
Robust Channel Coding Strategies for Machine
Learning Data

Kayvon Mazooji, Frederic Sala, Guy Van den Broeck, and Lara Dolecek
{kmazooji1, fredsala}@ucla.edu, guyvdb@cs.ucla.edu, dolecek@ee.ucla.edu

UCLA, Los Angeles, CA 90095

Abstract—Two important recent trends are the proliferation
of learning algorithms along with the massive increase of data
stored on unreliable storage mediums. These trends impact each
other; noisy data can have an undesirable effect on the results
provided by learning algorithms. Although traditional tools exist
to improve the reliability of data storage devices, these tools
operate at a different abstraction level and therefore ignore the
data application, leading to an inefficient use of resources. In this
paper we propose taking the operation of learning algorithms into
account when deciding how to best protect data. Specifically, we
examine several learning algorithms that operate on data that is
stored on noisy mediums and protected by error-correcting codes
with a limited budget of redundancy; we develop a principled
way to allocate resources so that the harm on the output of the
learning algorithm is minimized.

Index Terms—Channel Coding, Machine Learning, Statistics,
Optimization.

I. INTRODUCTION

Machine learning is among the most important tools avail-
able for analyzing and predicting our world and the vast
amount of data it produces. The study of statistical learn-
ing algorithms has experienced a renaissance over the last
three decades. As these algorithms have become more and
more popular, it has become common to execute them on
inexpensive, imperfect hardware, while using data stored in
noisy memories. These limitations can be viewed as departures
from an idealized model of learning, where the input data is
read from storage and transferred error-free and the hardware
executing the algorithm is perfectly reliable.

The problem of dealing with noise in storage and computa-
tion has long been a target of study, dating back to the 1940’s.
Existing solutions can also be applied to learning; however,
by considering machine learning problems and reliability
questions separately, we may be incurring inefficiency. For
this reason, we are interested in studying joint problems of
learning and reliability. Specifically, in this work, we consider
learning problems where some of the features are protected
with redundant symbols (as in standard coding theory). We
allow for only a finite budget of redundancy symbols; the key
question is how to allocate this limited budget in order to
minimize the effects of noise on the learning algorithm. This
setup is depicted in Fig. 1. An intuitive idea is to assign a
larger amount of redundancy to those features that are most
important (and thus invest our reliability budget into the most

Research supported in part by the NSF Graduate Research Fellowship
Program and NSF grant CCF-1150212.

Encoder

Machine
Learning

Algorithm
Data Fe

at
. A

Fe
at

. B

Fe
at

. C

…

prompt
features

A
 Fe

at
. B

C

…

Utility

Encoder Data
prompt

Machine
Learning

Algorithm

Target
Accur

acy

features

Fig. 1. The top half of the figure shows a block diagram for a conventional
machine learning algorithm. The bottom half shows the modified version of
the problem we consider in this work; the elements of the problem we modify
are highlighted in color. Rather than applying a uniform reliability scheme
(e.g., a single error-correcting code) to the feature data, we consider the impact
of the reliability of each of these features on the algorithm itself.

Fig. 2. Illustrative example for a naive Bayes classifier and Fisher’s Iris data
set [11]. Here, the features are corrupted by additive white Gaussian noise
(AWGN) with total variance between 0 and 2. We optimize the allocation of
this noise into features to illustrate the idea of non-uniform coding. The red
curve shows the baseline approach, where the noise has equal strength among
all features. The blue curve optimizes the noise allocation among features.

critical information). However, it is not immediately clear how
to do this; in this work we seek a principled approach.

In Figure 2, we illustrate the potential power of our idea
for a simple classification application, without assuming a
particular coding method is used. In Figure 2, we show a
naive Bayes classifier trained noiselessly on Fisher’s classic
Iris data set [11]. Afterwards, the features in the data set are
affected by additive white Gaussian noise (AWGN) and re-
classified as a test set. The total noise is fixed and can be
distributed among the features in two ways: first, uniformly,

so that each feature suffers equally distributed noise, and,
secondly, in an optimized fashion, inversely proportional to
a feature ranking based on an information gain ranking filter.
The first technique illustrates a naive coding scheme where all
features are equally protected, while the second demonstrates
that different coding power should be allocated to different
features. Observe that there is a significant impact on the
performance of the classifier, particularly at higher noise
levels.

A. Related work

There are a number of previous topics that interact with our
problem setting. One related area is distributed learning. In [1],
optimality guarantees are provided for distributed estimators
in the cases where the nodes are isolated and where there
is interactive communication between them. In [2], problems
such as hypothesis testing and parameter estimation are con-
sidered for the multiterminal case where each terminal has data
compression (rate) constraints. Unlike our work, these papers
do not consider channel coding (or explicit coding schemes).

Another relevant area is feature selection. A general intro-
duction to variable selection to help improve the performance,
speed, or cost effectiveness of predictors is provided in [3].
Our work can be seen as a previously unexplored type of
feature selection.

A number of previous works have considered the robustness
or stability of various machine learning algorithms. For exam-
ple, an experimental study of a variety of algorithms when data
sets are artificially polluted with noise was performed in [4]. In
[5], the case of missing, corrupted features was dealt with by
introducing two machine learning techniques, based on a linear
programming approximation and an online-to-batch strategy.
Similarly, [6] avoided over-reliance on a particular feature (that
could be missing at test time) in classification by using a game-
theoretic approach. Here, classifiers were developed that are
robust to feature deletion. Feature selection for submodular
objective functions was considered in [7]. However, these
works do not consider controlling robustness to noise through
coding strategies.

Other papers have studied the value of information. For
example, the robustness of decisions to hidden variables can
be measured by computing the probability the same deci-
sion would have been made if these hidden variables were
observed. This is the so-called “same-decision probability,”
introduced in [8]. The problem of label noise for classification
algorithms is described in [9]. An interval-based approach to
producing Bayes classifiers that are robust to missing data
(without assumptions on the patterns of this data) was given
by [10]. Our paper can be viewed as complementary to these
efforts, as it also produces a value of information, but in the
context of allocating protection against noise.

The rest of the paper is organized in the following way.
In Section II, we introduce some preliminaries and notation.
Afterwards, in Section III, we consider optimizing coding for
linear regression algorithms. In Section IV, we comment on

other applications and variants of the problem of coding for
noisy data in learning algorithms. We conclude in Section V.

II. PRELIMINARIES

In this section, we recall some basic facts about learning
algorithms and introduce some simple coding ideas. We start
with a training set with T data points (x(t), y(t)) where x(t) ∈
RK, y(t) ∈ R and K ∈ N, t ∈ {1, ... , T}. We call the x(t)’s
data points and the y(t)’s target values. Each entry in the
vector x(t) is referred to as a feature. The goal of regression
algorithms is to predict the target value y for a new data point
x based on the training set. This prediction follows from the
choice of model; for example, linear regression models y as
a linear function of a particular data point x such that y =
aᵀx + b for a ∈ RK , b ∈ R.

In classification problems, the same setting applies, but we
force the y(t)’s to be class variables with discrete values
from the set C = {0, 1, . . . , B− 1}. In particular, the naive
Bayes classifier makes the assumption that all the features are
conditionally independent conditioned on the class variable.
The maximum a-posteriori (MAP) estimate of the class of a
point x is maxc∈C ΠK

i=1 p(xi|c).
One of the most simple error-correcting codes is repetition

coding. For a binary information vector z of length k, let c
be the encoding of z. We replace the bit zi with ci, the bit
zi repeated multiple times. This code has the property that
for each encoding ci, d|ci|/2e − 1 bits are always correctable
using maximum likelihood (ML) decoding (in this case, just
taking the value of the majority of the bits). Thus, the entire
codeword c allows for the correction of minid|ci|/2e − 1
errors.

Now, suppose that c is passed through a binary symmetric
channel (BSC) with crossover probability εBSC. Then if |ci|
is odd, the probability of decoding error for the ith bit is

|ci |

∑
j=d|ci |/2e

(
|ci|

j

)
ε

j
BSC(1−εBSC)

|ci |− j. (1)

If |ci| is even and |ci |
2 errors occur, we guess that zi is 1 with

probability .5. Regardless of the prior on zi, we prove in 2
that the probability of error in this case is

|ci |−1

∑
j=d(|c|i−1)/2e

(
|ci| − 1

j

)
ε

j
BSC(1−εBSC)

|ci |−1− j. (2)

We thus conclude that if |ci| is odd, adding another bit of re-
dundancy does not decrease the probability of decoding error.
However, if |ci| is odd and we add two bits of redundancy,
it is a well known fact that the probability of error strictly
decreases. It follows that if |ci| is even and we add two bits
of redundancy, the probability of error strictly decreases.

III. CODES FOR REGRESSION DATA

In this section, we introduce coding strategies for the
linear regression algorithm. The goal is to protect the noisy
data points in a way that maintains the predictive power of

the linear model. We may also wish to control the overall
distortion of each feature in x so that new models can be
accurately learned from existing stored data points.

Suppose a data point x is composed of K features
x1, x2, . . . , xK, and the ith feature xi is an ni-bit unsigned
integer represented in binary, or a signed integer represented
in two’s complement with ni magnitude bits and one sign bit.
We let W be the total number of bits among all the uncoded
feature vectors. For example, if all the features are unsigned,
W = ∑

K
i=1 ni.

We wish to protect data points of this type against substi-
tution errors produced by a binary symmetric channel (BSC)
with crossover probability εBSC. Suppose we are allowed a
budget of N bits per data point. In order to best maintain
the predictive power of the algorithm, we will likely desire
to protect features of higher importance more than features of
lower importance. At a finer level of granularity, we may also
wish to protect more important bits within a feature’s binary
representation more than less important bits for the same
feature. Finally, since each feature is useful independently
of the other features, the code should have some chance of
decoding each feature, regardless of whether the entire feature
vector is decodable.

Many popular error-correcting codes are not explicitly de-
signed to address any of these desired properties. However,
the simple repetition code presented in Section II has all of
these properties. We can protect a bit b1 of higher importance
more than a bit b2 of lower importance by simply repeating
the b1 more than b2. Each feature bit is decoded independently
of the other bits using maximum-likelihood decoding. More
sophisticated codes that have a subset of the desired properties
(such as variable strength codes) exist; however, in this work,
we focus on non-uniform repetition coding as a first step.

Since we are employing repetition coding, we will optimize
an objective function of our choice over all possible redun-
dancy assignments subject to a budget N on the codeword
length. We next discuss the choice of objective function.

Let x be a feature vector and xi be the ith feature in x.
We can view xi as an integer; however, xi is stored in bits
as xi1, xi2, . . . , xi j, . . . , xini , where xi j is the jth highest order
magnitude bit in the binary representation. If the ith feature
is a signed integer, let xi0 be the sign bit. We write x′ for the
noisy feature vector after it has been encoded using repetition
coding, passed through a BSC, and decoded. Let r and ε be
two vectors of variables where ri j is the number of times the
bit xi j is repeated in the codeword and εi j is the probability
that a decoding error occurs for the bit xi j. The elements ri j
appear in r in order of i j where i1 j1 < i2 j2 if i1 < i2, or if
i1 = i2 and j1 < j2. The elements of ε are ordered in the
same way. Here, j ∈ Pi = {0, 1, ..., ni} if the ith feature is
signed, and j ∈ Pi = {1, ..., ni} if the ith feature is unsigned.
Clearly, εi j is a function of the underlying noise εBSC and the
amount of redundancy used ri j. Using the formula in (1), we

have

εi j =

ri j

∑
k=dri j/2e

(
ri j

k

)
εk

BSC(1−εBSC)
ri j−k (3)

for ri j odd. The case of even ri j uses equation (2)

A. Expected loss on predictions

One statistical measure of the predictive power maintained
by redundancy assignment r is the expected loss on the
predicted target value:

E[E[|xᵀa− x′ᵀa| | x]] = ∑
x̂

Pr(x̂)E[|x̂ᵀa− x̂′ᵀa|].

For arbitrary x, such an objective function requires us to know
a prior distribution on x.

One approach to redundancy assignment is to minimize this
function directly. We refer to this model as M1, and we can
express it as:

min
r

E[E[|xᵀa− x′ᵀa| | x]]

such that:
K

∑
i=1

∑
j∈Pi

ri j = N ri j ≥ 1.

Note that r is implicit in the objective function: each ri j
term determines εi j while each εi j determines a channel. The
collective impact of these channels on x produces x′.

A natural starting point for this problem setting is a uniform
redundancy assignment. To get a sense of the improvement
in E[E[|xᵀa − x′ᵀa| | x]] compared to uniform redundancy
assignment, we present the following example.

Example 1 Consider a case where x is composed of two
two-bit integers: x =

[
(x11 x12) (x21 x22)

]
, so that

W = 2× 2 = 4. Let εBSC = .2, and let the prior on x be
a uniform distribution. The parameter a in the linear model
is learned to be a =

[
100 50

]ᵀ , and we select our total
budget on codeword bits to be N = 12. Then, the optimal
redundancy assignment found by M1 is

[
5 3 3 1

]
, and

the expected loss on the prediction is 37.78. The uniform
redundancy assignment is of course

[
3 3 3 3

]
, and the

expected loss on the prediction is 42.23.

Clearly, the linear model’s predictive power is better main-
tained using M1’s redundancy assignment. More pronounced
improvements would occur with larger W and N values

While M1 is a natural and promising model, it does not
appear tractable, and there does not seem to be a convenient
way to approximate it efficiently (by using, for example, a
continuous relaxation). Also, we may not have access to an
accurate prior distribution on x. In addition to these issues,
we observed that the model exhibits behavior that may not be
desirable in some applications.

Example 2 Say the features in x are two three-bit unsigned
integers (W = 2× 3 = 6). Let x be defined by as

x =
[
(x11 x12 x13) (x21 x22 x23)

]ᵀ .

Suppose the parameter a in the linear model is a =[
100 80

]ᵀ . Suppose this channel is also relatively noisy,
with εBSC = 0.3. Assume the prior on x is such that
x =

[
(0 1 1) (1 1 1)

]ᵀ with probability one. Let
our total budget on codeword bits be N = 20. Then, the
optimal redundancy allocation according to model M1 can be
computed to be r =

[
3 5 1 7 3 1

]ᵀ .

Observe that redundancy is assigned so that the most
significant bit (the first bit) is less protected than the middle
(second) bit of the first feature. The model intentionally makes
the first feature more noisy than it needs to be! Intuitively, this
happens because an error is likely to occur in one or more of
the bits with value 1, {x12, x13, x21, x22, x23}. To compensate
for this error, the model makes the only 0-value bit x11 more
noisy, increasing its expected value. This compensation helps
the resulting prediction for x′ match the noiseless prediction
of x. This behavior can also occur for a non-deterministic x.

Intentionally making a feature more noisy may be useful for
minimizing E[E[|xᵀa− x′ᵀa| | x]], but it is counter-productive
to preserving the integrity of the feature vector x itself, and
could thus have negative effects on any future models learned
using a stored value of x. We could avoid such results by
adding constraints such as ri j1 ≥ ri j2 for j1 < j2, to form
model M′1, and while these constraints cut down the search
space, the optimization remains intractable through exhaustive
search.

Now consider a modified version of M1 which we call M̂1 :

min
r

E[E[|xᵀa− x′ᵀa| | x]]

s.t.
K

∑
i=1

∑
j∈Pi

ri j = N, r ≥ 0, x′i j = α if ri j equals 0,

where α if an arbitrary constant in R other than 1. This is
essentially the same as M1, except compression is allowed.
Interestingly, this variation of the model is NP-hard:

Theorem 1 M̂1 is NP-hard.

Proof: The partition problem asks whether a set B of
positive integers can be partitioned into two subsets whose
elements sum to the same number. If the total sum of all
numbers in B is S, then the partition problem is equivalent to
asking whether B has a subset summing to S/2. The partition
problem is known to be NP-complete.

We can show a many-to-one reduction from this problem
to a variation of the subset sum problem, where the goal is to
find a strict subset of a set of integers F such that the elements
sum up to 0. In this particular variation we are guaranteed that
all integers in F sum to 0. The partition problem reduces to
this new problem by setting F = B ∪ {−S/2,−S/2}. F has
a strict subset summing to 0 if and only if B has a partition.
This subset sum problem is obviously in NP and therefore
NP-complete.

The reduction to M̂1 is as follows. Let εBSC = 0, and the
number of bits available be |F| − 1. Let e be a 0-1 vector

denoting which features are encoded with one or more bits
(some get 0 bits). Set the prior on x’s to have probability 1
for the 1-vector. Let the linear regression’s weight vector a
consist of the numbers in F.

Now we have that the optimal solution has an expected error
of 0 if and only if F has a subset sum zero if and only if B
has a partition. The true output of the regression model on
the 1-vector x is aᵀx = 0 (because the elements in F sum
to 0). The expected output of the noisy regression model is
E[aᵀx′] = (1−α)aᵀe. The error is 0 when (1−α)aᵀe = 0
and thus aᵀe = 0. The vector e selects a subset of numbers
in a and therefore in F that sum to 0. Thus, M̂1 is NP-hard.

Due to M1’s intractability, the potential unavailability of
a prior, and unwanted behavior, we proceed to explore other
strategies for assigning redundancy.

B. Individual distortion

One idea is to assign redundancy to a bit according to
how much an error in that bit alone distorts the prediction,
independently of other bits. The intuition behind this approach
is that if a decoding error occurs in a small number of bits,
it is desirable that each such bit’s contribution to the error is
minimized. The contribution to the prediction for bit xi j is
|ai|2(ni− j). The idea here is to limit the worst case magnitude
of the distortion. In this sense, such a model provides an upper
bound on the optimal value found by M1.

One model with this property performs the following:
minimize a weighted sum of εi j’s, where each εi j is weighted
by the distortion of aᵀx caused by an error in bit xi j alone.
The distortion is given by |ai|2(ni− j), and we refer to this
value as the influence of bit xi j. Observe that the influence of
the sign bit for the ith feature is |ai|2ni since flipping the sign
bit in two’s complement representation changes the ith feature
value by 2ni , regardless of the magnitude bit values. We refer
to this model as M2:

min
ε

K

∑
i=1

∑
j∈Pi

εi j|ai|2(ni− j)

such that:
K

∑
i=1

∑
j∈Pi

ri j = N, ri j ≥ 1, f (ri j) = εi j,

where f (ri j) is the probability of decoding error in (3).
To help justify this particular choice of objective function,

observe that if all the errors are in the same direction with large
probability, the upper bound on the objective value found by
M1 becomes tight.

Additionally this model minimizes E[E[|xᵀa− x′ᵀa| | x]]
for the following modification of the original BSC. Consider
a modified channel C′ where only a single bit is affected by
noise. Suppose that each time x is passed through C′, a random
variable z takes on the value of a feature bit index i j. All
feature bits except the zth bit are passed through the channel
noiselessly. The encoding of the zth bit however, is passed
through the original binary symmetric channel C. M2 then

Fig. 3. Average loss for BSC crossover probabilities between 0.05 and
0.4 using the empirical prior on data points x for naive uniform redudancy
assignment (red curve) versus M2 redundancy assignment (blue curve).

gives the solution to the minimization of W × E[E[|xᵀa −
x′ᵀa| | x]] under C′ when z is uniformly distributed over the
feature bits.

This model is convenient because a solution can be approx-
imated using a convex relaxation as we will later show. Also,
M2 has the nice property that knowledge of the prior on x is
not required, since the distortion incurred by only one bit error
is the same, regardless of any original bit values. Finally, this
model does not assign larger noise to more significant feature
bits as M1 did.

For Example 1, where x is composed of two two-bit features
and there is a uniform prior on x, M2 produces the same
redundancy assignment as M1. The same improvement over
uniform assignment is thus observed for M2 as well.

Example 3 We also tested M2 on a large regression dataset
from [12] where the data points are computers, each feature
is a hardware specification, and the target value is the relative
performance. The dataset has 13 features and 65 feature bits.
For this test, N = 195 and εBSC = 0.3. We used a continuous
relaxation of M2 to find a redundancy assignment. Since it is
computationally intractable to calculate E[E[|xᵀa− x′ᵀa| |
x]] for such a large W value, we estimated it by calculating
the average loss over many simulated examples. Using the
prior on x from the data-set, we found that the average
loss using M2 was 351.99, while the average loss using
uniform assignment was 964.43. This is nearly a three-fold
improvement! Using a uniform prior on x we found that the
average loss using M2 was 82.27 while the average loss
using uniform assignment was 166.46, which is roughly a
two-fold improvement. Plots of the average loss versus the
BSC crossover probability for the two prior assumptions are
shown in Figures 3 and 4, respectively.

Fig. 4. Average loss for BSC crossover probabilities between 0.05 and 0.4
using a uniform prior on data points x for naive uniform redudancy assignment
(red curve) versus M2 redundancy assignment (blue curve).

In general, we can prove that M2 never exhibits the un-
wanted behavior observed by M1. The model always assigns
redundancy to the bits in order of influence:

Lemma 1 If bit xi1 j1 has a higher influence than bit xi2 j2
then the solution ε∗ to M2 will satisfy ε∗i1 j1

≤ ε∗i2 j2
.

Proof: Suppose that ε∗i1 j1
> ε∗i2 j2

for the optimal as-
signment r∗ to model M2. Then ri1 j1 < ri2 j2 . Create a new
assignment r′ that is identical to r∗ other than swapping the
values of ri1 j1 and ri2 j2 . This swaps the values of εi1 j1 and
εi2 j2 , and does not violate any constraints in the model M2.
Thus, in the new solution, ε′i1 j1

< ε′i2 j2
. However, we have that

|ai1 |2
(ni1− j1) > |ai2 |2

(ni2− j2). The objective value of the new
solution is less than the objective value for r∗, a contradiction.

The following corollary immediately follows:

Corollary 1 For feature i, model M2 will never assign εi j1 >
εi j2 for j1 < j2.

Another desirable property satisfied by M2 is the following.
Since incrementing an odd ri j by 1 does not decrease the prob-
ability of decoding error, we would prefer to avoid allocating
an even number of bits to any feature, so that no redundancy
bits are wasted. Of course, this is only possible if N, the total
budget of bits, and W, the number of uncoded feature bits,
are either both even or both odd:

Lemma 2 Consider a binary symmetric channel (BSC) with
crossover probability ε. Consider the length r ≥ 1 repetition
code of a single bit x. Suppose we use Maximum-Likelihood
decoding. If r

2 errors occur when r is even, we then make a
guess g about x’s value. We choose g as 1 with probability
.5. Then if r is odd, the probability of decoding error is equal
to the probability of decoding error for r + 1.

Proof: The probability of decoding error for r is
∑

r
k= r+1

2
(r

k)ε
k(1−ε)r−k. The probability of decoding error for

r + 1 is

r+1

∑
k= r+3

2

(
r + 1

k

)
εk(1−ε)r+1−k

+ Pr(x 6= g)
(

r + 1
r+1

2

)
ε

r+1
2 (1−ε)

r+1
2

=
r+1

∑
k= r+3

2

(
r + 1

k

)
εk(1−ε)r+1−k + .5

(
r + 1

r+1
2

)
ε

r+1
2 (1−ε)

r+1
2 .

Decomposing the terms in the summation, we get

.5
(

r + 1
r+1

2

)
ε

r+1
2 (1−ε)

r+1
2

+
r+1

∑
k= r+3

2

(
r

k− 1

)
εk(1−ε)r+1−k +

(
r
k

)
εk(1−ε)r+1−k

= .5
(

r + 1
r+1

2

)
ε

r+1
2 (1−ε)

r+1
2 +

(
r

r+1
2

)
ε

r+3
2 (1−ε)

r−1
2

+
r

∑
k= r+3

2

(
r
k

)
εk(1−ε)r−k+1 +

(
r
k

)
εk+1(1−ε)r−k

= .5
(

r + 1
r+1

2

)
ε

r+1
2 (1−ε)

r+1
2 +

(
r

r+1
2

)
ε

r+3
2 (1−ε)

r−1
2

+ ((1−ε) +ε)
r

∑
k= r+3

2

(
r
k

)
εk(1−ε)r−k

= .5
(

r + 1
r+1

2

)
ε

r+1
2 (1−ε)

r+1
2 +

(
r

r+1
2

)
ε

r+3
2 (1−ε)

r−1
2

+
r

∑
k= r+3

2

(
r
k

)
εk(1−ε)r−k.

For the two terms outside of the summation, we have that

.5
(

r + 1
r+1

2

)
ε

r+1
2 (1−ε)

r+1
2 +

(
r

r+1
2

)
ε

r+3
2 (1−ε)

r−1
2

= .5
(

r
r−1

2

)
ε

r+1
2 (1−ε)

r+1
2 + .5

(
r

r+1
2

)
ε

r+1
2 (1−ε)

r+1
2

+

(
r

r+1
2

)
ε

r+3
2 (1−ε)

r−1
2

= .5
(

r
r+1

2

)
ε

r+1
2 (1−ε)

r+1
2

+ (.5(1−ε) +ε)

(
r

r+1
2

)
ε

r+1
2 (1−ε)

r−1
2

=

(
r

r+1
2

)
ε

r+1
2 (1−ε)

r−1
2

The error probability is then ∑
r
k= r+1

2
(r

k)ε
k(1−ε)r−k.

Lemma 3 If N is even and W is even, the optimal assignment
r∗ for model M2 has no even entries. Similarly, if N is odd and
W is odd, the optimal r∗ for model M2 has no even entries.

Proof: Suppose N is even and W is even. Then r∗ cannot
have an odd number of even entries, because r∗ would then
have an odd number of odd entries, and N would be odd,
giving a contradiction. If r∗ has an even number of even
entries, then form a new solution r′ by subtracting one from all
even entries of r, and adding those subtracted ones to any entry
in r′. The objective function of M2 for assignment r′ is then
lower than the objective function for r. This is a contradiction
and thus r∗ cannot have an even number of even entries.

Now suppose N is odd and W is odd. Then r∗ cannot have
an odd number of even entries, because r∗ would then have
an even number of odd entries, and N would be even, giving
a contradiction. If r∗ has an even number of even entries, then
form a new solution r′ by subtracting one from all even entries
of r, and adding those subtracted ones to any entry in r′. The
objective function of M2 for assignment r′ is then lower than
the objective function for r. This is a contradiction and thus
r∗ cannot have an even number of even entries.

Lemma 1 proves that M2 assigns redundancy according
to the relative influence of each bit, avoiding the unwanted
behavior observed in model M1. Lemma 2 and lemma 3 prove
that M2 has an additional useful property.

Next, we explore the sensitivity of M2’s redundancy as-
signment to changes in the parameter a and the channel error
εBSC. Table I shows the redundancy assignments for selected
a and εBSC. Here, x has two two-bit unsigned integer features,
and has a codeword budget of N = 16. We observe that for
higher εBSC, the difference between the assignments within
features becomes more dramatic. Similarly, as the magnitudes
of the ai become more different, the differences between the
assignments among the features become larger.

C. M2 approximation

One of the main advantages of model M2 is the existence
of tractable approximations. This section is dedicated to such
approximations. Since r is a vector of integers, M2 is a discrete
optimization problem. The number of possible redundancy
assignments is lower bounded by (N+W−1

W), which is pro-
hibitively large if we wish to use an exhaustive search for
non-trivial values of N and W. We do not know of any efficient
algorithm to find the exact solution.

To approximate the optimal solution to M2, we can relax
ri j to be continuous, and approximate the formula for εi j with
a continuous function. We then put the problem into a convex
form, obtain a solution using a convex solver, and perform
rounding to obtain an integer assignment r.

Our first task is to find a continuous approximation for
f (ri j). Observe that for even ri j, f (ri j) is equal to f (ri j − 1)
as seen in figure 5. We cannot hope to form a convex
relaxation if this behavior is preserved in the approximation.
We therefore choose to approximate εi j at odd values of
ri j, because M2 assigns odd integers to ri j in general. One

TABLE I
SENSITIVITY OF M2 REDUNDANCY ASSIGNMENTS

a [100 100] [100 50] [100 5] [100 100] [100 50] [100 5]
εBSC .3 .3 .3 .05 .05 .05

[5 3 5 3]
r [5 3 5 3] [9 3 3 1] [9 5 1 1] [5 3 5 3] or [5 5 3 3]

[5 5 3 3]

Fig. 5. Approximations to f (ri j). The dark green curve is an entropy-based
approximation, while the red curve is the approximation εBSCβ

(−ri j+1) for
certain β ∈ R.

conventional approximation of this function at odd values
is (

ri j
dri j/2e)ε

dri j/2e
BSC (1 − εBSC)

bri j/2c, the largest term in the
summation. To approximate this as a continuous function,
dri j/2e and bri j/2c can both be replaced with ri j/2, and

(
ri j

ri j/2) can be approximated as 2
H(.5)ri j√

2πri j .5(1−.5)
where H(p) is

the binary entropy function. The approximation of f (ri j) is

2H(.5)ri j√
2πri j.5(1− .5)

ε
.5ri j
BSC(1−εBSC)

.5ri j .

Unfortunately, this approximation is very poor for small values
of ri j. This is unacceptable because it is these small values that
we are most concerned with. We are interested in preserving
f (ri j) precisely for small values of ri j because large changes
occur in f (ri j) when ri j is small, and we often do not want
to add a large amount of redundancy to the code, so that
the rate loss is minimized. Furthermore, we cannot make the
continuous problem convex if we use this approximation.

We found that f (ri j) can be approximated very well with
a function of the form εBSCβ

(−ri j+1) where β ∈ R depends
on εBSC. The approximation can be made especially good for
lower values of r. Fortunately, this approximation allows us to
put the relaxation of M2 in convex form.

εBSC β εBSC β εBSC β
.05 2.6 .1 1.75 .2 1.35
.3 1.14 .4 1.04

TABLE II
β FOR VARIOUS εi j

An example of this approximation for εBSC = .1 is shown
in Figure 5. A table of β’s for various εi j is given in Table II.
Clearly, β ≥ 1 for all probabilities εBSC.

Once we have found β to approximate f (ri j) for εBSC, we
have the relaxation of M2 given by

min
ε,r

K

∑
i=1

∑
j∈Pi

εi j|ai|2(ni− j)

such that:
K

∑
i=1

∑
j∈Pi

ri j = N, εBSCβ
(−ri j+1) = εi j, ri j ≥ 1.

We can express everything in terms of r, giving

min
r

K

∑
i=1

∑
j∈Pi

εBSCβ
(−ri j+1)|ai|2(ni− j)

such that:
K

∑
i=1

∑
j∈Pi

ri j = N, ri j ≥ 1.

Taking the log of the objective function, we get an expres-
sion that resembles the log-sum-exp function which is known
to be convex. Manipulating the objective function, we get

min
r

logβ

(K

∑
i=1

∑
j∈Pi

β−ri j+1+logβ(εBSC|ai |2(ni− j))
)

.

Introducing a dummy variable zi j = −ri j + 1 +

logβ(εBSC|ai|2(ni− j)), we obtain the problem

min
r

logβ ∑
i, j

βzi j

such that:
K

∑
i=1

ni

∑
j=1

ri j = N, ri j ≥ 1,

zi j = −ri j + 1 + logβ(εBSC|ai|2(ni− j)).

The objective function is now convex, and the constraints
are linear. It is thus a convex optimization problem and can
be solved efficiently with any convex optimization solver.
Considering Example 2 where x is composed of two 3-bit
features, and εBSC = .3, the relaxation to model M2 gives r =

[
1.0000 2.7064 7.9964 1.0000 1.0038 6.2934

]ᵀ .
By rounding each entry to the nearest odd integer, we obtain
our final approximation, r̂ =

[
1 3 7 1 1 7

]ᵀ . We see
that r̂ plugged into the objective function of M2 gives 235.95,
while the actual optimal solution

[
1 3 7 1 3 5

]ᵀ to
M2 gives an objective value of 234.36. Clearly, the relaxation
to M2 was successful in finding an almost optimal solution
to M2 in this case. We also used it to find an assignment on
the large dataset from [12] where we observed such dramatic
performance over uniform redundancy assignment.

IV. OTHER APPLICATIONS AND FUTURE WORK

We describe other applications. Our on-going work includes
extensions to logistic regression, detection, and classification.
We are also interested in other problem settings, where,
• The model parameters are also affected by noise and can

be protected by redundancy bits from the coding budget.
• The training itself is performed in a noisy setting, so that

the learned model is noisy.
• The code addresses more than one learning algorithm.
In each case, we must find an appropriate penalty function

to optimize (as we did with models M1 and M2 for linear
regression). As an example, for the naive Bayes classifier and
the noiseless training/noiseless model setting we considered in
this paper, the penalty function for classification must relate to
the probability of the class being changed once noise is added.
That is, we would like to maximize the probability that the
classifier preserves the class for noisy x’ compared to x:

Pr

{
max

c ∏
i

Pr {xi|c} = max
c ∏

i
Pr
{

x′i|c
}}

. (4)

Note that with a different penalty function and a different
problem, the resulting coding scheme could be quite different
from the one we derived for linear regression.

For binary classification, the probability (4) is equivalent
to the same decision probability (SDP) [8], the probability
of reaching the same decision Pr{u ≥ T|d} if some hidden
information H was used Pr{u ≥ T|d, H}. Note that the
probability in (4) can be viewed as the probability that the
same decision (specifically the class variable) is reached when
relying on either x or x′. However, since xi can be determined
by x′i and the indicator function `i for an error in the ith bit,
we can write Pr {xi|c} as Pr

{
x′i|c, `i

}
. Then, we can view

`i as the SDP hidden variable. We leave a computation (or
approximation of) the SDP for future work; the following
example shows that even a simple heuristic can improve the
performance over a naive coding scheme.

Example 4 We considered a naive Bayes classifier noiselessly
trained on Fisher’s Iris data set [11]. Here, the features are
corrupted by additive white Gaussian noise (AWGN) with
total variance between 0 and 2. We optimize the allocation
of this noise into features. This task models coding without
explicitly selecting a code (i.e., we view the encoder, channel,
and decoder as a compound channel where the noise power is
reduced.) The results were shown in the introduction in Fig. 2.

The noise allocations were performed in two ways. The first
(red curve) is equal strength among all four features. In the
second allocation (blue curve), we computed a metric of infor-
mation gain on the features in training. The information gain
is defined by H(c)−H(c|xi), where H is the entropy function.
The resulting information gain vector is [g1 g2 g3 g4]

ᵀ.
Here we allocated noise inversely proportional to this metric
among all features, i.e., if the total noise power was V, the
noise allocation for the ith feature (1 ≤ i ≤ 4) had variance
given by 1/gi

∑ j 1/g j
V. In other words, noise is allocated inversely

proportional to information gain among all four features.

V. CONCLUSION

In this paper we considered the problem of evaluating and
optimizing noisy machine learning algorithms through channel
coding. We provided an analysis of coding for the linear
regression algorithm with two strategies. The first strategy
directly optimizes our performance measure, but appears in-
tractable, requires a prior distribution on the feature data, and
exhibits some undesirable behavior. We introduced another
principled strategy that we can approximate, does not require
a prior distribution on the feature data, and does not exhibit
unwanted behavior. We showed through simulation that our
second strategy performs better than a naive approach on
real data sets. We also introduced a number of problems for
future study, including extending the current work for other
applications and more challenging versions of the problem
where the noise affects more than just the test data.

REFERENCES

[1] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and Y. Zhang, “Op-
timality guarantees for distributed statistical estimation,” available:
https://arxiv.org/pdf/1405.0782v2.pdf, 2014.

[2] T. S. Han and S. Amari, “Statistical inference under multiterminal data
compression,” IEEE Trans. Info. Theory, vol. 44, no. 6, pp. 2300-2324,
Oct. 1998.

[3] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Machine Learning Research, vol. 3, pp. 1157-1182, 2003.

[4] E. Kalapanidas, N. Avouris, M. Craciun, and D. Neagu, “Machine
learning algorithms: a study on noise sensitivity,” in Proc. 1st Balcan
Conference in Informatics, Thessaloniki, 2003, pp. 356-365.

[5] O. Dekel and O. Shamir, “Learning to classify with missing and corrupted
features, ” in Proc. 25th Int. Conf. on Machine Learning, Helsinki,
Finland, 2008.

[6] A. Globerson and S. Roweis, “Nightmare at test time: robust learning
by feature deletion,” in Proc. 23rd Int. Conf. on Machine Learning,
Pittsburgh, PA, 2006.

[7] A. Krause, H. B. McMahon, C. Guestrin and A. Gupta, “Robust sub-
modular observation selection,” J. Machine Learning Research, vol. 9,
pp. 2761-2801.

[8] A. Choi, Y. Xue, and A. Darwiche, “Same-decision probability: A
confidence measure for threshold-based decisions,” International Journal
of Approximate Reasoning vol. 53, pp. 1415-1428, Dec. 2012.

[9] B. Frenay and A. Kaban, “A comprehensive introduction to label noise,”
in Proc. European Symp. on Artificial Neural Networks, Comp. Intelli-
gence and Machine Learning, ESANN, Bruges, Belgium, Apr. 2014.

[10] M. Ramoni and P. Sebastiani, “Robust Bayes classifiers,” Artificial
Intelligence, vol. 125, no. 1-2, pp. 209-226, Jan. 2001.

[11] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Annals of Eugenics, vol. 7, pp. 179-188, 1936.

[12] Lichman, M. (2013). UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
School of Information and Computer Science.

	Introduction
	Related work

	Preliminaries
	Codes for Regression Data
	Expected loss on predictions
	Individual distortion
	M2 approximation

	Other applications and future work
	Conclusion
	References

