
Scaling Tractable Probabilistic Circuits: A Systems Perspective

Anji Liu 1 Kareem Ahmed 1 Guy Van den Broeck 1

Abstract
Probabilistic Circuits (PCs) are a general frame-
work for tractable deep generative models, which
support exact and efficient probabilistic inference
on their learned distributions. Recent modeling
and training advancements have enabled their ap-
plication to complex real-world tasks. However,
the time and memory inefficiency of existing PC
implementations hinders further scaling up. This
paper proposes PyJuice, a general GPU imple-
mentation design for PCs that improves prior art
in several regards. Specifically, PyJuice is 1-2
orders of magnitude faster than existing systems
(including very recent ones) at training large-scale
PCs. Moreover, PyJuice consumes 2-5x less GPU
memory, which enables us to train larger mod-
els. At the core of our system is a compilation
process that converts a PC into a compact repre-
sentation amenable to efficient block-based par-
allelization, which significantly reduces IO and
makes it possible to leverage Tensor Cores avail-
able in modern GPUs. Empirically, PyJuice can
be used to improve state-of-the-art PCs trained
on image (e.g., ImageNet32) and language (e.g.,
WikiText, CommonGen) datasets. We further es-
tablish a new set of baselines on natural image and
language datasets by benchmarking existing PC
structures but with much larger sizes and more
training epochs, with the hope of incentivizing
future research. Code is available at https:
//github.com/Tractables/pyjuice.

1. Introduction
Many tasks require not only precise modeling of intricate,
high-dimensional data distributions but also the efficient
execution of probabilistic inference on the learned model.
To satisfy inference-side demands, tractable deep generative

1Department of Computer Science, University of Califor-
nia, Los Angeles, USA. Correspondence to: Anji Liu <li-
uanji@cs.ucla.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

models are designed to support efficient computation of vari-
ous probabilistic queries. Probabilistic Circuits (PCs) (Choi
et al., 2020; Vergari et al., 2020) are a unified framework
that abstracts a myriad of tractable model families. PCs
have been applied to many domains such as explainability
and causality (Correia et al., 2020; Wang & Kwiatkowska,
2023), graph link prediction (Loconte et al., 2023), and
neuro-symbolic AI (Xu et al., 2018; Manhaeve et al., 2018;
Ahmed et al., 2022a). In particular, there is a trend of using
PCs’ tractability to control expressive deep generative mod-
els, including (large) language models (Zhang et al., 2023),
image diffusion models (Liu et al., 2024), and reinforcement
learning models (Liu et al., 2023b).

The backbone of the application-side advancements is the
recent breakthroughs on the modeling and learning side
of PCs, which include designing better PC structures (Pe-
harz et al., 2020b; Correia et al., 2023; Mathur et al., 2023;
Loconte et al., 2024; Gala et al., 2024), effective structure
learning algorithms (Gens & Pedro, 2013; Dang et al., 2020;
2022; Yang et al., 2023), and distilling from expressive deep
generative models (Liu et al., 2023a). Despite such algorith-
mic innovations, a fundamental obstacle to further scaling
up PC learning and inference is the time and memory ineffi-
ciency of existing implementations, hindering the training of
large PC models and their application to large-scale datasets.

In this work, we develop an efficient and flexible system
called PyJuice that addresses various training and inference
tasks for PCs. As shown in Table 1, PyJuice is orders of
magnitude faster than previous implementations for PCs
(e.g., SPFlow (Molina et al., 2019), EiNet (Peharz et al.,
2020a), and Juice.jl (Dang et al., 2021)) as well as Hidden
Markov Models1 (e.g., Dynamax (Murphy et al., 2023)).
Additionally, as we shall demonstrate in the experiments,
PyJuice is more memory efficient than the baselines, en-
abling us to train larger PCs with a fixed memory quota.

Unlike other deep generative models based on neural net-
work layers that are readily amenable to efficient systems
(e.g., a fully connected layer can be emulated by a single ma-
trix multiplication and addition kernel plus an element-wise
activation kernel), PCs cannot be efficiently computed using
well-established operands due to (i) the unique connection

1Every HMM has an equivalent PC representation.

1

https://github.com/Tractables/pyjuice
https://github.com/Tractables/pyjuice

Scaling Tractable Probabilistic Circuits: A Systems Perspective

Table 1. Average (± standard deviation of 5 runs) runtime (in
seconds) per training epoch of 60K samples for PyJuice and
the baselines SPFlow (Molina et al., 2019), EiNet (Peharz et al.,
2020a), Juice.jl (Dang et al., 2021), and Dynamax (Murphy et al.,
2023). We adopted four PC structures: PD, RAT-SPN, HCLT, and
HMM. All experiments were carried out on an RTX 4090 GPU
with 24GB memory. To maximize parallelism, we always use the
maximum possible batch size. “OOM” denotes out-of-memory
with batch size 2. The best numbers are in boldface.

PD (Poon & Domingos, 2011)

nodes 172K 344K 688K 1.38M 2.06M
edges 15.6M 56.3M 213M 829M 2.03B

SPFlow >25000 >25000 >25000 >25000 >25000
EiNet 34.2±0.0 88.7±0.2 456.1±2.3 1534.7±0.5 OOM
Juice.jl 12.6±0.5 37.0±1.7 141.7±6.9 OOM OOM
PyJuice 2.0±0.0 5.3±0.0 15.4±0.0 57.1±0.2 203.7±0.1

RAT-SPN (Peharz et al., 2020b)

nodes 58K 116K 232K 465K 930K
edges 616K 2.2M 8.6M 33.4M 132M

SPFlow 6372.1±4.2 >25000 >25000 >25000 >25000
EiNets 38.5±0.0 83.5±0.0 193.5±0.1 500.6±0.2 2445.1±2.6

Juice.jl 6.0±0.3 9.4±0.3 25.5±2.4 84.0±4.0 375.1±3.4

PyJuice 0.6±0.0 0.9±0.1 1.6±0.0 5.8±0.1 13.8±0.0

HCLT (Liu & Van den Broeck, 2021)

nodes 89K 178K 355K 710K 1.42M
edges 2.56M 10.1M 39.9M 159M 633M

SPFlow 22955.6±18.4 >25000 >25000 >25000 >25000
EiNet 52.5±0.3 77.4±0.4 233.5±2.8 1170.7±8.9 5654.3±17.4

Juice.jl 4.7±0.2 6.4±0.5 12.4±1.3 41.1±0.1 143.2±5.1

PyJuice 0.8±0.0 1.3±0.0 2.6±0.0 8.8±0.0 24.9±0.1

HMM (Rabiner & Juang, 1986)

nodes 33K 66K 130K 259K 388K
edges 8.16M 32.6M 130M 520M 1.17B

Dynamax 111.3±0.4 441.2±3.9 934.7±6.3 2130.5±19.5 4039.8±38.3

Juice.jl 4.6±0.1 18.8±0.1 91.6±0.1 OOM OOM
PyJuice 0.6±0.0 1.0±0.0 2.9±0.1 10.1±0.2 39.9±0.1

patterns of their computation graph,2 and (ii) the existence
of log probabilities at drastically different scales in the mod-
els, which requires to properly handle numerical underflow
problems. To parallelize PCs at scale, we propose a compi-
lation phase that converts a PC into a compact data structure
amenable to block-based parallelization on modern GPUs.
Further, we improve the backpropagation process by indi-
rectly computing the parameter updates by backpropagating
a quantity called PC flow (Choi et al., 2021) that is more
numerically convenient yet mathematically equivalent.

In the following, we first formally define PCs and discuss
common ways to parallelize their computation in Section 2.
Section 3 examines the key bottlenecks in PC parallelization.
Section 4 and 5 explains our design in details.

2Commonly used neural network layers mainly employ “reg-
ular” tensor operations such as matrix multiplications and tensor
inner-/outer-products. In contrast, PC layers can contain nodes
that are sparsely connected.

2. Preliminaries and Related Work
Many probabilistic inference tasks can be cast into comput-
ing sums of products. By viewing them from a computa-
tion graph standpoint, PCs provide a unified perspective on
many bespoke representations of tractable probability dis-
tributions, including Arithmetic Circuits (Darwiche, 2002;
2003), Sum-Product Networks (Poon & Domingos, 2011),
Cutset Networks (Rahman et al., 2014), and Hidden Markov
Models (Rabiner & Juang, 1986). Specifically, PCs define
distributions with computation graphs consisting of sum and
product operations, as elaborated below.

Definition 1 (Probabilistic Circuit). A PC defined over vari-
ables X is represented by a parameterized Directed Acyclic
Graph (DAG) with a single root node nr. Every leaf node
in the DAG represents an input node that defines a primitive
distribution over some variable X ∈X. Every inner node
n is either a sum node or a product node, which merges
the distributions encoded by its children, denoted ch(n),
to construct more complex distributions. The distribution
represented by every node is defined recursively as:

pn(x) :=

fn(x) n is an input node,∏

c∈ch(n) pc(x) n is a product node,∑
c∈ch(n)θn,c ·pc(x) n is a sum node,

(1)

where fn(x) is an univariate input distribution (e.g., Gaus-
sian, Categorical), and θn,c denotes the parameter corre-
sponding to edge (n, c). Intuitively, sum nodes model mix-
tures of their input distributions, which require the mixture
weights to be in the probability simplex:

∑
c∈ch(n) θn,c=1

and ∀c ∈ ch(n), θn,c ≥ 0. And product nodes build fac-
torized distributions over their inputs. The size of a PC,
denoted |p|, is the number of edges in its DAG.

The key to guaranteeing exact and efficient computation of
various probabilistic queries is to impose proper structural
constraints on the DAG of the PC. As an example, with
smoothness and decomposability (Poon & Domingos, 2011),
computing any marginal probability amounts to a forward
pass (children before parents) following Equation (1), with
the only exception that we set the value of input nodes
defined on marginalized variables to be 1. Please refer to
Choi et al. (2020) for a comprehensive overview of different
structural constraints and what queries they enable.

Although different algorithms are used for different training
and inference tasks, they are mostly based on (variants of)
the following subroutines: a feedforward pass (Eq. (1)) that
computes log pnr(x), and a backward pass computing

∀n, ∂ log pnr(x)

∂ log pn(x)
and ∀θn,c,

∂ log pnr(x)

∂θn,c
. (2)

For example, Peharz et al. (2020a) demonstrate how the
above parameter gradients can be used to apply Expectation-
Maximization (EM) updates, and Vergari et al. (2021) elab-

2

Scaling Tractable Probabilistic Circuits: A Systems Perspective

X1 X2 X1 X2 X3 X3X1 X2 X1 X2 X3 X3

Layering

Input layer

Product layer #1

Sum layer #1

Product layer #2

Sum layer #2

X1 X2 X1 X2

X3 X3

X1 X2 X1 X2

X3 X3

Figure 1. Layering a PC by grouping nodes with the same topolog-
ical depth (as indicated by the colors) into disjoint subsets. Both
the forward and the backward computation can be carried out in-
dependently on nodes within the same layer.

orates how the forward pass can be used to compute various
probabilistic and information-theoretic queries when cou-
pled with PC structure transformation algorithms. There-
fore, the speed and memory efficiency of these two proce-
dures largely determine the overall efficiency of PCs.

Related work on accelerating PCs. There has been
a great amount of effort put into speeding up training and
inference for PCs. One of the initial attempts performs node-
based computations on both CPUs (Lowd & Rooshenas,
2015) and GPUs (Pronobis et al., 2017; Molina et al., 2019),
i.e., by computing the outputs for a mini-batch of inputs
(data) recursively for every node. Despite its simplicity,
it fails to fully exploit the parallel computation capability
possessed by modern GPUs since it can only parallelize
over a batch of samples. This problem is mitigated by also
parallelizing topologically independent nodes (Peharz et al.,
2020a; Dang et al., 2021). Specifically, a PC is chunked into
topological layers, where nodes in the same layer can be
computed in parallel. This leads to 1-2 orders of magnitude
speedup compared to node-based computation.

The regularity of edge connection patterns is another key
factor influencing the design choices. Specifically, EiNets
(Peharz et al., 2020a) leverage off-the-shelf Einsum opera-
tions to parallelize dense PCs where every layer contains
groups of densely connected sum and product/input nodes.
Mari et al. (2023) generalize the notion of dense PCs to
tensorized PCs, which greatly expands the scope of EiNets.
Dang et al. (2021) instead focus on speeding up sparse PCs,
where different nodes could have drastically different num-
bers of edges. They use custom CUDA kernels to balance
the workload of different GPU threads and achieve decent
speedup on both sparse and dense PCs.

Another thread of work focuses on designing computation
hardware that is more suitable for PCs. Specifically, Shah
et al. (2021) propose DAG Processing Units (DPUs) that can
efficiently traverse sparse PCs, Dadu et al. (2019) introduce
an indirect read reorder-buffer to improve the efficiency
of data-dependent memory accesses in PCs, and Yao et al.
(2023) use addition-as-int multiplications to significantly
improve the energy efficiency of PC inference algorithms.

158.3ms
(37.9%) 254.6ms

(61.0%)

4.3ms
(1.1%)

Sum layers (IO)

Prod layers

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

PyJuice

Anonymous Authors1

nodes # edges

Sum layers 100K 38M
Prod layers 40K 903K

Table 1. Caption

Sum layers Prod layers

nodes 200K 815K
edges 154M 1.81M
params 154M -

Table 2. Caption

1. Introduction

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1

Sum layers
(compute)

Summary of the PC structure

Figure 2. Runtime breakdown of the feedforward pass of a PC with
∼150M edges. Both the IO and the computation overhead of the
sum layers are significantly larger than the total runtime of product
layers. Detailed configurations of the PC are shown in the table.

Applications of PCs. PCs have been applied to many
domains such as explainability and causality (Correia et al.,
2020; Wang & Kwiatkowska, 2023), graph link predic-
tion (Loconte et al., 2023), lossless data compression (Liu
et al., 2022), neuro-symbolic AI (Xu et al., 2018; Manhaeve
et al., 2018; Ahmed et al., 2022a;b), gradient estimation
(Ahmed et al., 2023b), graph neural networks rewiring (Qian
et al., 2023), and even large language model detoxification
(Ahmed et al., 2023a).

3. Key Bottlenecks in PC Parallelization
This section aims to lay out the key bottlenecks to efficient
PC implementations. For ease of illustration, we focus
solely on the forward pass, and leave the unique challenges
posed by the backward pass and their solution to Section 5.

We start by illustrating the layering procedure deployed for
PCs. Starting from the input nodes, we perform a topo-
logical sort of all nodes, clustering nodes with the same
topological depth into a layer. For example, in Figure 1,
the PC on the left side is transformed into an equivalent
layered representation on the right, where nodes of the same
color belong to the same layer. The forward pass proceeds
by sequentially processing each layer, and finally returns
the root node’s output. To avoid underflow, all probabili-
ties are stored in the logarithm space. Therefore, product
layers just need to sum up the corresponding input log-
probabilities, while sum layers compute weighted sums of
input log-probabilities utilizing the logsumexp trick.

Assume for now that all nodes in every layer have the same
number of children. A straightforward strategy is to paral-
lelize over every node and every sample. Specifically, given
a layer of size M and batch size B, we need to compute in
total M×B output values, which are evenly distributed to all
processors (e.g., thread-blocks in GPUs). We apply this idea
to a PC with the PD structure (Poon & Domingos, 2011).
The PC has ∼1M nodes and ∼150M edges. Additionally,
all nodes within a layer have the same number of children,
making it an ideal testbed for the aforementioned algorithm.

Figure 2 illustrates the runtime breakdown of the forward
pass (with batch size 512). As shown in the pie chart, both
the IO and the computation overhead of the sum layers are

3

Scaling Tractable Probabilistic Circuits: A Systems Perspective

much larger than that of the product layers. We would ex-
pect sum layers to exhibit a higher computation overhead
due to (i) the number of sum edges being ∼85x more than
the product edges (see the table in Fig. 2), and (ii) sum
edges requiring more compute compared to product edges.
However, we would not expect the gap in IO overhead to
be as pronounced as indicated in the pie chart. Specifically,
with batch size 512, the ideal memory read count of prod-
uct layers should be roughly [batch size]×[#sum nodes]≈
102M since all children of product nodes are sum or in-
put nodes (the number of input nodes is an order of mag-
nitude smaller and is omitted). Similarly, the number of
memory reads required by the sum layers is approximately
[batch size]×[#prod nodes]+[#parameters]≈571M, which
is only 5.6x compared to the product layers. The ideal mem-
ory write count of product layers should be larger since there
are about 4x more product nodes compared to sum nodes.

While the ideal IO overhead of the sum layers is not much
larger than that of the product layers, the drastic difference
in runtime (over 50x) can be explained by the significant
amount of reloads of child nodes’ probabilities in the sum
layers. Specifically, in the adopted PD structure, every
sum node has no more than 12 parents, while most product
nodes have 256 parents.3 Recall that the parents of product
nodes are sum nodes and vice versa. As a result, each
sum layer needs to reload the output of every product node
multiple times. Although this does not lead to 256x loads
from the GPU’s High-Bandwidth Memory (HBM) thanks
to its caching mechanism, such excessive IO access still
significantly slows down the algorithm.

The fundamental principle guiding our design is to prop-
erly group, or allocate, sum edges to different processors
to minimize the reloading of product nodes’ outputs. As an
added benefit, this allows us to interpret part of the core com-
putation as matrix multiplications, allowing us to harness
Tensor Cores available in modern GPUs and resulting in a
significant reduction in sum layers’ computational overhead.

4. Harnessing Block-Based PC Parallelization
This section takes gradual steps toward demonstrating how
we can reduce both the IO and computation overhead using
block-based parallelization. Specifically, we first utilize
a fully connected sum layer to sketch the high-level idea
(Sec. 4.1). Consequently, we move on to the general case,
providing further details of the algorithm (Secs. 4.2, 4.3).

4.1. Fully Connected Sum Layers

Consider a fully connected sum layer comprised of M sum
nodes, each connected to the same set of N product nodes
as inputs. Under the parallelization strategy mentioned in

3Only the children of the root sum node have 1 parent.

m! m"

𝑛! 𝑛" 𝑛# 𝑛$

𝜃!,#: parameter w.r.t. edge (𝑚! , 𝑛#)

𝑝!! += 𝜃"," % 𝑝$! + 𝜃",% % 𝑝$"
𝑝!" += 𝜃%," % 𝑝$! + 𝜃%,% % 𝑝$"

𝑝!! += 𝜃",& % 𝑝$# + 𝜃",' % 𝑝$$
𝑝!" += 𝜃%,& % 𝑝$# + 𝜃%,' % 𝑝$$

Step #1: Step #2:

Initialize 𝑝$! = 0, 𝑝$" = 0

Figure 3. Illustration of block-based parallelization. A processor
computes the output of 2 sum nodes, by iterating through blocks
of 2 input product nodes and accumulating partial results.

Section 3, with a single sample, we have M processors
each computing the output of a sum node. Since the layer
is fully connected, every processor loads all N input log-
probabilities, which results in M reloads of every input.

The key to reducing excessive IO overhead is by paralleliz-
ing over blocks of nodes/edges. Specifically, we divide the
M sum nodes into blocks of KM nodes and the N product
nodes into blocks of KN nodes. We assume without loss of
generality that M and N are divisible by KM and KN , re-
spectively.4 Instead of independently computing the output
of every sum node, we calculate the KM outputs of a sum
node block in a single processor. To achieve this, we iterate
through every product node block to compute and accumu-
late the partial results from the KM×KN edges between the
corresponding sum node block and product node block.

In every step, the processor loads a block of θ∈RKM×KN

parameters and a vector of pprod ∈ RKN input probabili-
ties, where we (temporarily) omit the fact that all probabil-
ities are stored in the logarithm space. The partial outputs
psum∈RKM are computed via a matrix-vector multiplica-
tion between θ and pprod. Note that if we add a second
“batch” dimension to pprod and psum, the computation im-
mediately becomes a matrix-matrix multiplication, which
can be computed efficiently using GPU Tensor Cores.

For example, in Figure 3, define KM =KN =2, we compute
the output of m0 and m1 by first calculating the weighted
sum w.r.t. the input probability of n0 and n1 in step #1,
and then accumulate the probabilities coming from n2 and
n3 in step #2. With the new parallelization strategy, every
processor that computes KM output values needs to load
every input probability only once, and the number of reloads
is reduced from M to M/KM .

4.2. Generalizing To Practical Sum Layers

Many sum layers in practical PCs are not fully connected
(e.g., in Dang et al. (2022); Liu et al. (2023a)). However, as

4When the number of product and sum nodes are not divisible
by the respective block size, we can add at most KM − 1 (or
KN − 1) placeholder nodes to make them divisible by the block
size. The incurred additional computation overhead can be small
since we can achieve good efficiency with relatively small block
sizes (e.g., 32 or 64) given that the number of nodes in a layer is
typically greater than a few thousand.

4

Scaling Tractable Probabilistic Circuits: A Systems Perspective

Parameter matrix:A sum layer: Compiled representation:

Group #1

Group #2

𝑚! 𝑚" 𝑚# 𝑚$ 𝑚% 𝑚&

𝑛! 𝑛" 𝑛# 𝑛$ Flattened params:𝑛% 𝑛&
𝑛! 𝑛" 𝑛# 𝑛$ 𝑛% 𝑛&

𝑚!

…

𝑚"
𝑚#
𝑚$
𝑚%
𝑚&

𝑚!

𝑚%

𝑛!
𝑛%

𝜃!
𝜃$

𝑚# 𝑛! 𝑛# 𝜃#𝜃"

𝜃!

𝜃" 𝜃#

𝜃$

𝜃"𝜃! 𝜃# 𝜃$… … …

param idsprod idssum ids

Figure 4. A sum layer (left) with a block-sparse parameter matrix
(middle) is compiled into two kernels (right) each with a bal-
anced workload. During execution, each kernel uses the compiled
sum/prod/param indices to compute the outputs of m0, . . . ,m5.

we shall demonstrate, they can still harness the advantages
of block-based parallelization. Specifically, consider a sum
layer with M sum nodes and N product nodes as inputs.
Following Section 4.1, we partition the sum and the product
nodes into blocks of KM and KN nodes, respectively. For
every pair of sum and product node blocks, if it is either fully
connected (i.e., featuring KM×KN edges) or unconnected
(i.e., no edge between them), we call the layer block-sparse.
In the following, we focus on efficiently parallelizing block-
sparse PCs (whose sum layers all exhibit block-sparsity).
We show in Appendix B.1 that many widely-adopted PCs
are indeed block sparse w.r.t. large block sizes. In Sec-
tion 4.4, we describe how our implementation can speed
up sparse PCs. We also show in Section 6.1 that PyJuice
speeds up sparse PCs.

As an example, the layer illustrated in Figure 4 (left) exhibits
block sparsity with block sizes KM = KN = 2. This is
evident as each pair of sum and product node blocks is either
fully connected (e.g., {m2,m3} and {n0, n1}) or disjoint
(e.g., {m4,m5} and {n2, n3}). In Figure 4 (middle), this
pattern is more discernible in the parameter matrix, where
aligned 2×2 blocks display either all non-zero parameters
(indicated by the colors) or all zero parameters.

Similar to the procedure outlined in Section 4.1, computing
the outputs of a block of KM sum nodes involves iterating
through all its connected product node blocks. This intro-
duces two additional problems: (i) how to efficiently index
the set of connected product node blocks, which may vary
for each sum node block; (ii) different sum node blocks
could connect to different numbers of product node blocks,
which causes an imbalanced workload among processors.
For instance, consider the layer in Figure 4. The first issue
is exemplified by the two sum node blocks {m0,m1} and
{m4,m5}, both of which possess a single child node block,
albeit different ones. The second issue is illustrated by the
node block {m2,m3}, which connects to two child node
blocks, while the others connect to only one.

4.3. Efficient Implementations by Compiling PC Layers

We address both problems through a compilation process,
where we assign every node an index, and precompute index
tensors that enable efficient block-based parallelization. The

first step is to partition the sum node blocks into groups,
such that every node block within a group has a similar
number of connected child node blocks. We then pad the
children with pseudo-product node blocks with probability
0 such that all sum node blocks in a group have the same
number of children. The partition is generated by a dynamic
programming algorithm that aims to divide the layer into the
smallest possible number of groups while ensuring that the
fraction of added pseudo-node blocks does not exceed a pre-
defined threshold. Due to space constraints, we elaborate
the node block partitioning algorithm in Appendix A.1. We
also discuss its optimality and time/memory efficiency.

We move on to construct the index tensors for each group.
In addition to assigning every node an index, we create
a vector θflat, a concatentation of all the PC parameters.
For every sum node block in a group with CN child node
blocks, we record (i) the starting index of the sum node
block, (ii) the set of initial indices of its CN child node
blocks, and (iii) the corresponding set of CN parameter
indices (that point to the first parameter in the respective
block of parameters in θflat). These parameter indices each
denote the starting point for the KM×KN parameters of
the corresponding pair of sum and product node blocks.
Let CM represent the total number of node blocks in the
group. Following the indices described above, we record
the following tensors: sum ids∈ZCM containing indices
of all sum node blocks; prod ids, param ids∈ZCM×CN ,
whose ith row represent the child indices and parameter
indices of the ith sum node block (i.e., the node block with
the start index sum ids[i]), respectively.

Figure 4 (right) illustrates the compiled index tensors of the
sum layer shown on the left. Recall that we use the block
sizes KM = KN = 2. The layer is then divided into two
groups: the first group including two sum node blocks,
{m0,m1} and {m4,m5}, each having one child node
block, and the second group including one sum node block,
{m2,m3}, which has two child node blocks. Take, for in-
stance, the first group. sum ids stores the start indices (i.e.,
m0 and m4) of the two sum node blocks. prod ids stores
the initial indices of the child node blocks (i.e., n0 and n4) of
the two sum node blocks, respectively. param ids encodes
the corresponding initial parameter indices θ0 and θ2.

Partitioning a layer into groups with the same number of
children allows us to use different kernel launching hyperpa-
rameters according to the specific setup of every node group
(e.g., number of nodes) to achieve better performance.

For every group in a sum layer, the three index tensors serve
as inputs to a CUDA kernel computing the log-probabilities
of the sum nodes in the group. Define lprod ∈RN×B and
lsum∈RM×B (B is the batch size) as the set of input and
output log-probabilities, respectively. Consider a group with
CM sum node blocks and CN child node blocks per sum

5

Scaling Tractable Probabilistic Circuits: A Systems Perspective

Algorithm 1 Forward pass of a sum layer group
1: Inputs: log-probs of product nodes lprod, flattened parameter

vector θflat, sum ids, prod ids, param ids

2: Inputs: # sum nodes: M , # product nodes: N , batch size: B
3: Inputs: block sizes KM , KN , KB for the sum node, product

node, and batch dimensions, respectively
4: Inputs: number of sum node blocks CM ; number of product

node blocks CN ; number of batch blocks CB

5: Outputs: log-probs of sum nodes lsum
6: Kernel launch: schedule to launch CM × CB thread-blocks

with m=0, . . . , CM−1 and b=0, . . . , CB−1
7: cum← (−∞)KM×KB∈ RKM×KB ▷ Scratch space on SRAM
8: bs, be← b ·KB , (b+ 1) ·KB ▷ Start and end batch index
9: for n = 0 to CN−1 do

10: ps, ns← param ids[m, n], prod ids[n, b]
11: Load θ←θflat[ps :ps+KM·KN].view(KM ,KN) to SRAM
12: Load l← lprod[ns :ns+KN , bs :be]∈RKN×KB to SRAM
13: lmax ← max(l, dim=0) ∈ R1×KB ▷ Compute on chip
14: pp ← exp(l− lmax) ∈ RKN×KB

15: ps ← matmul(θ,pp) ∈ RKM×KB ▷ With Tensor Cores
16: cum← where(lmax > cum,

log(ps + exp(cum− lmax) + lmax,

log(exp(lmax − cum) · ps + 1) + cum)

17: lsum[ms :ms+KM , bs :be]←acc (where ms←sum ids[m])

node block. Algorithm 1 computes the log-probabilities of
the CM sum node blocks and stores the results in the proper
locations in lsum. Specifically, we also divide the B samples
into blocks of size KB , leading to CB := B/KB blocks
(assume w.l.o.g. that B is divisible by KB). Algorithm 1
schedules to launch CM×CB thread-blocks, each responsible
for computing KM×KB outputs (line 6). The main loop
in line 9 iterates over all CN child node blocks. In every
step, we first load the corresponding parameter matrix θ∈
RKM×KN (line 11) and input matrix l∈RKN×KB (line 12).
Since l contains log-probabilities, we apply a variant of the
logsumexp trick: we first convert l to the arithmetic space by
subtracting the per-sample maximum log-probability (lines
13-14), then compute the (partial) output probabilities from
the current set of KM×KN edges via matrix multiplication
(line 15), and in line 16 aggregate the results back to the
accumulator cum defined in line 7. Finally, we store the
log-probabilities to the target locations in lsum (line 17).

4.4. Analysis: IO and Computation Overhead

We analyze the efficiency and IO complexity of our block-
based parallelization strategy. Specifically, we benchmark
on the largest sum layer in the PD structure adopted in Sec-
tion 3. The layer consists of 29K nodes and 30M edges. In
addition to the computation time, we record two types of
IO overhead: (i) the IO between the L1/texture cache and
the L2 cache, and (ii) the reads/writes between the L2 cache
and the GPU High-Bandwidth Memory (HBM). We vary

65.3ms

197GB

4.14GB

31.21ms

102GB

2.16ms

4.54GB

Block size (𝐾! and 𝐾")

Forward pass Backward pass w.r.t. inputs

0.64GB0.42GB

1.21ms

R
un
tim
e
(m
s)

IO
(G
B
)

2

0.94GB 1.18GB

4 8 16 32 641 2 4 8 16 32 641
Block size (𝐾! and 𝐾")

Figure 5. Runtime and IO overhead of a sum layer from the PD
structure (with 29K nodes and 30M edges). The results demon-
strate significant performance gains from our block-based paral-
lelization, even with small block sizes.

the block sizes KM and KN exponentially from 1 to 64. To
ensure a fair comparison, we implement a dedicated kernel
for KM = KN = 1, which directly parallelizes over sum
node/sample pairs, allowing for better workload allocation.
For other block sizes, we adjust KB and other kernel launch-
ing hyperparameters (e.g., warps per block) and report the
best runtime for every case. Results of the backward pass
(w.r.t. inputs) are also reported for completeness.

Results are shown in Figure 5. As the block size increases,
both the forward and the backward pass become signifi-
cantly faster. Notably, this is accompanied by a significant
drop in IO overhead. Specifically, with a large block size,
the kernel consumes 2x fewer reads/writes between the L2
cache and the HBM, and 25-50x fewer IO between the L1
and L2 cache. This corroborates the hypothesis stated in
Section 3 that the extensive value reloads significantly slow
down the computation.

Additionally, we note that even with small block sizes (e.g.,
2 or 4), the speedup is quite significant compared to the
baseline case (KM =KN =1), which allows us to speed up
sparse PCs. Specifically, with the observation that every
sparse PC can be viewed as a block-sparse PC with block
size 1, we can transform a sparse PC into a block-sparse one,
and pad zero parameters to edges belonging to the block-
sparse PC but not the sparse PC. For PCs with relatively
regular sparsity patterns, increasing the block sizes to even
small values like 2 or 4 can lead to significant speedup even
though a relatively large number of pseudo edges need to
be padded.

the speedup obtained by having a larger block size outpaces
the overhead caused by padded edges with zero parameters,
which leads to speed-ups.

5. Optimizing Backpropagation with PC Flows
The previous section focuses on speeding up sum layers by
reducing excessive memory reloads and leveraging Tensor
Cores. However, when it comes to backpropagation, directly
adapting Algorithm 1 by differentiating lines 13-16 would

6

Scaling Tractable Probabilistic Circuits: A Systems Perspective

lead to poor performance due to the following. First, we
need to either store some intermediate values (e.g., lmax and
pp) in the forward pass or recompute them in the backward
pass. Next, since different thread-blocks could access the
same product node log-probabilities in line 12, they both
need to write (partial) gradients of it, which introduces inter-
thread-block barriers that slow down the execution.

We overcome the problems by leveraging PC flows (Choi
et al., 2021), which is only a factor of θn,c away from the
desired gradients (Eq. 2). PC flows exhibit a straightforward
recursive definition, facilitating a seamless transformation
into an efficient implementation for the backward pass.

Definition 2 (PC flows). For a PC pnr
(X) rooted at node

nr and a sample x, the flow Fn(x) of every node n is
defined recursively as follows (assume that no consecutive
sum nodes or product nodes exist in the PC):5

Fn(x) :=

1 n is the root node,∑

m∈pa(n)

Fm(x) n is input or sum,∑
m∈pa(n)

θm,n·pn(x)
pm(x) ·Fm(x) n is a product node,

where pa(n) is the set of parents of n. Similarly, the edge
flow Fn,c(x) w.r.t. the sample x (c∈ch(n)) is defined as

Fn,c(x) := θn,c · pc(x)/pn(x) · Fn(x).

While similar results have been established in a slightly dif-
ferent context (Peharz et al., 2020a), we prove the following
equations in Appendix B.2 for completeness:

Fn(x) =
∂ log pnr

(x)

∂ log pn(x)
and Fn,c(x) = θn,c ·

∂ log pnr
(x)

∂θn,c
.

Following Definition 2, we can compute Fn(x) for every
node n utilizing the same set of layers created for the feed-
forward pass. Specifically, we first set the flow of the root
node to 1 following its definition. We then iterate through
the layers in reverse order (i.e., parent layers before child
layers). While processing a layer, all flows of the nodes in
the layer are computed by the preceding layers. And our
goal is to compute the (partial) flows of the child nodes of
the layer. Similar to the forward pass, we compile every
layer by grouping child node blocks with a similar number
of parents, and use block-based parallelization to reduce
reloads of parent log-probabilities. We provide the full
details of the backpropagation algorithm in Appendix A.2.

Another important design choice that leads to a significant
reduction in memory footprint is to recompute the product
nodes’ probabilities in the backward pass instead of stor-
ing them all in the GPU memory during the forward pass.
Specifically, we maintain a scratch space on GPU HBM that

5If such nodes exist, we can always collapse them into a single
sum or product node.

can hold the results of the largest product layer. All product
layers write their outputs to this same scratch space, and the
required product node probabilities are re-computed when
requested by a sum layer during backpropagation. Since
product layers are extremely fast to evaluate compared to the
sum layers (e.g., see the runtime breakdown in Fig. 2), this
leads to significant memory savings at the cost of slightly
increased computation time.

6. Experiments
We evaluate the impact of using PyJuice to train PC mod-
els. In Section 6.1, we compare PyJuice against existing
implementations regarding time and memory efficiency.
To demonstrate its generality and flexibility, we evaluate
PyJuice on four commonly used dense PC structures as well
as highly unstructured and sparse PCs. Next, we demon-
strate that PyJuice can be readily used to scale up PCs for
various downstream applications in Section 6.2. Finally, in
Section 6.3, we benchmark existing PCs on high-resolution
image datasets, hoping to incentivize future research to de-
velop better PC structures as well as learning algorithms.

6.1. Faster Models with PyJuice

We first benchmark the runtime of PyJuice on four com-
monly used PC structures: PD (Poon & Domingos, 2011),
RAT-SPN (Peharz et al., 2020b), HCLT (Liu & Van den
Broeck, 2021), and HMM (Rabiner & Juang, 1986). For
all models, we record the runtime to process 60,000 sam-
ples (including the forward pass, the backward pass, and
mini-batch EM updates). We vary their structural hyperpa-
rameters and create five PCs for every structure with sizes
(i.e., number of edges) ranging from 500K to 2B. We com-
pare against four baselines: SPFlow (Molina et al., 2019),
EiNet (Peharz et al., 2020a), Juice.jl (Dang et al., 2021), and
Dynamax (Murphy et al., 2023). Dynamax is dedicated to
State Space Models so it is only used to run HMMs; SPFlow
and EiNet are excluded in the HMM results because we are
unable to construct homogeneous HMMs with their frame-
works due to the need to share the transition and emission
parameters at different time steps. We describe how PyJuice
implements PCs with tied parameters in Appendix A.3. All
experiments in this subsection are carried out on an RTX
4090 GPU with 24GB memory.

Table 1 reports the runtime in seconds per epoch with mini-
batch EMs. PyJuice is orders of magnitude faster than all
baselines in both small and large PCs. Further, we observe
that most baselines exhaust 24GB of memory for larger PCs
(indicated by “OOM” in the table), while PyJuice can still ef-
ficiently train these models. Additionally, in Appendix D.1,

7In the adopted HMM, running Dynamax with batch size≥128
leads to internal errors, and thus the results are not reported.

7

Scaling Tractable Probabilistic Circuits: A Systems Perspective

Batch size

HCLT w/ 159M edges HMM w/ 130M edges
M
em
or
y
(G
B
)

16 32 64 128 256 5128
0

5

10

15

Batch size

M
em
or
y
(G
B
)

32 64 128 256 512
0

5

10

15

Figure 6. Comparison on memory efficiency. We take two PCs
(i.e., an HCLT w/ 159M edges and an HMM w/ 130M edges) and
record GPU memory usage under different block sizes.7

we show the efficiency of the compilation process. For ex-
ample, it takes only ∼8.7s to compile an HCLT with 159M
edges. Note that we only compile the PC once and then
reuse the compiled structure for training and inference.

In Figure 6, we take two PCs to show the GPU memory con-
sumption with different batch sizes. The results demonstrate
that PyJuice is more memory efficient than the baselines, es-
pecially in the case of large batch sizes (note that we always
need a constant-size space to store the parameters).

We move on to benchmark PyJuice on block-sparse PCs.
We create a sum layer with 209M edges (see Appx. C.1 for
details). We partition the sum and input product nodes in
the layer into blocks of 32 nodes respectively. We randomly
discard blocks of 32×32 edges, resulting in block-sparse
layers. As shown in Figure 7, as the fraction of removed
edge blocks increases, the runtime of both the forward and
the backward pass decreases significantly. This motivates
future work on PC modeling to focus on designing effective
block-sparse PCs.

Fraction of removed blocks

Backward pass

5

10

15

20

R
un
tim
e
(m
s)

2

4

6

8
Forward pass

0 0.2 0.4 0.6 0.8 1.0
Fraction of removed blocks

R
un
tim
e
(m
s)

0 0.2 0.4 0.6 0.8 1.0

Figure 7. Runtime of a block-sparse sum layer as the function of
the fraction of kept (non-dropped) edge blocks. The error bars
represent standard deviations over 5 runs.

Finally, we proceed to evaluate the runtime of sparse PCs.
We adopt the PC pruning algorithm proposed by Dang et al.
(2022) to prune two HCLTs with 10M and 40M edges, re-
spectively. We only compare against Juice.jl since all other
implementations do not support sparse PCs. As shown in
Figure 8, PyJuice is consistently faster than Juice.jl, despite
the diminishing gap when over 90% edges are pruned. Note
that with sparse PCs, PyJuice cannot fully benefit from the
block-based parallelization strategy described in Section 4,
yet it can still outperform the baseline.

Table 2. Perplexity of HMM language models trained on the Com-
monGen benchmark (Lin et al., 2020).

Zhang et al. (2023) PyJuice

hidden states 4096 4096 8192

Perplexity 9.78 8.81 8.65

1

Fraction of sum edge pruned

R
un
tim
e
(s
)

0 0.2 0.4 0.6 0.8 1.0

2

3

4

5

6

5

10

15

20

R
un
tim
e
(s
)

Fraction of sum edge pruned
0 0.2 0.4 0.6 0.8 1.0

HCLT w/ 40M edgesHCLT w/ 10M edges

Figure 8. Runtime per epoch (with 60K samples) of two sparse
HCLTs with different fractions of pruned edges. The error bars
represent standard deviations over 5 runs.

6.2. Better PCs At Scale

This section demonstrates the ability of PyJuice to improve
the state of the art by simply using larger PCs and training
for more epochs thanks to its speed and memory efficiency.
Specifically, we take the HMM language model proposed
by Zhang et al. (2023) and the image model introduced by
Liu et al. (2023c) as two examples.

HMM language models. Zhang et al. (2023) use the La-
tent Variable Distillation (LVD) (Liu et al., 2023a) technique
to train an HMM with 4096 hidden states on sequences of
32 word tokens. Specifically, LVD is used to obtain a set of
“good” initial parameters for the HMM from deep generative
models. The HMM language model is then fine-tuned on
the CommonGen dataset (Lin et al., 2020), and is subse-
quently used to control the generation process of (large)
language models for constrained generation tasks. Follow-
ing the same procedure, we use PyJuice to fine-tune two
HMMs with hidden sizes 4096 and 8192, respectively.

As shown in Table 2, by using the same HMM with 4096
hidden states, PyJuice improved the perplexity by ∼1.0 by
running many more epochs in less time compared to the
original model. We also train a larger HMM with 8192 hid-
den states and further improved the perplexity by a further
0.16. We refer the reader to Appendix C.2 for more details.

Sparse Image Models. Liu et al. (2023c) design a PC
learning algorithm that targets image data by separately
training two sets of PCs: a set of sparse patch-level PCs
(e.g., 4×4 patches) and a top-level PC that aggregates outputs
of the patch-level PC. In the final training step, the PCs are
supposed to be assembled and jointly fine-tuned. However,
due to the huge memory consumption of the PC (with over
10M nodes), only the top-level model is fine-tuned in the
original paper. With PyJuice, we can fit the entire model in
24GB of memory and fine-tune the entire model. For the PC
trained on the ImageNet32 dataset (Deng et al., 2009), this

8

Scaling Tractable Probabilistic Circuits: A Systems Perspective

Table 3. Density estimation performance of PCs on three natural
image datasets. Reported numbers are test set bits-per-dimension.

Dataset PD-mid PD-large HCLT-mid HCLT-large

ImageNet32 5.22 5.20 4.36 4.33
ImageNet 4.98 4.95 3.57 3.53
CelebA-HQ 4.35 4.29 2.43 2.38

fine-tuning step leads to an improvement from 4.06 to 4.04
bits-per-dimension. See Appendix C.3 for more details.

6.3. Benchmarking Existing PCs

We use PyJuice to benchmark the performance of the PD
and the HCLT structure on three natural image datasets:
ImageNet (Deng et al., 2009) and its down-sampled version
ImageNet32, and CelebA-HQ (Liu et al., 2015). For all
three datasets, we train the PCs on randomly sampled 16×
16 patches, which results in a total of 16×16×3 = 768
categorical variables each with 28=256 possible values. As
a preprocessing step, the image patches are converted into
the YCoCg color space since it is observed that such color
space transformations lead to improved density estimation
performance. Note that due to the lossy transformation
between the RGB space and the YCoCg space, our results
are not directly comparable to the results obtained from
RGB images.

We adopt two PD structures (i.e., PD-mid with 107M edges
and PD-large with 405M edges) as well as two HCLT struc-
tures (i.e., HCLT-mid with 40M edges and HCLT-large with
174M edges). Details of the adopted models are described in
Appendix C.4. We experiment with different optimization
strategies and adopt full-batch EM as it yields consistently
better performance across models and datasets. Specifically,
the computed PC flows are accumulated across all samples
in the training set before doing one EM step.

Results are shown in Table 3. Notably, we achieve better
results compared to previous papers. For example, Liu et al.
(2023a) reports 4.82 bits-per-dimension (bpd) for HCLT on
ImageNet32, while we achieved 4.33 bpd. The performance
improvements stem from more training epochs and the abil-
ity to do more hyperparameter search thanks to the speedup.
We highlight that the goal of this section is not to set new
records for tractable deep generative models, but to establish
a set of baselines that can be easily reproduced to track the
progress of developments in PC modeling and learning. In
Appendix C.4, we include additional benchmark results on
the WikiText dataset (Merity et al., 2016).

7. Conclusion
We proposed PyJuice, a novel system that supports training
and inference of probabilistic circuits. PyJuice is orders of

magnitude faster and much more memory efficient than even
very recent baselines. We hope PyJuice can boost future
research on tractable deep generative models by allowing
for efficient training of large-scale architectures.

Acknowledgements
This work was funded in part by the DARPA PTG Program
under award HR00112220005, the DARPA ANSR program
under award FA8750-23-2-0004, and the NSF grant #IIS-
1943641. We thank Honghua Zhang, Pasha Khosravi, and
Poorva Garg for providing valuable feedback during the
development of PyJuice.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Ahmed, K., Teso, S., Chang, K.-W., Van den Broeck, G.,

and Vergari, A. Semantic probabilistic layers for neuro-
symbolic learning. In Advances in Neural Information
Processing Systems 35 (NeurIPS), 2022a.

Ahmed, K., Wang, E., Chang, K.-W., and Van den Broeck,
G. Neuro-symbolic entropy regularization. In Proceed-
ings of the 38th Conference on Uncertainty in Artificial
Intelligence (UAI), 2022b.

Ahmed, K., Chang, K.-W., and Van den Broeck, G. A
pseudo-semantic loss for deep autoregressive models with
logical constraints. In Advances in Neural Information
Processing Systems 36 (NeurIPS), 2023a.

Ahmed, K., Zeng, Z., Niepert, M., and Van den Broeck, G.
Simple: A gradient estimator for k-subset sampling. In
Proceedings of the International Conference on Learning
Representations (ICLR), 2023b.

Choi, Y., Vergari, A., and Van den Broeck, G. Probabilistic
circuits: A unifying framework for tractable probabilistic
models. techreport, 2020. URL http://starai.cs.
ucla.edu/papers/ProbCirc20.pdf.

Choi, Y., Dang, M., and Van den Broeck, G. Group fairness
by probabilistic modeling with latent fair decisions. In
Proceedings of the 35th AAAI Conference on Artificial
Intelligence, 2021.

Correia, A., Peharz, R., and de Campos, C. P. Joints in ran-
dom forests. Advances in Neural Information Processing
Systems, 33:11404–11415, 2020.

9

http://starai.cs.ucla.edu/papers/ProbCirc20.pdf
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf

Scaling Tractable Probabilistic Circuits: A Systems Perspective

Correia, A. H., Gala, G., Quaeghebeur, E., de Campos, C.,
and Peharz, R. Continuous mixtures of tractable proba-
bilistic models. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37, pp. 7244–7252,
2023.

Dadu, V., Weng, J., Liu, S., and Nowatzki, T. Towards
general purpose acceleration by exploiting common data-
dependence forms. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitec-
ture, pp. 924–939, 2019.

Dang, M., Vergari, A., and Van den Broeck, G. Strudel:
Learning structured-decomposable probabilistic circuits.
In International Conference on Probabilistic Graphical
Models, pp. 137–148. PMLR, 2020.

Dang, M., Khosravi, P., Liang, Y., Vergari, A., and Van den
Broeck, G. Juice: A julia package for logic and proba-
bilistic circuits. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pp. 16020–16023,
2021.

Dang, M., Liu, A., and Van den Broeck, G. Sparse prob-
abilistic circuits via pruning and growing. Advances
in Neural Information Processing Systems, 35:28374–
28385, 2022.

Darwiche, A. A logical approach to factoring belief net-
works. KR, 2:409–420, 2002.

Darwiche, A. A differential approach to inference in
bayesian networks. Journal of the ACM (JACM), 50
(3):280–305, 2003.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Gala, G., de Campos, C., Peharz, R., Vergari, A., and
Quaeghebeur, E. Probabilistic integral circuits. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 2143–2151. PMLR, 2024.

Gens, R. and Pedro, D. Learning the structure of sum-
product networks. In International conference on ma-
chine learning, pp. 873–880. PMLR, 2013.

Lin, B. Y., Zhou, W., Shen, M., Zhou, P., Bhagavatula, C.,
Choi, Y., and Ren, X. Commongen: A constrained text
generation challenge for generative commonsense reason-
ing. In Findings of the Association for Computational
Linguistics: EMNLP 2020, pp. 1823–1840, 2020.

Liu, A. and Van den Broeck, G. Tractable regularization
of probabilistic circuits. Advances in Neural Information
Processing Systems, 34:3558–3570, 2021.

Liu, A., Mandt, S., and Van den Broeck, G. Lossless com-
pression with probabilistic circuits. In Proceedings of the
International Conference on Learning Representations
(ICLR), 2022.

Liu, A., Zhang, H., and Van den Broeck, G. Scaling up
probabilistic circuits by latent variable distillation. In
Proceedings of the International Conference on Learning
Representations (ICLR), 2023a.

Liu, A., Niepert, M., and Van den Broeck, G. Image inpaint-
ing via tractable steering of diffusion models. 2024.

Liu, X., Liu, A., Van den Broeck, G., and Liang, Y. Ex-
pressive modeling is insufficient for offline rl: A tractable
inference perspective. arXiv preprint arXiv:2311.00094,
2023b.

Liu, X., Liu, A., Van den Broeck, G., and Liang, Y. Un-
derstanding the distillation process from deep genera-
tive models to tractable probabilistic circuits. In Inter-
national Conference on Machine Learning, pp. 21825–
21838. PMLR, 2023c.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face
attributes in the wild. In Proceedings of International
Conference on Computer Vision (ICCV), 2015.

Loconte, L., Di Mauro, N., Peharz, R., and Vergari, A. How
to turn your knowledge graph embeddings into gener-
ative models. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Loconte, L., Sladek, A. M., Mengel, S., Trapp, M., Solin, A.,
Gillis, N., and Vergari, A. Subtractive mixture models via
squaring: Representation and learning. In Proceedings
of the International Conference on Learning Representa-
tions (ICLR), 2024.

Lowd, D. and Rooshenas, A. The libra toolkit for proba-
bilistic models. Journal of Machine Learning Research,
16:2459–2463, 2015.

Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T.,
and Raedt, L. D. Deepproblog: neural probabilistic logic
programming. In Advances in Neural Information Pro-
cessing Systems 36 (NeurIPS), 2018.

Mari, A., Vessio, G., and Vergari, A. Unifying and under-
standing overparameterized circuit representations via
low-rank tensor decompositions. In The 6th Workshop on
Tractable Probabilistic Modeling, 2023.

Mathur, S., Gogate, V., and Natarajan, S. Knowledge in-
tensive learning of cutset networks. In Uncertainty in
Artificial Intelligence, pp. 1380–1389. PMLR, 2023.

10

Scaling Tractable Probabilistic Circuits: A Systems Perspective

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

Molina, A., Vergari, A., Stelzner, K., Peharz, R., Subra-
mani, P., Di Mauro, N., Poupart, P., and Kersting, K.
Spflow: An easy and extensible library for deep prob-
abilistic learning using sum-product networks. arXiv
preprint arXiv:1901.03704, 2019.

Murphy, K., Linderman, S., Chang, P. G., Li, X., Kara,
A., Harper-Donnelly, G., and Duran-Martin, G. Dyna-
max, 2023. URL https://github.com/probml/
dynamax.

Peharz, R., Lang, S., Vergari, A., Stelzner, K., Molina, A.,
Trapp, M., Van den Broeck, G., Kersting, K., and Ghahra-
mani, Z. Einsum networks: Fast and scalable learning
of tractable probabilistic circuits. In International Con-
ference on Machine Learning, pp. 7563–7574. PMLR,
2020a.

Peharz, R., Vergari, A., Stelzner, K., Molina, A., Shao, X.,
Trapp, M., Kersting, K., and Ghahramani, Z. Random
sum-product networks: A simple and effective approach
to probabilistic deep learning. In Uncertainty in Artificial
Intelligence, pp. 334–344. PMLR, 2020b.

Poon, H. and Domingos, P. Sum-product networks: A new
deep architecture. In 2011 IEEE International Conference
on Computer Vision Workshops (ICCV Workshops), pp.
689–690. IEEE, 2011.

Pronobis, A., Ranganath, A., and Rao, R. P. Libspn: A
library for learning and inference with sum-product net-
works and tensorflow. In Principled Approaches to Deep
Learning Workshop, 2017.

Qian, C., Manolache, A., Ahmed, K., Zeng, Z., Van den
Broeck, G., Niepert, M., and Morris, C. Probabilistic
task-adaptive graph rewiring. In Proceedings of the Inter-
national Conference on Learning Representations (ICLR),
2023.

Rabiner, L. and Juang, B. An introduction to hidden markov
models. ieee assp magazine, 3(1):4–16, 1986.

Rahman, T., Kothalkar, P., and Gogate, V. Cutset networks:
A simple, tractable, and scalable approach for improving
the accuracy of chow-liu trees. In Machine Learning and
Knowledge Discovery in Databases: European Confer-
ence, ECML PKDD 2014, Nancy, France, September 15-
19, 2014. Proceedings, Part II 14, pp. 630–645. Springer,
2014.

Shah, N., Olascoaga, L. I. G., Zhao, S., Meert, W., and
Verhelst, M. Dpu: Dag processing unit for irregular
graphs with precision-scalable posit arithmetic in 28 nm.

IEEE Journal of Solid-State Circuits, 57(8):2586–2596,
2021.

Vergari, A., Choi, Y., Peharz, R., and Van den Broeck, G.
Probabilistic circuits: Representations, inference, learn-
ing and applications. AAAI Tutorial, 2020.

Vergari, A., Choi, Y., Liu, A., Teso, S., and Van den Broeck,
G. A compositional atlas of tractable circuit operations for
probabilistic inference. Advances in Neural Information
Processing Systems, 34:13189–13201, 2021.

Wang, B. and Kwiatkowska, M. Compositional probabilistic
and causal inference using tractable circuit models. In
International Conference on Artificial Intelligence and
Statistics, pp. 9488–9498. PMLR, 2023.

Xu, J., Zhang, Z., Friedman, T., Liang, Y., and Van den
Broeck, G. A semantic loss function for deep learning
with symbolic knowledge. In Proceedings of the 35th
International Conference on Machine Learning, 2018.

Yang, Y., Gala, G., and Peharz, R. Bayesian structure scores
for probabilistic circuits. In International Conference on
Artificial Intelligence and Statistics, pp. 563–575. PMLR,
2023.

Yao, L., Trapp, M., Periasamy, K., Leslin, J., Singh, G.,
and Andraud, M. Logarithm-approximate floating-point
multiplier for hardware-efficient inference in probabilistic
circuits. In The 6th Workshop on Tractable Probabilistic
Modeling, 2023.

Zhang, H., Dang, M., Peng, N., and Van den Broeck, G.
Tractable control for autoregressive language generation.
In International Conference on Machine Learning, pp.
40932–40945. PMLR, 2023.

11

https://github.com/probml/dynamax
https://github.com/probml/dynamax

Scaling Tractable Probabilistic Circuits: A Systems Perspective

A. Algorithm Details
In this section, we provide additional details of the design of PyJuice. Specifically, we introduce the layer partitioning
algorithm that divides a layer into groups of node blocks with a similar number of children in Appendix A.1, and describe
the details of the backpropagation algorithm in Appendix A.2.

A.1. The Layer Partitioning Algorithm

The layer partitioning algorithm receives as input a vector of integers nchs where each number denotes the number of
child node blocks connected to a node block in the layer. It also receives as input the maximum number of groups to be
considered (denoted G) and a sparsity tolerance threshold tol∈(0, 1]. Our goal is to search for a set of n (at most G) groups
with capacities g1, . . . , gn, respectively. Every number in nchs is then placed into the group with the smallest capacity it
can fit in. Every number in nchs must fit in a group. Assume there are ki numbers assigned to group i, the overhead/cost
w.r.t. a partitioning {g1, . . . , gn} is defined as

∑
i∈[n] ki ·gi. Our goal is to find a partitioning with overhead smaller than

sum(nchs)·(1+tol).

Algorithm 2 Partition a layer into groups

1: Inputs: a list of child node (block) counts of the current layer nchs∈ZN (N is the number of node blocks in the layer)
2: Inputs: the maximum number of groups G, the sparsity tolerance threshold tol∈(0, 1]
3: uni nchs, counts← unique(nchs, sorted = True) (get the unique values and their appearance counts; we require the numbers

in uni nchs to be sorted in ascending order)
4: L← length(uni nchs)
5: target overhead← ⌈sum(uni nchs ∗ counts) ∗ (1.0 + tol)⌉ (get the target overhead)
6: cum counts← cumsum(counts)

7: dp, backtrace← (0)L×G+1 ∈ RL×G+1, (0)L×G+1 ∈ ZL×G+1

8: for i = 0 to L− 1 do
9: dp[i, 1]← uni nchs[i] ∗ cum counts[i]

10: # Main DP algorithm
11: target n group← G

12: for n group = 2 to G do
13: dp[0, n group]← uni nchs[0] ∗ cum counts[0]
14: backtrace[0, n group]← 0
15: for i = 1 to L− 1 do
16: min overhead, best idx← inf,−1
17: for j = 0 to i− 1 do
18: curr overhead← dp[j, n group− 1] + uni nchs[i] ∗ (cum counts[i]− cum counts[j])
19: if curr overhead < min overhead then
20: min overhead, best idx← curr overhead, j
21: dp[i, n group], backtrace[i, n group]← min overhead, best idx

22: if dp[−1, n group] <= target overhead then
23: target n group← n group

24: # Backtrace
25: group sizes← (0)target n group ∈ Ztarget n group

26: i← L− 1
27: for n = target n group to 1 do
28: group sizes[n− 1]← i

29: i← backtrace[i, target n group]
30: return group sizes

We use a dynamic programming algorithm that is based on the following main idea. We first sort the numbers in nchs in
ascending order. Denote L as the size of nchs, we maintain a scratch table of size L × G whose ith row and jth column
indicates the best possible overhead achieved by the first i numbers in nchs when having in total at most j partitions. The
update formula of the DP table is

dp[i, j]← min
k∈[i−1]

dp[k, j − 1] + nchs[i] · (i− k), (3)

where we try to find the best place (k) to put a new group/partition. By simultaneously maintaining a matrix for backtracking,
we can retrieve the best partition found by the algorithm.

12

Scaling Tractable Probabilistic Circuits: A Systems Perspective

The algorithm is shown in Algorithm 2. A practical trick to speed it up is to coalesce the identical values in nchs as done in
line 3. Lines 7-9 initialize the buffers, and lines 11-23 are the main loop of the DP algorithm. Finally, the result partitioning
is retrieved using lines 25-29.

Theoretical guarantee. Algorithm 2 is guaranteed to find an optimal grouping given a pre-specified number of groups, and
is fairly efficient in practice. We formally state the problem in the following and provide the proof and analysis as follows.

As described in Appendix A.1, the grouping algorithm essentially takes as input a list of “# child node blocks” for each
parent node block in a layer, and the goal is to partition all parent node blocks into K groups such that we minimize the
following cost: the sum of the cost of each group, where the cost of a group is the maximum “# child node blocks” in the
group times the number of parent node blocks in the group. In the following, we first demonstrate that the proposed dynamic
programming (DP) algorithm (Algorithm 2) can retain the optimal cost for every K. We then proceed to analyze the time
and space complexity of the algorithm.

To simplify notations, we assume the input is a vector of integers [n1, . . . , nN]. We assume without loss of generality
that the numbers are sorted because if not, we can apply any sorting algorithm. The main idea of the DP algorithm is to
maintain a table termed dp of size N times K, where dp[i, j] indicates the optimal cost when partitioning the first i integers
into j groups. For the base cases, we can set dp[i, 1] = ni(∀i) and dp[1, j] = n1(∀j). For the inductive case, we have
Equation (3). It is straightforward to verify that when dp[k, j − 1](∀k ∈ [1, i − 1]) are optimal, dp[i, j] is also optimal.
Therefore, for any K, Algorithm 2 computes the optimal grouping strategy for K groups.

Efficiency. We then focus on the runtime. Given N and K, Algorithm 2 requires O(KN2) runtime and O(KN) memory,
which is undesired for large N (in practice, we set K to be smaller than 10). However, as demonstrated in Algorithm 2 (line
3), we only need to enumerate through the unique values in [n1, . . . , nN], which could potentially lower the computation
cost significantly. Even when we are dealing with highly non-structured PCs, we can always round the numbers up to a
minimum integer that is divisible by a small integer such as 10. This allows us to achieve a decent approximated solution
with much less computation time.

A.2. Details of the Backpropagation Algorithm for Sum Layers

Algorithm 3 Backward pass of a sum layer group w.r.t. parameters
1: Inputs: log-probs of product nodes lprod, log-probs of sum nodes lsum, flows of sum nodes fsum, flattened parameter vector θflat,

sum ids, prod ids, param ids

2: Inputs: # sum nodes: M , # product nodes: N , batch size: B
3: Inputs: block sizes KM , KN , KB for the sum node, product node, and batch dimensions, respectively
4: Inputs: number of sum node blocks CM ; number of product node blocks CN ; number of batch blocks CB

5: Outputs: flows of params fparams

6: Kernel launch: schedule to launch CM × CN thread-blocks with m=0, . . . , CM−1 and n=0, . . . , CN−1
7: cum← (0)KM×KN∈ RKM×KN ▷ Scratch space on SRAM
8: ms, me← sum ids[m], sum ids[m] +KM

9: ns, ne← prod ids[m, n], prod ids[m, n] +KN

10: for b = 0 to CB−1 do
11: bs, be← b ·KB , (b+ 1) ·KB ▷ Start and end batch index
12: Load f s←fsum[ms :me, bs :be] ∈ RKM×KB and ls← lsum[ms :me, bs :be] ∈ RKM×KB to SRAM
13: Load lp← lprod[ns :ne, bs :be]∈RKN×KB to SRAM
14: log nf← log(f s)− ls

15: log nf max← max(log nf, dim=0) ∈ R1×KB ▷ Compute on chip
16: log nf sub← exp(log nf− log nf max) ∈ RKM×KB

17: scaled emars← transpose(exp(pp + log nf max)) ∈ RKB×KN

18: partial flows← matmul(log nf sub, scaled emars) ∈ RKM×KN ▷ With Tensor Cores
19: cum← cum+ partial flows

20: ps, pe← param ids[m, n], param ids[m, n] +KM ·KN

21: fparams[ps :pe]← fparams[ps :pe] + θflat[ps :pe] ∗ cum.view(KM ∗KN)

We compute the backward pass with respect to the inputs and the parameters of the sum layer in two different kernels as we
need two different layer partitioning strategies to improve efficiency. In the following, we first introduce the backpropagation
algorithm for the parameters since it reuses the index tensors compiled for the forward pass (i.e., sum ids, prod ids, and

13

Scaling Tractable Probabilistic Circuits: A Systems Perspective

param ids).

The algorithm is shown in Algorithm 3. In addition to the log-probabilities of the product nodes (i.e., lprod), the log-
probabilities of the sum nodes (i.e., lsum), and the flattened parameters (i.e., θflat), the algorithm takes as input the flows
fsum computed for the sum nodes. Following Definition 2, we can compute the flow w.r.t. the sum parameters as

Fn,c(x) := θn,c · pc(x)/pn(x) · Fn(x).

Similar to Algorithm 1, we partition the sum nodes, product nodes, and samples into blocks of size KM , KN , and
KB , respectively. We schedule to launch CM×CN thread-blocks, each responsible for computing the parameter flows
for a block of KM ×KN parameter flows. The main loop (line 10) iterates through blocks of KB samples. In every
iteration, we first load the log-probabilities (i.e., ls and lp) and the sum node flows (i.e., f s) to compute the partial flow
pc(x)/pn(x) · Fn(x) for the block of samples (note that this equals Fn,c(x)/θn,c. The partial flows are accumulated in the
matrix cum initialized in line 7. After processing all blocks of samples, we add back the parameter flows by accumulating
cum ∗ [the corresponding parameters] in line 21.

As elaborated in Section 5, if we use the same set of index tensors used in the forward pass, we have the problem of
different thread-blocks needing to write (partial) flows to the same input product node blocks. Therefore, we do a separate
compilation step for the backward pass. Consider a sum layer with sum node blocks of size KM and child product node
blocks of size KN . We first partition the CN children into groups such that every child node block in a group has a similar
number of parents. This is done by the dynamic programming algorithm described in Appendix A.1.

Similar to the compilation procedure of the forward pass, for a group with CN child node blocks (assume every block has
CM blocks of parents), we generate three index tensors: ch ids∈ZCN and par ids, par param ids∈ZCN×CM . ch ids

contains the initial index of all CN child node blocks belonging to the group. For the ith node block in the group (i.e., the
product node block with the initial index ch ids[i]), par ids[i, :] encode the start indices of its parent sum node blocks,
and par param ids[i, :] represent the corresponding initial parameter indices.

The main algorithmic procedure is very similar to Algorithm 1. Specifically, the kernel schedules to launch CN×CB

thread-blocks each computing a block of KN×KB product node flows. In the main loop (line 9), we iterate through all CM

parent node blocks. In lines 13-16, we are essentially computing θn,c/pn(x) · Fn(x) (notations inherited from Definition 2)
for the block of KN×KB values using the logsumexp trick. Finally, we store the results back to fprod.

A.3. PCs with Tied Parameters

Formally, PCs with tied parameters are PCs containing same sub-structures in different parts of its DAG. Although the nodes
in these sub-structures could have different semantics, they can have shared/tied parameters. For example, in homogeneous
HMMs, although the transition probabilities between different pairs of consecutive latent variables are represented by
different sets of nodes and edges in the PC, they all have the same set of probability parameters.

PyJuice can be readily adapted to PCs with tied parameters. For the forward pass, we just need the compiler to assign
the same parameter indices in param ids. Similarly, we only need to slightly change the compilation procedure of
par param ids. One notable difference is that in the backward pass w.r.t. the parameters, multiple thread-blocks would
need to write partial flows to the same memory addresses, which leads to inter-thread-block barriers. We implemented a
memory-IO tradeoff by letting the compiler create new sets of memory addresses to store the parameter flows when the
number of thread-blocks writing to the same address is greater than a predefined threshold (by default set to 4).

B. Additional Technical Details
B.1. Block-Sparsity of Common PC Structures

Most commonly-adopted PC structures such as PD (Poon & Domingos, 2011), RAT-SPN (Peharz et al., 2020b), and HCLT
(Liu & Van den Broeck, 2021) have block-sparse sum layers because one of the key building blocks of the structure is a set
of sum nodes fully connected to their inputs. Therefore, every sum layer must contain multiple fully-connected blocks of
sum and product nodes, and hence they are block sparse.

14

Scaling Tractable Probabilistic Circuits: A Systems Perspective

Algorithm 4 Backward pass of a sum layer group w.r.t. inputs
1: Inputs: log-probs of product nodes lprod, log-probs of sum nodes lsum, flows of sum nodes fsum, flattened parameter vector θflat,

ch ids, par ids, par param ids

2: Inputs: # sum nodes: M , # product nodes: N , batch size: B
3: Inputs: block sizes KM , KN , KB for the sum node, product node, and batch dimensions, respectively
4: Inputs: number of sum node blocks CM ; number of product node blocks CN ; number of batch blocks CB

5: Outputs: flows of inputs fprod
6: Kernel launch: schedule to launch CN × CB thread-blocks with n=0, . . . , CN−1 and b=0, . . . , CB−1
7: cum← (−∞)KN×KB∈ RKN×KB ▷ Scratch space on SRAM
8: bs, be← b ·KB , (b+ 1) ·KB

9: for m = 0 to CM−1 do
10: ps, pe← par param ids[n, m]

11: Load f s←fsum[ms :me, bs :be] ∈ RKM×KB and ls← lsum[ms :me, bs :be] ∈ RKM×KB to SRAM
12: Load θ←transpose(θflat[ps :pe].view(KM ,KN))∈RKN×KM to SRAM
13: log nf← log(f s)− ls

14: log nf max← max(log nf, dim=0) ∈ R1×KB ▷ Compute on chip
15: log nf sub← exp(log nf− log nf max) ∈ RKM×KB

16: partial flows← matmul(θ, log nf sub) ∈ RKM×KN ▷ With Tensor Cores

17:

cum← where(log nf max > cum,

log(partial flows+ exp(cum− log nf max) + log nf max,

log(exp(log nf max− cum) · partial flows+ 1) + cum)

18: ns, ne← ch ids[n], ch ids[n] +KN

19: fprod[ns :ne, bs :be]← exp(cum+ lprod[ns :ne, bs :be])

B.2. Relation Between PC Flows and Gradients

We first show the equality for the node flows:

Fn(x) =
∂ log pnr (x)

∂ log pn(x)
. (4)

We do the proof by induction. As a base case, we have by definition that Fnr (x) = ∂ log pnr (x)/∂ log pnr (x) = 1.

Next, suppose n is a sum or an input node, and for all its parents m, we have Equation (4) is satisfied by induction. Since all
parents of n are product nodes, we have

Fn(x) =
∑

m∈pa(n)

Fm(x) =
∑

m∈pa(n)

∂ log pnr
(x)

∂ log pm(x)
=

∑
m∈pa(n)

∂ log pnr
(x)

∂ log pn→m(x)
=

∂ log pnr
(x)

∂ log pn(x)
,

where pn→m(x) denotes the probability carried by the edge from n to m.

Finally, suppose n is a product node and thus all its parents are sum nodes. We have

Fn(x) =
∑

m∈pa(n)

θm,n · pn(x)
pm(x)

· Fm(x) =
∑

m∈pa(n)

θm,n · pn(x)
pm(x)

· ∂ log pnr (x)

∂ log pm(x)
, (5)

=
∑

m∈pa(n)

θm,n · pn(x) ·
∂ log pnr (x)

∂pm(x)
. (6)

Denote pn→m(x) = θm,n · pn(x) as the probability carried on the edge (m,n). Since pm(x) =
∑

n′∈ch(m) pn′→m(x), we
have

∀n ∈ ch(m),
∂ log pnr

(x)

∂pm(x)
=

∂ log pnr
(x)

∂pn→m(x)
.

15

Scaling Tractable Probabilistic Circuits: A Systems Perspective

Plug in the above equation on Fn(x), this results in

Fn(x) =
∑

m∈pa(n)

pn→m(x) · ∂ log pnr (x)

∂pn→m(x)
=

∑
m∈pa(n)

∂ log pnr (x)

∂ log pn→m(x)
=

∂ log pnr (x)

∂ log pn(x)
. (7)

We move on to demonstrate the following relation:

Fn,c(x) = θn,c ·
∂ log pnr (x)

∂θn,c
=

∂ log pnr (x)

∂ log θn,c
,

where n is a sum node and c is one of its children. We reuse the results derived in Equations (6) and (7), where we replace n
with c and m with n:

Fn,c(x) =
θn,c · pc(x)

pn(x)
· Fn(x) = θn,c · pc(x) ·

∂ log pnr
(x)

∂pn(x)
=

∂ log pnr
(x)

∂ log pc→n(x)
=

∂ log pnr
(x)

∂ log θn,c
.

C. Experimental Details
C.1. The Adopted Block-Sparse PC Layer

The PC layer contains 200 independent fully-connected sets of nodes. Every connected subset consists of 1024 sum nodes
and 1024 product nodes. When compiling the layer, we divide the layer into blocks of size 32. When dropping 32×32 edge
blocks from the layer, we ensure that every sum node has at least one child.

C.2. Details of Training the HMM Language Model

Following Zhang et al. (2023), we first fine-tune a GPT-2 model with the CommonGen dataset. We then sample 8M
sequences of length 32 from the fine-tuned GPT-2. After initializing the HMM parameters with latent variable distillation,
we fine-tune the HMM with the sampled data. Specifically, following Zhang et al. (2023), we divide the 8M samples into 40
equally-sized subsets, and run full-batch EM on the 40 subsets repeatedly. Another set of 800K samples is drawn from the
fine-tuned GPT as the validation set.

C.3. Details of Training the Sparse Image Model

Following Liu et al. (2023c), we fine-tune the model with an equivalent batch size of 6400 and a step size of 0.01 in the
mini-batch EM algorithm. Specifically, suppose θ are the current parameters, θnew are the new set of parameters computed
by the EM update. Given step size α, the update formula is θ ← (1− α)θ + αθnew.

C.4. Additional Benchmark Results

Hyperparameters of the adopted HCLTs. We adopt two HCLTs (Liu & Van den Broeck, 2021) with hidden sizes 256
and 512, respectively. The backbone CLT structure is constructed using 20,000 randomly selected training samples.

Hyperparameters of the adopted PDs. Starting from the set of all random variables, the PD structure recursively splits
the subset with product nodes. Specifically, consider an image represented as a H×W×C (H is the hight; W is the width;
C is the number of channels), the PD structure recursively splits over both the height and the width coordinates, where every
coordinate has a set of pre-defined split points. For both the height and the width coordinates, we add split points with
interval 2. PD-mid has a hidden dimension of 128 and PD-large has 256.

Benchmark results on WikiText-103. Table 4 illustrates results on WikiText-103. We train the model on sequences with
64 tokens. We adopt two (homogeneous) HMM models, HMM-mid and HMM-large with hidden sizes 2048 and 4096,
respectively.

Table 4. Density estimation performance of PCs on the WikiText-103 dataset. Reported numbers are test set perplexity.

Dataset HMM-mid HMM-large

WikiText-103 146.59 167.65

16

Scaling Tractable Probabilistic Circuits: A Systems Perspective

D. Additional Experiments
D.1. Speed of the Compilation Process

In Table 5, we show the compilation speed of PCs with different structures and different sizes. Experiments are conducted
on a server with an AMD EPYC 7763 64-Core Processor and 8 RTX 4090 GPUs (we only use one GPU). The results
demonstrate the efficiency of the compilation process, where even the PD model with close to 1B parameters can be
compiled in around 30 seconds.

Table 5. Average (± standard deviation of 3 runs) runtime (in seconds) of the compilation process of four PCs.

Structure HMM PD HCLT RAT-SPN

nodes 130K 1.38M 710K 465K
edges 130M 829M 159M 33.4M

Compilation time (s) 1.50±0.02 30.57±0.86 8.70±0.32 4.72±0.16

D.2. Runtime on Different GPUs

In addition to the RTX 4090 GPU adopted in the experiments in Table 1, we compare the runtime of PyJuice with the
baselines on an NVIDIA A40 GPU. As shown in the following table, PyJuice is still significantly faster than all baselines for
PCs of different sizes.

Table 6. Average (± standard deviation of 5 runs) runtime (in seconds) per training epoch of 60K samples for PyJuice and the
baselines on five RAT-SPNs (Peharz et al., 2020b) with different sizes. All other settings are the same as described in Section 6.1.

nodes 58K 116K 232K 465K 930K
edges 616K 2.2M 8.6M 33.4M 132M

EiNet 60.29±0.30 136.85±0.13 282.58±0.27 690.73±0.08 1936.28±0.26

Juice.jl 4.41±0.21 11.57±0.07 32.74±1.86 121.25±0.43 331.98±2.87

PyJuice 1.53±0.07 3.11±0.07 6.47±0.08 13.62±0.37 30.69±0.19

D.3. Runtime on Different Batch Sizes

As a supplement to Table 1, we report the runtime for a RAT-SPN (Peharz et al., 2020b) with 465K nodes and 33.4M edges
using batch sizes {8, 16, 32, 64, 128, 256, 512}. To minimize distractions, we only record the time to compute the forward
and backward process, but not the time used for EM updates. Results are shown in the table below.

Table 7. Average (± standard deviation of 5 runs) runtime (in seconds) per training epoch (excluding EM updates) of 60K samples
for PyJuice and the baselines on a RAT-SPNs (Peharz et al., 2020b) with 465K nodes and 33.4M edges. All other settings are the same
as described in Section 6.1. OOM denotes out-of-memory.

Batch size 8 16 32 64 128 256 512

EiNet 332.87±0.21 OOM OOM OOM OOM OOM OOM
Juice.jl 1045.04±0.06 853.15±0.03 775.87±0.02 642.54±0.04 324.23±0.02 163.68±0.02 80.57±0.01

PyJuice 43.09±0.04 18.63±0.02 7.38±0.01 4.58±0.01 3.50±0.01 3.04±0.01 2.76±0.03

17

