
Tractable Regularization of Probabilistic Circuits

Anji Liu
Department of Computer Science

UCLA
Los Angeles, CA 90095
liuanji@cs.ucla.edu

Guy Van den Broeck
Department of Computer Science

UCLA
Los Angeles, CA 90095
guyvdb@cs.ucla.edu

Abstract

Probabilistic Circuits (PCs) are a promising avenue for probabilistic modeling.
They combine advantages of probabilistic graphical models (PGMs) with those
of neural networks (NNs). Crucially, however, they are tractable probabilistic
models, supporting efficient and exact computation of many probabilistic inference
queries, such as marginals and MAP. Further, since PCs are structured compu-
tation graphs, they can take advantage of deep-learning-style parameter updates,
which greatly improves their scalability. However, this innovation also makes
PCs prone to overfitting, which has been observed in many standard benchmarks.
Despite the existence of abundant regularization techniques for both PGMs and
NNs, they are not effective enough when applied to PCs. Instead, we re-think
regularization for PCs and propose two intuitive techniques, data softening and
entropy regularization, that both take advantage of PCs’ tractability and still have
an efficient implementation as a computation graph. Specifically, data soften-
ing provides a principled way to add uncertainty in datasets in closed form,
which implicitly regularizes PC parameters. To learn parameters from a soft-
ened dataset, PCs only need linear time by virtue of their tractability. In en-
tropy regularization, the exact entropy of the distribution encoded by a PC can
be regularized directly, which is again infeasible for most other density estima-
tion models. We show that both methods consistently improve the generalization
performance of a wide variety of PCs. Moreover, when paired with a simple PC
structure, we achieved state-of-the-art results on 10 out of 20 standard discrete
density estimation benchmarks. Open-source code and experiments are available
at https://github.com/UCLA-StarAI/Tractable-PC-Regularization.

1 Introduction

Probabilistic Circuits (PCs) [1, 2] are considered to be the lingua franca for Tractable Probabilistic
Models (TPMs) as they offer a unified framework to abstract from a wide variety of TPM circuit
representations, such as arithmetic circuits (ACs) [3], sum-product networks (SPNs) [4], and prob-
abilistic sentential decision diagrams (PSDDs) [5]. PCs are a successful combination of classic
probabilistic graphical models (PGMs) and neural networks (NNs). Moreover, by enforcing various
structural properties, PCs permit efficient and exact computation of a large family of probabilistic
inference queries [6, 7, 8]. The ability to answer these queries leads to successful applications in
areas such as model compression [9] and model bias detection [10, 11]. At the same time, PCs are
analogous to NNs since their evaluation is also carried out using computation graphs. By exploiting
the parallel computation power of GPUs, dedicated implementations [2, 12] can train a complex PC
with millions of parameters in minutes. These innovations have made PCs much more expressive and
scalable to richer datasets that are beyond the reach of “older” TPMs [13].

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

https://github.com/UCLA-StarAI/Tractable-PC-Regularization

However, such advances make PCs more prone to overfitting. Although parameter regularization
has been extensively studied in both the PGM and NN communities [14, 15], we find that existing
regularization techniques for PGMs and NNs are either not suitable or not effective enough when
applied to PCs. For example, parameter priors or Laplace smoothing typically used in PGMs, and
often used in PC learning as well [16, 17, 18], incur unwanted bias when learning PC parameters –
we will illustrate this point in Sec. 3. Classic NN methods such as L1 and L2 regularization are not
always suitable since PCs often use either closed-form or EM-based parameter updates.

This paper designs parameter regularization methods that are directly tailored for PCs. We propose two
regularization techniques, data softening and entropy regularization. Both formulate the regularization
objective in terms of distributions, regardless of their representation and parameterization. Yet, both
leverage the tractability and structural properties of PCs. Specifically, data softening injects noise into
the dataset by turning hard evidence in the samples into soft evidence [19, 20]. While learning with
such softened datasets is infeasible even for simple machine learning models, with their tractability, a
class of PCs (i.e., deterministic PCs) can learn the maximum-likelihood estimation (MLE) parameters
given a softened dataset in O(jpj � jDj) time, where jpj is the size of the PC and jDj is the size
of the (original) dataset. For PCs that are not deterministic, every parameter update step can be
done in O(jpj � jDj) time, still allowing efficient parameter learning. Additionally, the entropy of
the distribution encoded by a PC can be tractably regularized. Although the entropy regularization
objective for PC is multi-modal and a global optimum cannot be found in general, we propose an
algorithm that is guaranteed to converge monotonically towards a stationary point.

We show that both proposed approaches consistently improve the test set performance over standard
density estimation benchmarks. Furthermore, we observe that when data softening and entropy
regularization are properly combined, even better generalization performance can be achieved.
Specifically, when paired with a simple PC structure, this combined regularization method achieves
state-of-the-art results on 10 out of 20 standard discrete density estimation benchmarks.

Notation We denote random variables by uppercase letters (e.g., X) and their assignments by
lowercase letters (e.g., x). Analogously, we use bold uppercase letters (e.g., X) and bold lowercase
letters (e.g., x) for sets of variables and their joint assignments, respectively.

2 Two Intuitive Ideas for Regularizing Distributions

A common way to prevent overfitting in machine learning models is to regularize the syntactic
representation of the distribution. For example, L1 and L2 losses add mutually independent priors to
all parameters of a model; other approaches such as Dropout [14], Bayesian Neural Networks (BNNs)
[21], and Bayesian parameter smoothing [22] incorporate more complex and structured priors into the
model [23]. In this section, we ask the question: how would we regularize an arbitrary distribution,
regardless of the model at hand, and the way it is parameterized? Such global, model-agnostic
regularizers appear to be under-explored. Next, we introduce two intuitive ideas for regularizing
distributions, and study how they can be practically realized in the context of probabilistic circuits in
the remainder of this paper.

Data softening Data augmentation is a common technique to improve the generalization perfor-
mance of machine learning models [24, 25]. A simple yet effective type of data augmentation is
to inject noise into the samples, for example by randomly corrupting bits or pixels [26]. This can
greatly improve generalization as it renders the model more robust to such noise. While current noise
injection methods are implemented as a sequence of sampled transformations, we stress that some
noise injection can be done in closed form: we will be considering all possible corruptions, each with
their own probability, as a function of how similar they are to a training data point.

Consider boolean variables1 as an example: after noise injection, a sample X=1 is represented as a
distribution over all possible assignments (i.e., X=1 and X=0), where the instance X=1, which
is “similar” to the original sample, gets a higher probability: P (X= 1) =�. Here �2 (0:5; 1] is a
hyperparameter that specifies the regularization strength — if �=1, no regularization is added; if �
approaches 0:5, the regularized sample represents an (almost) uniform distribution. For a sample x
with K variables X :=fXigKi=1, where the kth variable takes value xk, we can similarly ‘soften’ x

1We postpone the discussion on regularizing samples with non-boolean variables in Appendix B.1.

2

by independently injecting noise into each variable, resulting in asoftened distributionPx ;� :

8x 02 val(X); Px ;� (X = x 0) :=
KY

i =1

Px ;� (X i = x0
i) =

KY

i =1

�
� �1[x0

i = x i] + (1 � �) �1[x0
i 6= x i]

�
:

For a full datasetD := f x (i) gN
i =1 , this softening of the data can also be represented through a new,

softened datasetD� . Its empirical distribution is the average softened distribution of its data. It is a
weighted dataset, whereweight (D� ; x) denotes the weight of samplex in D� :

D� := f x j x 2 val(X)g and weight (D� ; x) =
1
N

NX

i =1

Px (i) ;� (X = x): (1)

This softened dataset ensures that each possible assignment has a small but non-zero weight in
the training data. Consequently, any distribution learned on the softened data must assign a small
probability everywhere as well. Of course, materializing this dataset, which contains all possible
training example, is not practical. Regardless, we will think of data softening as implicitly operating
on this softened dataset. We remark that data softening is related to soft evidence [27] and virtual
evidence [28], which both de�ne a framework to incorporate uncertain evidence into a distribution.

Entropy regularization Shannon entropy is an effective indicator for over�tting. For a datasetD
with N distinct samples, a perfectly over�tting model that learns the exact empirical distribution
has entropylog(N). A distribution that generalizes well should have a much larger entropy, since it
assigns positive probability to exponentially more assignments near the training samples. Concretely,
for the protein sequence density estimation task [29] that we will experiment with in Sec. 4.3, the
perfectly over�tting empirical distribution has entropy3, a severely over�tting learned model has
entropy92, yet a model that generalizes well has entropy177. Therefore, directly controlling the
entropy of the learned distribution will help mitigate over�tting. Given a modelP� parametrized by
� and a datasetD := f x (i) gN

i =1 , we de�ne the following entropy regularization objective:

LLent (� ; D; �) :=
1
N

NX

i =1

logP� (x (i)) + � � ENT(P�); (2)

whereENT(P�) := �
P

x 2 val(X) P� (x) log P� (x) denotes the entropy of distributionP� , and� is a
hyperparameter that controls the regularization strength. Various forms of entropy regularization
have been used in the training process of deep learning models. Different from Eq. (2), these methods
regularize the entropy of a parametric [30, 31] or non-parametric [32] output space of the model.

Although both ideas for regularizing distributions are rather intuitive, it is surprisingly hard to
implement them in practice since they are intractable even for the simplest machine learning models.

Theorem 1. Computing the likelihood of a distribution represented as a exponentiated logistic
regression (or equivalently, a single neuron) given softened data is #P-hard.

Theorem 2. Computing the Shannon entropy of a normalized logistic regression model is #P-hard.

Proof of Thm. 1 and 2 are provided in Appendices A.3 and A.4. Although data softening and entropy
regularization are infeasible for many models, we will show in the following sections that they are
tractable to use when applied to Probabilistic Circuits (PCs) [1], a class of expressive TPMs.

3 Background and Motivation

Probabilistic Circuits (PCs) are a collective term for a wide variety of TPMs. They present a uni�ed
set of notations that provides succinct representations for TPMs such as Probabilistic Sentential
Decision Diagrams (PSDDs) [5], Sum-Product Networks (SPNs) [4], and Arithmetic Circuits (ACs)
[3]. We proceed by introducing the syntax and semantics of a PC.

De�nition 1 (Probabilistic Circuits). A PC p that represents a probability distribution over variables
X is de�ned by a parametrized directed acyclic graph (DAG) with a single root node, denotednr .
The DAG comprises three kinds of units:input, sum, andproduct. Each leaf noden in the DAG
corresponds to an input unit; each inner noden (i.e., sum and product units) receives inputs from its

3

Figure 1: A Problem of Laplace smoothing. (a) Laplace smoothing cannot properly regularize this
PC as the sum unitn1 is imbalanced, i.e., its two children have drastically different support sizes. (b)
A large fraction of sum units learned by a PC structure learning algorithm [17] are imbalanced.

children, denotedin(n). Each unitn encodes a probability distributionpn , de�ned as follows:

pn (x) :=

8
><

>:

f n (x) if n is an input unit;P
c2 in(n) � n;c � pc(x) if n is a sum unit;

Q
c2 in(n) pc(x) if n is a product unit;

wheref n is a univariate input distribution (e.g., boolean, categorical or Gaussian), and� n;c repre-
sents the parameter corresponds to edge(n; c). Intuitively, a sum unit models a weighted mixture
distribution over its children, and a product unit encodes a factored distribution over its children. We
assume w.l.o.g. that all parameters are positive and the parameters associated with any sum unitn
sum up to 1 (i.e.,

P
c2 in(n) � n;c =1). We further assume w.l.o.g. that a PC alternates between sum

and product layers [33]. The size of a PCp, denotedjpj, is the number of edges in its DAG.

This paper focuses on two classes of PCs that support different types of queries: (i) PCs that allow
linear-time computation of marginal (MAR) and maximum-a-posterior (MAP) inferences (e.g.,
PSDDs [5], selective SPNs [34]); (ii) PCs that only permit linear-time computation of MAR queries
(e.g., SPNs [4]). The borders between these two types of PCs are de�ned by theirstructural properties,
i.e., constraints imposed on a PC. First, in order to compute MAR queries in linear time, both classes
of PCs should be decomposable (Def. 2) and smooth (Def. 3) [1]. These are properties of the (variable)
scope� (n) of PC unitsn, that is, the collection of variables de�ned by all its descendent input nodes.

De�nition 2 (Decomposability). A PC is decomposable if for every product unitn, its children have
disjoint scopes:8c1; c2 2 in(n) (c1 6= c2); � (c1) \ � (c2) = ? .

De�nition 3 (Smoothness). A PC is smooth if for every sum unitn, its children have the same scope:
8c1; c2 2 in(n); � (c1) = � (c2).

Next,determinismis required to guarantee ef�cient computation of MAP inference [35].

De�nition 4 (Determinism). De�ne the supportsupp(n) of a PC unitn as the set of complete
variable assignmentsx 2 val(X) for which pn (x) has non-zero probability (density):supp(n) =
f x j x 2 val(X); pn (x) > 0g. A PC is deterministic if for every sum unitn, its children have disjoint
support:8c1; c2 2 in(n) (c1 6= c2); supp(c1) \ supp(c2) = ? .

Since the only difference in the structural properties of both PCs classes is determinism, we denote
members in the �rst PC class as deterministic PCs, and members in the second PC class as non-
deterministic PCs. Interestingly, both PC classes not only differ in their tractability, which is
characterized by the set of queries that can be computed withinpoly (jpj) time [6], they also exhibit
drastically different expressive ef�ciency. Speci�cally, abundant empirical [17, 13] and theoretical
[36] evidences suggest that non-deterministic PCs are more expressive than their deterministic
counterparts. Due to their differences in terms of tractability and expressive ef�ciency, this paper
studies parameter regularization on deterministic and non-deterministic PCs separately.

Motivation Laplace smoothing is widely adopted as a PC regularizer [16, 17]. Since it is also
the default regularizer for classical probabilistic models such as Bayesian Networks (BNs) [37] and
Hierarchical Bayesian Models (HBMs) [38], this naturally raises the following question:are there
differences between a good regularizer for classical probabilistic models such as BNs and HBMs
and effective regularizers for PCs?The question can be answered af�rmatively — while Laplace

4

Algorithm 1 Forward pass
1: Input: A deterministic PCp; samplex
2: Output: value [n]:=(x 2 supp(n)) for each unitn
3: foreach n traversed in postorderdo
4: if n isa input unitthen value [n] f n (x)
5: elif n isaproduct unitthen
6: value [n]

Q
c2 in(n) value [c]

7: else //n is a sum unit
8: value [n]

P
c2 in(n) value [c]

Algorithm 2 Backward pass
1: Input: A deterministic PCp; 8n; value [n]
2: Output: flow [n; c] := (x 2 (
 n \
 c)) for each

pair (n; c), wheren is a sum unit andc2 in(n)
3: 8n; context [n] 0; context [nr] value [nr]
4: foreach sum unitn traversed in preorderdo
5: foreach m 2 pa(n) do (denoteg pa(m))
6: f value [m]

value [g] � context [g]
7: context [n] += f ; flow [g; m] = f

smoothing provides good priors to BNs and HBMs, its uniform prior could add unwanted bias to PCs.
Speci�cally, for every sum unitn, Laplace smoothing assigns the same prior to all its child parameters
(i.e., f � n;c j c2 in(n)g), while in many practical PCs, these parameters should be given drastically
different priors. For example, consider the PC shown in Fig. 1(a). Sincec2 has an exponentially
larger support thanc1, it should be assumed as prior that� 12 will be much larger than� 11.

We highlight the signi�cance of the above issue by examining the fraction of sum units with imbal-
anced child support sizes in PCs learned by Strudel, a state-of-the-art structure learning algorithm
for deterministic PCs [5]. We examine 20 PCs learned from the 20 density estimation benchmarks
[39], respectively. All sum units with� 3 children and with a support size� 128are recorded. We
measure “imbalanceness” of a sum unitn by the fraction of the maximum and minimum support size
of its children (i.e.,

max c 1 2 in(n) j supp(c1) j
min c 2 2 in(n) j supp(c2) j). As demonstrated in Fig. 1(b), more than20%of the sum

units have imbalanceness� 102, which suggests that the inability of Laplace smoothing to properly
regularize PCs with imbalanced sum units could lead to severe performance degradation in practice.

4 How Is This Tractable And Practical?

In this section, we �rst provide additional background about the parameter learning algorithms for
deterministic and non-deterministic PCs (Sec. 4.1). We then demonstrate how the two intuitive ideas
for regularizing distributions (Sec. 2), i.e., data softening and entropy regularization, can be ef�ciently
implemented for deterministic (Sec. 4.2) and non-deterministic (Sec. 4.3) PCs.

4.1 Learning the Parameters of PCs

Deterministic PCs Given a deterministic PCp de�ned on variablesX and a datasetD = f x (i) gN
i =1 ,

the maximum likelihood estimation (MLE) parameters� �
D :=argmax �

P N
i =1 logp(x (i) ; �) can be

learned in closed-form. To formalize the MLE solution, we need a few extra de�nitions.

De�nition 5 (Context). The context
 n of every unitn in a PCp is de�ned in a top-down manner: for
the base case, context of the root nodenr is de�ned as its support:
 n r := supp(nr). For every other
noden, its context is the intersection of its support and the union of its parents' (pa(n)) contexts:

 n :=
[

m 2 pa(n)

 m \ supp(n):

Intuitively, if an assignmentx is in the context of unitn, then there exists a path on the PC's DAG
from n to the root unitnr such that for any unitm in the path, we havex 2 supp(m). Circuit �ow
extends the notation of context to indicate whether a samplex is in the context of an edge(n; c).

De�nition 6 (Flows). The �ow Fn;c (x) of any edge(n; c) in a PC given variable assignments
x 2 val(X) is de�ned as1[x 2
 n \
 c], where1[�] is the indicator function. The �owFn;c (D) w.r.t.
datasetD = f x (i) gN

i =1 is the sum of the �ows of all its samples:Fn;c (D) :=
P N

i =1 Fn;c (x (i)).

The �ow Fn;c (x) for all edges(n; c) in a PCp w.r.t. samplex can be computed through a forward
and backward path that both takeO(jpj) time. The forward path, as shown in Alg. 1, starts from the
leaf units and traverses the PC in postorder to compute8n; value [n] := 1[x 2 supp(n)]; afterwards,
the backward path illustrated in Alg. 2 begins at the root unitnr and traverses the PC in preorder to

5

Figure 2: A non-deterministic PC can
be modi�ed as an equivalent determin-
istic PC with hidden variables.

Figure 3: Average train
LL on MNIST using dif-
ferent EM updates.

Figure 4: HCLT is con-
structed by adding hidden
variables in a CLT [43].

compute8n; context [n] := 1[x 2
 n] as well as8(n; c); flow [n; c] :=F n;c (x). By Def. 6, the time
complexity for computingFn;c (D) with respect to all edges(n; c) in p is O(jpj�jDj), wherejDj is
the size of datasetD. The correctness of Alg. 1 and 2 are justi�ed in Appendix A.6.

The MLE parameters� �
D given datasetD can be computed using the �ows [5]:

8(n; c); � �
n;c = F n;c (D)=

X

c2 in(n)
Fn;c (D): (3)

De�ne hyperparameter� (� � 0), for every sum unitn, Laplace smoothing regularizes its child
parameters (i.e.,f � n;c j c2 in(n)g) by adding apseudocount�= jin(n)j to every child branch ofn,
which is equivalent to adding�= jin(n)j to the numerator of Eq. (3) and� to its denominator.

Non-deterministic PCs As justi�ed by Peharz et al. [40], every non-deterministic PC can be
augmented as a deterministic PC with additional hidden variables. For example, in Fig. 2, the
left PC is not deterministic since the support of both children ofn1 (i.e., n2 and n3) contains
x1 �x2. The right PC augments the left one by adding input units correspond to hidden variable
Z1, which retains determinism by “dividing” the overlapping supportx1 �x2 into x1 �x2z1 2 supp(n2)
andx1 �x2 �z1 2 supp(n3). Under this interpretation, parameter learning of non-deterministic PCs is
equivalent to learning the parameters of deterministic PCs given incomplete data (we never observe
the hidden variables), which can be solved by Expectation-Maximization (EM) [41, 42]. In fact, EM
is the default parameter learning algorithm for non-deterministic PCs [13, 10].

Under the latent variable model view of a non-deterministic PC, its EM updates can be computed
usingexpected �ows[10]. Speci�cally, given observed variablesX and (implicit) hidden variablesZ,
the expected �ow of edge(n; c) given datasetD is de�ned as

EFn;c (D; �) := Ex �D ;z � pc (�j x ;�) [Fn;c (x ; z)];

where� is the set of parameters, andpc(� j x ; �) is the conditional probability over hidden variables
Z givenx speci�ed by the PC rooted at unitc. Similar to �ows, the expected �ows can be computed
via a forward and backward pass of the PC (Alg. 5 and 6 in the Appendix). As shown by Choi et al.
[10], for a non-deterministic PC, its parameters for the next EM iteration are given by

� (new)
n;c = EF n;c (D; �)=

X

c2 in(n)

EFn;c (D; �): (4)

This paper uses a hybrid EM algorithm, which uses mini-batch EM updates to initiate the training
process, and switch to full-batch EM updates afterwards. Speci�cally, in mini-batch EM,� (new) are
computed using mini-batches of samples, and the parameters are updated towards the taget with a
step size� : � (k+1) (1 � �)� (k) + � � (new) ; when using full-batch EM, we iteratively compute the
updated parameters� (new) using the whole dataset. Fig. 3 demonstrates that this hybrid approach
offers faster convergence speed compared to using full-batch or mini-batch EM only.

4.2 Regularizing Deterministic PCs

We demonstrate how the intuitive ideas for regularizing distributions presented in Sec. 2 (i.e., data
softening and entropy regularization) can be ef�ciently applied to deterministic PCs.

Data softening As hinted by Eq. (1), we need exponentially many samples to represent a softened
dataset, which makes parameter learning intractable even for the simple logistic regression model
(Thm. 1), let alone more complex probabilistic models such as VAEs [44] and GANs [45]. Despite

6

Algorithm 3 PC Entropy regularization
1: Input: A deterministic PCp; �ow Fn;c (D) for every edge(n; c) in p; hyperparameter� .
2: Output: A set of log-parameters,f ' n;c : (n; c) 2 pg, which are the solution of Eq. (2).
3: 8n; node_prob[n] 0; node_prob[nr] 1 //nr is the root node ofp
4: while not convergedo
5: 8n; entropy [n] The entropy of the sub-PC rooted atn (see Alg. 4 in Appendix A.2)
6: foreach sum unitn traversed in preorder (parent before children)do
7: di Fn;c i (D)=jDj ; b = � � node_prob[n] //f ci g

in(n)
i =1 is the set of children ofn

8: Solve forf ' n;c i g
j in(n) j
i =1 in the following set of equations (y is a variable):

(
di e� ' n;c i � b� ' n;c i + b� entropy [ci] = y (8i 2 f 1; : : : ; jin(n)jg)
P j in(n) j

i =1 e' n;c i = 1
(5)

9: for eachc 2 in(n) and eachm 2 in(c) do //Updatenode_prob of grandchildren
10: node_prob[m] node_prob[m] + e' n;c � node_prob[n]

this negative result, the MLE parameters of a PCp w.r.t. D� can be computed in timeO(jpj�jDj),
which is linear w.r.t. the model size as well as the size of theoriginal dataset.

Theorem 3. Let f n (x) = � � 1[x 2 supp(n)] + (1 � �) � 1[x 62supp(n)] in Alg. 1. Given a
deterministic PCp, a boolean datasetD, and hyperparameter� 2 (0:5; 1], the set of all �ows
f Fn;c (D�) j 8 edge(n; c)g w.r.t. the softened datasetD� can be computed by Alg. 1 and 2 within
O(jpj�jDj) time.

Proof of this theorem is provided in Appendix A.1. Since the MLE parameters (Eq. (3)) w.r.t.D�
can be computed inO(jpj) time using the �ows, the overall time complexity to compute the MLE
parameters is againO(jpj�jDj).

Entropy regularization The hope for tractable PC entropy regularization comes from the fact that
the entropy of a deterministic PCp can be exactly computed inO(jpj) time [6, 46]. However, it is
still unclear whether the entropy regularization objectiveLLent (� ; D; �) (Eq. (2)) can be tractably
maximized. We answer this question with a mixture of positive and negative results: while the
objective is multi-modal and the global optimal is hard to �nd, we propose an ef�cient algorithm that
(i) guarantees convergence to a stationary point, and (ii) achieves high convergence rate in practice.
We start with the negative result.

Proposition 1. There exists a deterministic PCp, a hyperparameter� , and a datasetD such that
LLent (� ; D; �) (Eq.(2)) is non-concave and has multiple local maximas.

Proof is given in Appendix A.7. Although global optimal solutions are generally infeasible, we
propose an ef�cient algorithm that guarantees to �nd a stationary point ofLLent (� ; D; �). Speci�cally,
Alg. 3 takes as input a deterministic PCp and all its edge �ows w.r.t.D, and returns a set of learned
log-parameters that correspond to a stationary point of the objective.2 In its main loop (lines 4-10),
the algorithm alternates between two procedures: (i) compute the entropy of the distribution encoded
by every node w.r.t. the current parameters (line 5),3 and (ii) update PC parameters with regard to the
computed entropies (lines 6-10). Speci�cally, in the parameter update phase (i.e., the second phase),
the algorithm traverses every sum unitn in preorder and updates its child parameters by maximizing
the entropy regularization objective (LLent (� ; D; �)) with all other parameters �xed. This is done by
solving the set of equations in Eq. (5) using Newton's method (lines 7-8).4 In addition to the child
nodes' entropy computed in the �rst phase, Eq. (5) uses the top-down probability of every unitn (i.e.,
node_prob[n]), which is progressively updated in lines 9-10.

Theorem 4. Alg. 3 converges monotonically to a stationary point ofLLent (� ; D; �) (Eq.(2)).

Proof. The high-level idea of the proof is to show that the parameter update phase (lines 6-10) opti-
mizes a concave surrogate objective ofLLent (� ; D; �), which is determined by the entropies computed

2We compute parameters in the logarithm space for numerical stability.
3This can be done by Alg. 4 shown in Appendix A.2. Lem. 1 proves that Alg. 4 takesO(jpj) time.
4Details for solving Eq. (5) is given in Appendix B.2.

7

Figure 5: Both data softening and entropy regularization effectively improve the test set log-likelihood
(LL) across various datasets [39] and PC structures [17]. LL improvement (higher is better) represents
the gain of test set LL compared to Laplace smoothing. The test-set LLs are reported in Table 3.

in line 5. Speci�cally, we show that whenever the surrogate objective is improved,LLent (� ; D; �) is
also improved. Since the surrogate objective is concave, it can be easily optimized. Therefore, Alg. 3
converges to a stationary point ofLLent (� ; D; �). The detailed proof is in Appendix A.5.

Alg. 3 can be regarded as a EM-like algorithm, where the E-step is the entropy computation phase
(line 5) and the M-step is the parameter update phase (lines 6-10). Speci�cally, the E-step constructs
a concave surrogate of the true objective (LLent (� ; D; �)), and the M-step updates all parameters by
maximizing the concave surrogate function. Although Thm. 4 provides no convergence rate analysis,
the outer loop typically takes 3-5 iterations to converge in practice. Furthermore, Eq. (5) can be
solved with high precision in a few (< 10) iterations. Therefore, compared to the computation of all
�ows w.r.t. D, which takesO(jpj�jDj) time, Alg. 3 takes a negligibleO(jpj) time.

In response to the motivation in Sec. 3, we show that both proposed methods can overcome the
imbalanced regularization problem of Laplace smoothing. Again consider the example PC in
Fig. 1(a), we conceptually demonstrate that both data softening and entropy regularization will
not over-regularization� 11 compared to� 12. First, data softening essentially add no prior to the
parameters, and only soften the evidences in the dataset. Therefore, it will not over-regularize children
with small support sizes. Second, entropy regularization will add a much higher prior to� 12. Suppose
n =10, consider maximizing Eq. (2) with an empty dataset (i.e., we maximizeENT(pn 1) directly), the
optimal parameters would be� 11 � 0:002and� 12 � 0:998. Therefore, entropy regularization will tend
to add a higher prior to children with large support sizes. More fundamentally, the reason why both
proposed approaches do not add biased priors to PCs is that they are designed to be model-agnostic,
i.e., their de�nitions as shown in Sec. 2 are independent with the model they apply to.

Empirical evaluation We empirically evaluate both proposed regularization methods on the twenty
density estimation datasets [39]. Since we are only concerned with parameter learning, we adopt PC
structures (de�ned by its DAG) learned by Strudel [17]. 16 PCs with different sizes were selected
for each of the 20 datasets. For all experiments, we performed a hyperparameter search for all three
regularization approaches (Laplace smoothing, data softening, and entropy regularization)5 using the
validation set and report results on the test set. Please refer to Appendix B.3 for more details.

Results are summarized in Fig. 5. First look at the scatter plots on the left. The x-axis represents
the degree of over�tting, which is computed as follows: denoteLLtrain andLLval as the average
train and validation log-likelihood under the MLE estimation with Laplace smoothing (� =1 :0), the
degree of over�tting is de�ned as(LLval � LLtrain)=LLval , which roughly captures how much the
dataset/model pair suffers from over�tting. The y-axis represents the improvement on the average
test set log-likelihood compared to Laplace smoothing. As demonstrated by the scatter plots, despite
a few outliers, both proposed regularization methods steadily improve the test set LL over various
datasets and PC structures, and the LL improvements are positively correlated with the degree of
over�tting. Furthermore, as shown by the last scatter plot and the histogram plot, when combining
data softening and entropy regularization, the LL improvement becomes much higher compared to
using the two regularizers individually.

4.3 Regularizing Non-Deterministic PCs

By viewing every non-deterministic PC as a deterministic PC with additional hidden variables
(Sec. 4.1), the regularization techniques developed in Sec. 4.2 can be directly adapted. Speci�cally,

5Speci�cally, � 2 f 0:1; 0:4; 1:0; 2:0; 4:0; 10:0g, � 2 f 0:9996; 0:999; 0:996g, � 2 f 0:001; 0:01; 0:1g.

8

	Introduction
	Two Intuitive Ideas for Regularizing Distributions
	Background and Motivation
	How Is This Tractable And Practical?
	Learning the Parameters of PCs
	Regularizing Deterministic PCs
	Regularizing Non-Deterministic PCs

	Conclusions
	Proofs
	Proof of Theorem 3
	Useful Lemmas
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 4
	Correctness of Algorithms 1 and 2
	Proof of Proposition 1

	Method or Experiment Details
	Soften non-boolean datasets
	Solving Equation 5
	Details of the Experiments on Deterministic PCs
	Details of the Experiments on Non-Deterministic PCs

