree with 2D leaves. This construction is

repeated R times, yielding R random binary trees, which

are mixed at the root.

As a sanity check, we first reproduce the density estima-

tion results of RAT-SPNs (Peharz et al., 2019) on 20 binary

datasets (Lowd & Davis, 2010; Van Haaren & Davis, 2012;

Gens & Domingos, 2013), see Table 1. We see that EiNets

largely achieve the same performance as RAT-SPNs, except

on ’ad’ where EiNets even outperform RAT-SPNs with a

large margin. We conjecture that this difference stems from

stochastic EM which might help EiNets to escape from lo-

cal optima of the training likelihood. In Table 1, we also

report several baselines, namely online Bayesian moment

matching (oBMM) (Rashwan et al., 2016), concave-convex

procedure (CCCP) (Zhao et al., 2016), LearnSPN (Gens &

Domingos, 2013), and ID-SPN (Rooshenas & Lowd, 2014).

Note that these baseline methods are PCs learned with cus-

tom code and are not easily scalable to bigger datasets. Also,

note that Learn-SPN, CCCP and ID-SPN learn the PC struc-

ture from data, while the other methods use randomized

structures.

We compare EiNets with two other deep-learning PC imple-

mentations6 LibSPN and SPFlow in terms of i) training time,

ii) memory consumption, and iii) inference time. To this

end, we trained and tested them on synthetic data (Gaussian

noise) with N = 2000 samples and D = 512 dimensions.

As leaves we used single-dimensional Gaussians. We var-

ied each structural hyper-parameter in the following ranges:

depth D ∈ {1, . . . , 9}, replica R ∈ {1, . . . , 40}, and vector

length of sums/leaves K ∈ {1, . . . , 40}; please see (Pe-

harz et al., 2019) for the precise meaning of these hyper-

parameters. When varying one hyper-parameter, we left

the others to default values D = 4, R = 10, and K = 10.

We ran this set of experiments on a GeForce RTX 2080 Ti,

using a batch size of 100 samples.

In Figure 4 we see a comparison of the three implemen-

tations in terms of train time and GPU-memory peak con-

sumption, where the circle radii represent the magnitude of

the varied hyper-parameter. We see that EiNets tend to be

one or two orders of magnitude faster (note the log-scale)

6There are further deep-learning implementations of PCs,
which are, however, tailored to images (Sharir et al., 2016; Butz
et al., 2019), and not general-purpose.

Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits

than the competitors, especially for large models. Also in

terms of memory consumption EiNets scale gracefully. In

particular, for large K, memory consumption is an order

of magnitude lower than for LibSPN or SPFLow. This can

be easily explained by the fact that our einsum operations

do not generate product nodes explicitly in memory, while

the other frameworks do. Moreover, EiNets also perform

superior in terms of inference time. In particular for large

models, they run again one or two orders of magnitude faster

than the other implementations. For space reasons, these

results are deferred to the supplementary.

4.2. EiNets as Generative Image Models

While PCs are an actively researched topic, their scalability

issues have restricted them so far to rather small datasets

like MNIST (LeCun et al., 1998). In this paper, we use

PCs as generative model for street-view house numbers

(SVHN) (Netzer et al., 2011), containing 32 × 32 RGB

images of digits, and center-cropped CelebA (Liu et al.,

2015), containing 128× 128 RGB face images. For SVHN,

we used the first 50k train images and concatenated it with

the extra set, yielding a train set 581k images. We reserved

the rest of the core train set, 23k images, as validation

set. The test set comprises 26k images. For CelebA, we

used the standard train, validation and test splits, containing

183k, 10k, and 10k images, respectively. The data was

normalized before training (division by 255), but otherwise

no preprocessing was applied. To the best or our knowledge,

PCs have not been successfully trained on datasets of this

size before.

We first clustered both datasets into 100 clusters using the

sklearn implementation of k-means, and learned an EiNet

for each of these clusters. We then used these 100 EiNets as

mixture components of a mixture model, using the cluster

proportions as mixture coefficients. Note that a mixture of

PCs yields again a PC, and that this step is essentially the

first step of LearnSPN (Gens & Domingos, 2013), one of

the most prominent PC structure learners.

We trained EiNets using the image-tailored structure pro-

posed in (Poon & Domingos, 2011), to which we refer as PD

structure. The PD structure recursively decomposes the im-

age into sub-rectangles using axis-aligned splits, displaced

by a certain step-size ∆. Here, ∆ serves as a structural

hyperparameter, which governs the number of sum nodes

according to O(1
∆3) (Peharz, 2015). ∆ can also be a vector

of step-sizes; in this case the largest value in ∆ which fits in

the longer side of a sub-rectangle is applied. The recursive

splitting process stops, when a rectangle cannot be split by

any value in ∆.

For the PD structure of each EiNet component, we used a

step-size ∆ = 8 for SVHN and ∆ = 32 for CelebaA, i.e. we

applied 4 axis-aligned splits. We only applied vertical splits,

in order to reduce artifacts stemming from the PD structure.

As leaves, we used factorized Gaussians, i.e. Gaussians with

diagonal covariance matrix, which were further factorized

over the RGB channels. The vector length for sums and

leaves was set to K = 40. After each EM update, we pro-

jected the Gaussian variances to the interval [10−6, 10−2],
corresponding to a maximal standard deviation of 0.1. Each

component was trained for 25 epochs, using a batch size of

500 and EM stepsize of 0.5. In total, training lasted 5 hours

for SVHN and 3 hours for CelebA, on an NVidia P100.

Original samples and samples from the EiNet mixture are

shown in Figure 5, (a,b) for SVHN and (d,e) for CelebA,

respectively. The SVHN samples are rather compelling, and

some samples could be mistaken for real data samples. The

CelebA samples are somewhat over-smoothed, which is a

typical effect for likelihood-based approaches, but capture

the main quality of faces well. In both cases, some “stripy”

artifacts, typical for the PD architecture (Poon & Domingos,

2011), can be seen.

We computed two common measures to evaluate image

quality, namely the Fréchet Inception Score (FID) (Heusel

et al., 2017) and the log-likelihood of the test set. For the

FID, we sampled artificial sample sets of the same size as

the respective test sets. For SVHN, EiNets achieved a FID of

86.51 and a test log-likelihood of −4.248 nats, normalized

over samples, pixels and channels. For CelebA, EiNets

achieved a FID of 105.44 (71.47 when re-scaling images to

64× 64 using Lanczos resampling) and a normalized test

log-likelihood of −3.42 nats.

Although the image quality is not comparable to e.g. GAN

models (Goodfellow et al., 2014), we want to stress that

EiNets permit tractable inference, while GANs and most

other generative models are restricted to sampling. In partic-

ular, tractable inference can be immediately used for image

inpainting, as demonstrated in Figure 5, (c) for SVHN and

(f) for CelebA. Here, we marked parts of test samples as

missing (top or left image half) and reconstructed it by draw-

ing a sample from the conditional distribution, conditioned

on the visible image part. We see that the reconstructions

are plausible, in particular for SVHN.

4.3. EiNets for Outlier Detection

A natural application of generative models is outlier detec-

tion, by monitoring the sample probability. For example, if

we have trained an EiNet over the feature space of a clas-

sifier, an atypically low value for the density P(x) might

indicate outlier data. In this case, we can trigger a reject

option, rather than feeding the sample to the classifier. In

(Peharz et al., 2019), it was demonstrated that PCs deliver

very good outlier signals, even for (semi-)discriminative

models. We ran a similar experiment as in (Peharz et al.,

2019), and trained an EiNet on the training set of MNIST.

Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits

(a) Real SVHN images. (b) EiNet SVHN samples. (c) Real images (top), covered images, and EiNet reconstructions

(d) Real CelebA samples. (e) EiNet CelebA samples. (f) Real images (top), covered images, and EiNet reconstructions

Figure 5. Qualitative results of EiNets trained on RGB data. Top: SVHN (32× 32). Bottom: CelebA (128× 128).

Figure 6. Histograms of sample-wise log-probabilities of the test

sets of MNIST, SEMEION and SVHN, under EiNet trained on

MNIST training data. Note that the histograms do not overlap.

Unlike as in (Peharz et al., 2019), who used Gaussian leaves,

we trained our model on discrete pixel data and used Cate-

gorical distributions with 256 states. We used a PD structure

(Poon & Domingos, 2011) with ∆ = [7, 28], such that the

28× 28 images are first split into 4× 4 super-pixels, which

are then further split into single pixels. We used distribution

vectors of length K = 40. This structure yields are rather

large model (107M parameters) which we trained for 10
hours on a single NVidia P100, cross-validating over epochs

(early stopping). The final test log-likelihood of this model

was −686.20 nats per sample.

In Fig. 6 we see histograms over sample-wise log-

probabilities for the MNIST test set, SEMEION (Buscema,

1998) and SVHN. We see that, in this case, the EiNet does a

perfect job in discriminating inliers (MNIST) from outliers

(SEMEION and SVHN). In fact, the smallest log-probability

of an MNIST test sample was −1362.91 nats, while the

largest log-probabilities for SEMEION and SVHN were

−1796.84 nats and −8327.78 nats, respectively.

5. Conclusion

Probabilistic models form a spectrum of machine learning

techniques. Most of the research is focused on representing

and learning flexible and expressive models, but ignore the

down-stream impact on the set of inference tasks which can

be provably solved within the model. The philosophy of

tractable modeling also aims to push the expressivity bound-

aries, but under the constraint to maintain a defined set of

exact inference routines. Probabilistic circuits are certainly

a central and prominent approach for this philosophy. In this

paper, we addressed a major obstacle for PCs, namely their

scalability in comparison to unconstrained models. Our

improvements of training speed and memory-use reduction,

both in the orders of one or two orders of magnitude, are

compelling, and we hope that our results stimulates further

developments in the area of tractable models.

Acknowledgements

Many thanks to Thomas Viehmann, for bringing einsums to

PyTorch, and to Tim Rocktäschel, for his great tutorial on

einsums for machine learning. RP: This project has received

Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits

funding from the European Union’s Horizon 2020 research

and innovation programme under the Marie Skłodowska-

Curie Grant Agreement No. 797223 — HYBSPN. GVdB:

This work is partially supported by NSF grant IIS-1943641

and DARPA XAI grant #N66001-17-2-4032.

References

Abadi M. et al. TensorFlow: Large-scale machine learn-

ing on heterogeneous systems, 2015. URL https:

//www.tensorflow.org/. Software available from

tensorflow.org.

Amari, S.-I. Natural gradient works efficiently in learning.

Neural computation, 10(2):251–276, 1998.

Bottou, L. Online algorithms and stochastic approximations.

In Saad, D. (ed.), Online Learning and Neural Networks.

Cambridge University Press, 1998.

Buscema, M. MetaNet*: The Theory of Independent Judges,

volume 33. 02 1998.

Butz, C. J., Oliveira, J. S., dos Santos, A. E., and Teixeira,

A. L. Deep convolutional sum-product networks. In

Proceedings of the AAAI Conference on Artificial Intelli-

gence, volume 33, pp. 3248–3255, 2019.

Darwiche, A. Compiling knowledge into decomposable

negation normal form. In IJCAI, volume 99, pp. 284–289,

1999.

Darwiche, A. Decomposable negation normal form. Journal

of the ACM (JACM), 48(4):608–647, 2001.

Darwiche, A. A logical approach to factoring belief net-

works. KR, 2:409–420, 2002.

Darwiche, A. A differential approach to inference in

Bayesian networks. Journal of the ACM, 50(3):280–305,

2003.

de Campos, C. New complexity results for MAP in Bayesian

networks. In Proceedings of IJCAI, pp. 2100–2106, 2011.

Dennis, A. and Ventura, D. Learning the architecture of

sum-product networks using clustering on variables. In

Proceedings of NIPS, pp. 2042–2050, 2012.

Desana, M. and Schnörr, C. Expectation maximization

for sum-product networks as exponential family mixture

models. arXiv preprint arXiv:1604.07243, 2016.

Gens, R. and Domingos, P. Learning the structure of sum-

product networks. Proceedings of ICML, pp. 873–880,

2013.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,

Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.

Generative adversarial nets. In Proceedings of NIPS, pp.

2672–2680, 2014.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and

Hochreiter, S. Gans trained by a two time-scale update

rule converge to a local nash equilibrium. In Advances in

neural information processing systems, pp. 6626–6637,

2017.

Khosravi, P., Choi, Y., Liang, Y., Vergari, A., and Van den

Broeck, G. On tractable computation of expected pre-

dictions. In Advances in Neural Information Processing

Systems, pp. 11169–11180, 2019a.

Khosravi, P., Liang, Y., Choi, Y., and Van den Broeck, G.

What to expect of classifiers? reasoning about logistic

regression with missing features. In Proceedings of IJCAI,

pp. 2716–2724, 2019b.

Kingma, D. P. and Welling, M. Auto-encoding variational

Bayes. In ICLR, 2014. arXiv:1312.6114.

Kisa, D., den Broeck, G. V., Choi, A., and Darwiche, A.

Probabilistic Sentential Decision Diagrams. In KR, 2014.

Koller, D. and Friedman, N. Probabilistic Graphical Mod-

els: Principles and Techniques. MIT Press, 2009. ISBN

0-262-01319-3.

Larochelle, H. and Murray, I. The neural autoregressive

distribution estimator. In Proceedings of AISTATS, pp.

29–37, 2011.

LeCun, Y., Cortes, C., and Burges, C. J. C.

The MNIST database of handwritten digits.

http://yann.lecun.com/exdb/mnist/.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face

attributes in the wild. In Proceedings of International

Conference on Computer Vision (ICCV), December 2015.

Lowd, D. and Davis, J. Learning Markov network structure

with decision trees. In Proceedings of the 10th IEEE

International Conference on Data Mining, pp. 334–343.

IEEE Computer Society Press, 2010.

MacKay, D. J. C. Bayesian neural networks and density

networks. Nuclear Instruments and Methods in Physics

Research Section A: Accelerators, Spectrometers, Detec-

tors and Associated Equipment, 354(1):73–80, 1995.

https://www.tensorflow.org/
https://www.tensorflow.org/

Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits

Molina, A., Vergari, A., Stelzner, K., Peharz, R., Subramani,

P., Mauro, N. D., Poupart, P., and Kersting, K. Spflow: An

easy and extensible library for deep probabilistic learning

using sum-product networks, 2019.

Netzer, Y., Wang, T., Coates, A., A-Bissacco, Wu, B., and

Ng, A. Y. Reading digits in natural images with unsuper-

vised feature learning. In NIPS Workshop on Deep Learn-

ing and Unsupervised Feature Learning 2011, 2011.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed,

S., and Lakshminarayanan, B. Normalizing flows for

probabilistic modeling and inference. arXiv preprint

arXiv:1912.02762, 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,

Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,

L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,

M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,

Bai, J., and Chintala, S. Pytorch: An imperative style,

high-performance deep learning library. In Advances

in Neural Information Processing Systems 32, pp. 8024–

8035. 2019. URL https://pytorch.org/.

Pearl, J. Probabilistic Reasoning in Intelligent Systems:

Networks of Plausible Inference. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1988. ISBN

1558604790.

Peharz, R. Foundations of Sum-Product Networks for Prob-

abilistic Modeling. PhD thesis, Graz University of Tech-

nology, 2015.

Peharz, R., Tschiatschek, S., Pernkopf, F., and Domingos,

P. On theoretical properties of sum-product networks. In

Proceedings of AISTATS, pp. 744–752, 2015.

Peharz, R., Gens, R., Pernkopf, F., and Domingos, P. On

the latent variable interpretation in sum-product networks.

IEEE transactions on pattern analysis and machine intel-

ligence, 39(10):2030–2044, 2017.

Peharz, R., Vergari, A., Stelzner, K., Molina, A., Trapp, M.,

Shao, X., Kersting, K., and Ghahramani, Z. Random

sum-product networks: A simple and effective approach

to probabilistic deep learning. In Proceedings of UAI,

2019.

Pipatsrisawat, K. and Darwiche, A. New compilation lan-

guages based on structured decomposability. In AAAI,

volume 8, pp. 517–522, 2008.

Poon, H. and Domingos, P. Sum-product networks: A new

deep architecture. In Proceedings of UAI, pp. 337–346,

2011.

Pronobis, A., Ranganath, A., and Rao, R. Libspn: A library

for learning and inference with sum-product networks and

tensorflow. In Principled Approaches to Deep Learning

Workshop, 2017.

Rahman, T., Kothalkar, P., and Gogate, V. Cutset networks:

A simple, tractable, and scalable approach for improving

the accuracy of chow-liu trees. In Joint European con-

ference on machine learning and knowledge discovery in

databases, pp. 630–645, 2014.

Rashwan, A., Zhao, H., and Poupart, P. Online and dis-

tributed bayesian moment matching for parameter learn-

ing in sum-product networks. In AISTATS, pp. 1469–

1477, 2016.

Rezende, D. J. and Mohamed, S. Variational inference with

normalizing flows. In Proceedings of ICML, pp. 1530–

1538, 2015.

Rooshenas, A. and Lowd, D. Learning Sum-Product Net-

works with Direct and Indirect Variable Interactions. In

Proceedings of ICML, pp. 710–718, 2014.

Salakhutdinov, R., Roweis, S. T., and Ghahramani, Z. Opti-

mization with em and expectation-conjugate-gradient. In

Proceedings of ICML, pp. 672–679, 2003.

Sato, M.-a. Fast learning of on-line em algorithm. Rapport

Technique, ATR Human Information Processing Research

Laboratories, 1999.

Sharir, O., Tamari, R., Cohen, N., and Shashua, A. Tractable

generative convolutional arithmetic circuits. arXiv

preprint arXiv:1610.04167, 2016.

Shen, Y., Choi, A., and Darwiche, A. Tractable operations

for arithmetic circuits of probabilistic models. In Ad-

vances in Neural Information Processing Systems 29, pp.

3936–3944. 2016.

Trapp, M., Peharz, R., Ge, H., Pernkopf, F., and Ghahra-

mani, Z. Bayesian learning of sum-product networks.

Proceedings of NeurIPS, 2019a.

Trapp, M., Peharz, R., and Pernkopf, F. Optimisation of

overparametrized sum-product networks. arXiv preprint

arXiv:1905.08196, 2019b.

Uria, B., Côté, M.-A., Gregor, K., Murray, I., and

Larochelle, H. Neural autoregressive distribution esti-

mation. The Journal of Machine Learning Research, 17

(1):7184–7220, 2016.

Van Haaren, J. and Davis, J. Markov network structure

learning: A randomized feature generation approach. In

Proceedings of the 26th Conference on Artificial Intelli-

gence. AAAI Press, 2012.

https://pytorch.org/

Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits

Vergari, A., Di Mauro, N., and Van den Broeck, G. Tractable

probabilistic models: Representations, algorithms, learn-

ing, and applications. http://web.cs.ucla.edu/

˜guyvdb/slides/TPMTutorialUAI19.pdf,

2019. Tutorial at UAI 2019.

Zhao, H., Melibari, M., and Poupart, P. On the relationship

between sum-product networks and Bayesian networks.

In Proceedings of ICML, pp. 116–124, 2015.

Zhao, H., Poupart, P., and Gordon, G. J. A unified approach

for learning the parameters of sum-product networks. In

Proceedings of NIPS, pp. 433–441. 2016.

http://web.cs.ucla.edu/~guyvdb/slides/TPMTutorialUAI19.pdf
http://web.cs.ucla.edu/~guyvdb/slides/TPMTutorialUAI19.pdf

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

Supplementary
Einsum Networks: Fast and Scalable Learning of

Tractable Probabilistic Circuits

Anonymous Authors1

1. Inference Time Comparison

Section 4.1, in the main paper compared training time and

memory consumption for EiNets, LibSPN (Pronobis et al.,

2017) and SPFlow (Molina et al., 2019), showing that

EiNets scale much more gracefully than its competitors.

The same holds true for inference time. Fig. 1 shows the

results corresponding to Fig. 3 in the main paper, but for in-

ference time per sample rather than training time per epoch.

Inference was done for a batch of 100 test samples for each

model, i.e. the displayed inference time is 1/100 of the eval-

uation time for the whole batch. Again, we see significant

speedups for EiNets, of up to three orders of magnitude (for

maximal depth and EiNet vs. SPFlow).

References

Molina, A., Vergari, A., Stelzner, K., Peharz, R., Subramani,

P., Mauro, N. D., Poupart, P., and Kersting, K. Spflow: An

easy and extensible library for deep probabilistic learning

using sum-product networks, 2019.

Pronobis, A., Ranganath, A., and Rao, R. Libspn: A library

for learning and inference with sum-product networks and

tensorflow. In Principled Approaches to Deep Learning

Workshop, 2017.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

Supplementary — Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits

0

10

20

30

40

10−4 10−3

Inference time (sec/sample)

10−2

10−1

100

101

GP
U

m
em

or
y

(G
B)

K

EiNets (x)
SPFlow (+)
LibSPN (*)

10−5 10−4 10−3 10−2 10−1

Inference time (sec/sample)

10−1

100

D (depth)

10−4 10−3 10−2

Inference time (sec/sample)

10−2

10−1

100

101

R (# replicas)

Figure 1. Illustration of inference time and peak memory consumption of EiNets, SPFlow and LibSPN when training randomized binary

PC trees, and varying hyper-parameters K (number of densities per sum/leaf), depth D, and number of replica R, respectively. The blob

size directly corresponds to the respective hyper-parameter under change. The total number of parameters ranged within 10k− 9.4M (for

varying K), 100k − 5.2M (for varying D), and 24k − 973k (for varying R). For LibSPN, some settings exhausted GPU memory and

are therefore missing.

