Probabilistic Logic in Dynamic Domains:
Particle Filter with Distributional Clauses

Davide Nitti, Guy Van den Broeck, and Luc De Raedt

Department of Computer Science, Katholieke Universiteit Leuven,
Celestijnenlaan 200A - bus 2402, 3001 Heverlee, Belgium
{firstname.lastname}@cs.kuleuven.be

Abstract. We introduce a probabilistic logic programming framework
to handle continuous distributions as well as dynamic domains for use in
fields like robotics. The framework is based on the recently introduced
notion of distributional clauses, an extension of Sato’s distribution se-
mantics. The key contribution of this paper is the introduction of a par-
ticle filter for this formalism. The particle filter recursively updates its
beliefs about the current state, where states correspond to logical inter-
pretations and may contain continuous variables. A further contribution
of this work is extending distributional clauses with stratification to sup-
port negation.

Keywords: probabilistic logic programming, particle filter, robotics

1 Introduction

Probabilistic programming languages and statistical relational learning tech-
niques have proven successful in many application areas ranging from natural
language processing to bioinformatics. However, in order to deal with fields such
as robotics or vision, they should not only be able to deal with high-level sym-
bolic information but also with low-level numeric information as well as with
dynamics. This paper extends probabilistic logic programming techniques to
deal with this type of application. The approach is based on the recently intro-
duced distributional clauses [5], which extend Hybrid Problog [4] to be able to
represent and reason about continuous distributions. The semantics was rigor-
ously proven along the lines of Sato’s distribution semantics [7]. Furthermore we
extend distributional clauses with stratification to support negation. The result-
ing formalism is related to that of other probabilistic programming languages
such as BLOG [6], Church [3] in that it allows for dealing with continuous distri-
butions. However, distributional clauses are extended here to deal with dynamic
domains, where the state of the environment changes over time. More specifi-
cally, we introduce a particle filter that allows to recursively estimate the state
the agent is in. Particle filters are widely applied in probabilistic robotics, and
therefore, we hope that their incorporation into a probabilistic logic program-
ming formalism will contribute towards the application of relational learning to
robotics.

2 Distributional Clauses

In this paper we employ a probabilistic logic language, which consists besides
normal Horn clauses of distributional clauses [5]:

Definition 1 (Distributional clause). A distributional clause is a definite
clause with an atom h ~ D in the head where ~ is a binary predicate used in infix
notation. For each ground instance (h ~ D :- by,...,by)0 with 0 a substitution
over the Herbrand universe of the logic program, the distributional clause defines
a random variable he and an associated distribution DE.

These random variables are considered as terms of the Herbrand universe.
They can be used as any other term in the logic program. Furthermore, a term
~(d) with non-Herbrand semantics constructed from the reserved functor ~/1
represents the outcome of the random variable d.

Ezample 1 (Distributional clauses).
npeople ~ poisson(6). (1)
position(P) ~ uniform(1,10) :- between(1, ~(npeople),P). (2)

The distributional clause (1) states that the number of people is governed by
a Poisson distribution with mean 6. The distributional clause (2) models the
position of each person position(P) as a random variable uniformly distributed
from 1 to 10. Note that the distribution is defined only for the values P for which
between(1, ~(npeople), P) succeeds.

Inference in distributional clauses is performed by sampling possible worlds
(Herbrand models) of the logic program using forward reasoning until a fixed
point is reached. Therefore the probability of a query given evidence p(gle) is
estimated as the number of worlds sampled that satisfy the query and evidence
divided by the number of worlds that satisfy evidence. To improve the perfor-
mance of this rejection sampling approach to inference, the inference procedure
for distributional clauses outlined in [5] uses magic sets to generate only facts
relevant to evaluate the query, and heuristic lookahead to remove inconsistent
values (for the evidence) from random variable distributions. This reduces the
number of interpretations that have to be rejected due to their inconsistency
with the evidence. The reader is referred to [4, 5] for more details.

3 Distributional Clauses over time

To model dynamic domains, we can define a logic program with distributional
clauses that describes how the environment evolves over time. Inference in dy-
namic domains rapidly becomes intractable when using forward sampling, es-
pecially using continuous distributions and with many facts as evidence. To
evaluate the probability of a query at time t, the inference procedure needs to
generate samples starting from time 0. Furthermore the samples should satisfy

the evidence. With increasing t, the sample rejection rate (due to the inconsis-
tency with the evidence) becomes unacceptable even when heuristic lookahead
is used. To perform efficient inference over time we need a different method. We
therefore propose a particle filter for distributional clauses. The particle filter
is recursive over time, which means that the distribution of a state at time t is
estimated from the distribution at the previous time ¢ — 1 and the last observa-
tion.

3.1 Classical Particle Filter

One of the most common methods in robotics to model a dynamic environment is
the Hidden Markov Model (HMM), where the state of the world is not observable
but it influences what the system observes (e.g. through sensors). The state is
described as a Markov chain, and one of the inference tasks is to estimate the
state given the observations received from the sensors, that is the probability
p(xi|z1.0) = bel(zy) called belief, where x; is the current state and z1.; is the set
of observations from time 1 to t. A general approach to estimate the (hidden)
state over time from observations is the Bayes filter [8]. This algorithm works
recursively computing the belief at time t starting from the belief at ¢ — 1 and
the last observation z;:

bel(xz:) = n p(zt|xs) /p(mt\actfl)bel(mt,l)dmtq

where 7 is a normalization constant. A very popular example of a Bayes filter
is the particle filter [8] that uses samples (called particles) to describe the belief
distribution. The particle filter can handle non-linear processes and measurement
models but it is only an approximation. However with a sufficiently large number
of particles the results are reliable. The particle filter takes as input a set of
particles of the previous time step: xEl, 55?7]17 e xyi]l distributed as bel(z;—1) =
p(x1—1]|71.4—1) and the last observation z;, and it produces a set of particles
approximately distributed as bel(x:) = p(a¢|z1.¢).
The algorithm can by defined in three steps:

— Sample each particle x£m] from a proposal distribution q(xt\xﬁ]l, zt)

— Assign to each particle the weight wtm] = pCzelot])ﬁ,(ftlw£’]l

q(ze]zy”y,2t)
— Resample with replacement from the particle set, where the probability of

sampling xgm] is proportional to wim]

If the proposal distribution q(xt|x£T]1,zt) is p(xt|x£ib]1) (state transition prob-
ability), the weights become wl™ = p(z|zI™). In summary, the particle filter
updates in every step the belief at time t bel(x;) starting from the previous belief
and the last observation, and the distribution of the particles is used to represent
the belief. In robotics the state x; usually is a vector of real numbers (e.g., the

position and velocity of the robot).

3.2 Particle Filter with Distributional Clauses

We now propose a particle filter for probabilistic logic programs with distribu-
tional clauses that encode a state transition model and measurement probability.
The distributional program used by the particle filter must contain:

background knowledge consisting of facts and (distributional) clauses that
do not change over time

state transition model representing p(zi|z;—1), which defines how the next
state can be obtained from the current state using (distributional) clauses
with head next(fact) and literals current(fact) in the body that pertain to
the current state.

prior distribution representing p(zo) by (distributional) clauses with head
current(fact) and timestep(0) in the body. These clauses are activated only
for the first timestep.

measurement probability defined as a set of clauses with head
probability(Obs, P) where P represents the probability of the observation
Obs given the state: p(z:|x;). This predicate defines the measurement prob-
ability explicitly and does not infer it.

The proposed particle filter employs the same steps as the classical particle
filter, using the state transition probability as proposal distribution. The main
differences are that particles represent interpretations and they are sampled from
the distributional program.

The algorithm starts by creating a set of particles distributed as p(zo) by
forward sampling from the clauses with timestep(0) in the body. Each particle
will contain facts current(fact) that define the state at time 0. Then, the par-
ticles for timestep t are generated from the particles of timestep ¢ — 1. This is
done by forward sampling facts next(fact) (the new state) from current(fact)
(the old state), according to the state transition model defined in the distribu-
tional program. These new particles are weighed by their measurement prob-
ability, which is computed by evaluating probability(observation, P) given the
new state defined in the particle. Afterwards, the particles are resampled with
probability proportional to their weights. Finally the facts current(fact) and
probability(observation, P) are removed because they referred to the old state,
and nezt(fact) are changed in current(fact). Therefore a new belief update can
start for the next timestep, now ignoring the clauses with timestep(0) in the
body.

For example, we can consider people that move in one direction (for simplic-
ity), the background knowledge can be the number of people (1). Instead the
prior distribution p(zg) could defines the initial position and velocity of each
person:

current(pos(P)) ~ uniform(1, 10) :- between(1, ~(npeople),P), timestep(0).

current(vel(P)) ~ uniform(—1,1) :- between(1, ~(npeople),P), timestep(0).

We can define a relation near(P1,P2), that is true when the squared distance
between P1 and P2 is less than or equal to 4:

current(near(P1,P2)) :-
dist_leq((~(current(pos(P1)))— ~(current(pos(P2))))?, 4),
P1\ = P2

We use the special predicate dist_1eq/2 (less than or equal to) to compare the
outcome of random variables with a value. The state transition model in this
example defines the next position and the next velocity of each person P, given
the current position and velocity:

next(pos(P)) ~ gaussian(~(current(pos(P)))+ ~(current(vel(P))),0.1).
next(vel(P)) ~ gaussian(~(current(vel(P))),0.05).

In the next position and the next velocity we consider gaussian noise.
The measurement probability function should be defined explicitly, for example:

probability(sensor(Value),P) :- [...], P is [...].

Where the observation sensor(Value) has a probability P defined in the clause.

4 Negation and stratification

A further contribution of this work is extending distributional clauses [5] with
stratification [1] to support the negation of atoms in the body of a (distribu-
tional) clause. We implemented stratification in distributional clauses following
the classical definition of stratification. To perform the forward reasoning in a
stratified program we need to reach a fixed point for each stratum of the program,
from low number to high number. Currently the user must assign the stratifica-
tion number to each (distributional) clause, however it would be straightforward
to do this automatically.

5 Experiments

We implemented distributional clauses and the particle filter in YAP Prolog, and
performed some experiments to evaluate its performance. The particle filter is
generally used in real time, so time performance is a crucial aspect. The method
proposed needs to infer facts from a logic program for each particle and for
each time step; furthermore to have acceptable results we need a large enough
number of particles (the size is related to the dimensionality of the state space).
Tests using distributional clauses [5] show that the use of magic sets leads to
significant performance improvements and these results are confirmed in the
particle filter. We tested the particle filter with a logic program that consists
of 8 clauses to define the state transition, 4 clauses to define the measurement
probability and 7 clauses for background knowledge and the initial state. The
particle filter with distributional clauses was executed on a laptop Core 2 Duo
2 GHz, the runtime is about 0.85 seconds for each time step with 1000 particles
and 0.41 seconds for 500 particles. Obviously the performance depends on the
logic program complexity, thus for real time applications the program should be
as compact as possible.

6 Related Work and Conclusion

Several extensions to the particle filter algorithm have been proposed that deal
with logical and relational domains, in a more restricted setting. Zettlemoyer et
al. [9] proposed a relational particle filter for logical languages with only discrete
random variables, which cannot deal with the continuous distributions we de-
scribe here. Recent work on relational dynamic Bayesian networks [2] separates
objects (that may have continuous attributes) from relations that hold amongst
them.

We propose an unified and powerful approach that encodes the entire envi-
ronment in one distributional program, including the state transition model and
the measurement probability in the form of distributional clauses. We have con-
tributed an extension of distributional clauses for dynamic domains and proposed
a particle filter for the resulting probabilistic language. The performance seems
acceptable and further code improvement can decrease the runtime allowing to
use the particle filter in real-time applications. Finally, with regard to future
work, the proposed particle filter could be improved state-of-art techniques such
as Rao-Blackwellized Particle Filters or Mixture Particle Filters.

References

[1] Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In:
Foundations of Deductive Databases and Logic Programming., pp. 89-148. Morgan
Kaufmann (1988)

[2] Cristina E. Manfredotti David J. Fleet, Howard J. Hamilton, S.Z.: Relational parti-
cle filtering. Monte Carlo Methods for Modern Applications, 2010 NIPS Workshop,
Whistler, B.C. (December 2010)

[3] Goodman, N., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.:
Church: A language for generative models. In: UAI pp. 220-229 (2008)

[4] Gutmann, B., Jaeger, M., De Raedt, L.: Extending ProbLog with continuous dis-
tributions. In: Frasconi, P., Lisi, F.A. (eds.) Proceedings of the 20th International
Conference on Inductive Logic Programming (ILP-10). Firenze, Italy (2010)

[6] Gutmann, B., Thon, I., Kimmig, A., Bruynooghe, M., De Raedt, L.: The magic
of logical inference in probabilistic programming. Theory and Practice of Logic
Programming (2011)

[6] Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D., Kolobov, A.: BLOG: Prob-
abilistic models with unknown objects. In: IJCAL pp. 1352-1359 (2005)

[7] Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: Proceedings of the T'welth International Conference on Logic Programming
(ICLP 1995). pp. 715-729. MIT Press (1995)

[8] Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents). The MIT Press (2005)

[9] Zettlemoyer, L.S., Pasula, H.M., Kaelbling, L.P.: Logical particle filtering. In: In
Proceedings of the Dagstuhl Seminar on Probabilistic, Logical, and Relational
Learning (2007)

