
ON EFFECTIVE PARALLELIZATION OF
MONTE CARLO TREE SEARCH

Anji Liu†, Yitao Liang†, Ji Liu‡, Guy Van den Broeck† & Jianshu Chen§
†Department of Computer Science, University of California, Los Angeles
{liuanji, yliang, guyvdb}@cs.ucla.edu
‡Seattle AI Lab, Kwai Inc., Bellevue, WA 98004, USA
jiliu@kuaishou.com
§Tencent AI Lab, Bellevue, WA 98004, USA
jianshuchen@tencent.com

ABSTRACT

Despite its groundbreaking success in Go and computer games, Monte Carlo Tree
Search (MCTS) is computationally expensive as it requires a substantial number
of rollouts to construct the search tree, which calls for effective parallelization.
However, how to design effective parallel MCTS algorithms has not been system-
atically studied and remains poorly understood. In this paper, we seek to lay its
first theoretical foundation, by examining the potential performance loss caused
by parallelization when achieving a desired speedup. In particular, we discover
the necessary conditions of achieving a desirable parallelization performance, and
highlight two of their practical benefits. First, by examining whether existing paral-
lel MCTS algorithms satisfy these conditions, we identify key design principles
that should be inherited by future algorithms, for example tracking the unobserved
samples (used in WU-UCT (Liu et al., 2020)). We theoretically establish this essen-
tial design facilitates O(lnn+M/

√
lnn) cumulative regret when the maximum

tree depth is 2, where n is the number of rollouts and M is the number of workers.
A regret of this form is highly desirable, as compared to O(lnn) regret incurred by
a sequential counterpart, its excess part approaches zero as n increases. Second,
and more importantly, we demonstrate how the proposed necessary conditions
can be adopted to design more effective parallel MCTS algorithms. To illustrate
this, we propose a new parallel MCTS algorithm, called BU-UCT, by following
our theoretical guidelines. The newly proposed algorithm, albeit preliminary, out-
performs four competitive baselines on 11 out of 15 Atari games. We hope our
theoretical results could inspire future work of more effective parallel MCTS.

1 INTRODUCTION

Monte Carlo Tree Search (MCTS) (Browne et al., 2012) algorithms have achieved unprecedented
success in fields such as computer Go (Silver et al., 2016), card games (Powley et al., 2011), and
video games (Schrittwieser et al., 2019). However, they generally require a large number of Monte
Carlo rollouts to construct search trees, making themselves time-consuming. For this reason, parallel
MCTS is highly appealing and has been successfully used in solving challenging tasks such as Go
(Silver et al., 2017; Couëtoux et al., 2017) and mobile games (Poromaa, 2017; Devlin et al., 2016).

Despite their extensive usage, the performance of parallel MCTS algorithms (Chaslot et al., 2008)
is not systematically understood from a theoretical perspective. There are empirical studies on the
advantages (e.g., Yoshizoe et al. (2011); Gelly & Wang (2006)) and disadvantages (e.g., Mirsoleimani
et al. (2017); Soejima et al. (2010); Bourki et al. (2010)) of existing approaches. However, they are
mainly algorithm-specific analysis, which provides less systematic design principles on effective
MCTS parallelization. As a consequence, practitioners still largely rely on the trial-and-error approach
when designing a new parallel MCTS algorithm, which is time-wise costly.

In this paper, we seek to lay the first theoretical foundation for effective MCTS parallelization.
Parallel MCTS algorithms generally exhibit different levels of performance loss compared to their

1



sequential counterparts, especially when a large number of workers are employed to achieve high
speedups (Segal, 2010). It is highly desirable for algorithm designers to minimize this loss while
still achieving high speedup, especially in solving challenging large-scale tasks. Therefore, we focus
on examining the potential performance loss caused by the parallelization when achieving a desired
speedup. And we measure the performance loss by excess regret, which is the extra cumulative regret
of a parallel MCTS algorithm relative to its sequential counterpart. In particular, we will characterize
the excess regret from a theoretical perspective and seek to answer the following key question: under
what conditions would the excess regret vanish when the number of rollouts increases?

To this end, with the help of a unified algorithm framework that covers all major existing parallel
MCTS algorithms as its special cases, we derive two necessary conditions for any algorithm specified
by the framework to achieve vanishing excess regret when the number of rollouts increases (Thm. 1).
We then highlight two practical benefits of the necessary conditions. First, the conditions allow us to
identify key design wisdom proposed by existing algorithms, for example tracking the unobserved
samples, which is proposed in WU-UCT (Liu et al., 2020). Second, and more importantly, we show
that the necessary conditions can provide concrete guidelines for designing better (future) algorithms,
which is demonstrated through an example workflow of algorithm design based on the necessary
conditions. The resulting algorithm, Balance the Unobserved in UCT (BU-UCT), out-performs four
competitive baselines on 11 out of 15 Atari games. We hope this encouraging result could inspire
more future work to develop better parallel MCTS algorithms with our theory.

2 PRELIMINARY: MCTS AND ITS PARALLELIZATION

Consider a Markov Decision Process (MDP) 〈S,A, R, P 〉, where S denotes a finite state space, A is
a finite action space, R is a bounded reward function, and P defines a deterministic state transition
function. We additionally define γ ∈ (0, 1] as the discount factor. At each time step t, the agent
takes an action at when the environment is in a state st, causing it to transit to the next state st+1

and emit a reward rt. In the context of MCTS, P and R (or their approximations) are assumed to
be known to the agent. By exploiting such knowledge, MCTS seeks to plan the best action a at a
given state s to achieve the highest expected cumulative reward E[

∑∞
t=0 γ

trt | s0 =s]. To this end, it
constructs a search tree using a sequence of repeated Monte Carlo rollouts, where a node corresponds
to a state, and an edge from st to st+1 represents the action at that causes the transition from st
to st+1. Each edge (s, a) in the search tree also stores a set of statistics {Q(s, a), N(s, a)}, where
Q(s, a) is the mean action value and N(s, a) is the count of completed simulations. These statistics
guide the construction of the search tree and are updated during the process. Specifically, during the
selection phase, the algorithm traverses over the current search tree by using a tree policy (e.g., the
Upper Confidence Bound (UCB) Auer (2002)) to iteratively select an action at that leads to a child
node st+1:

at = arg max
a∈A

{
Q(st, a)+c

√
2 ln

∑
a′ N(st, a′)

N(st, a)

}
, (1)

where the first term estimates the utility of executing a at st, the second term represents the uncertainty
of that estimate, and the hyperparameter c controls the tradeoff between exploitation (term 1) and
exploration (term 2). The selection process is performed iteratively until arriving at a node sT−1

where some of its actions are not expanded. Then, the algorithm selects an unexpanded action aT−1

at sT−1 and adds a new leaf node sT (corresponds to the next state) to the search tree at the expansion
phase, followed by querying its value V (sT ) through simulation, where a default policy repeatedly
interacts with the MDP starting from sT . Finally, in backpropagation, the statistics along the selected
path are recursively updated from sT−1 to s0 (i.e., from t = T − 1 to t = 0) by

N(st, at)← N(st, at) + 1, V (st) = R(st, at) + γV (st+1), (2)

Q(st, at)←
N(st, at)− 1

N(st, at)
Q(st, at) +

V (st+1)

N(st, at)
, (3)

where the recursion starts from the simulation return value V (sT ).

Parallel MCTS algorithms seek to speedup their sequential counterparts by distributing workloads
stemmed from the simulation steps to multiple workers, aiming to achieve the same performance with
less computation time. Fig. 1 presents five typical parallel MCTS algorithms. Among them, Leaf
Parallelization (LeafP) (Cazenave & Jouandeau, 2007) assigns multiple workers to simulate the same
node simultaneously; Root Parallelization (RootP) (Cazenave & Jouandeau, 2007) adopts the workers

2



B

𝑉" += 𝑟&'𝑉( −= 𝑟&'

A B C

A C
B

Aggregate statistics C

A

B

LeafP RootP TreeP VL-UCT

C

𝑠+

𝑠(

𝑠,

𝑠"

WU-UCT
A

C

𝑉-	𝑁- 𝑂-𝑠-
𝑉1	𝑁1 𝑂1

𝑠1

𝑉+	𝑁+ 𝑂+𝑠+

𝑉2	𝑁2 𝑂2

𝑉(	𝑁( 𝑂(

𝑠2

𝑠(

𝑠-

𝑠3

𝑉, += 𝑟&'

B

𝑠-

𝑠3𝑠1 𝑠1𝑁( += 𝑛&'

𝑁2 += 𝑛&'
𝑉2 −= 𝑟&'

A

𝑠2 𝑁, −= 𝑛&'

𝑁" −= 𝑛&'

Figure 1: Typical existing parallel MCTS algorithms. VL-UCT and WU-UCT use virtual loss (i.e.,
rVL) and number of on-going simulations (i.e., O) to pre-adjust node statistics, respectively.

to independently maintain different search trees, and the statistics are aggregated after all workers
complete their jobs; in Tree Parallelization (TreeP) (Chaslot et al., 2008), the workers independently
perform rollouts on a shared search tree; TreeP with Virtual Loss (VL-UCT) (Segal, 2010; Silver
et al., 2016) and Watch the Unobserved in UCT (WU-UCT) (Liu et al., 2020) pre-adjust the node
statistics with side information to achieve a better exploration-exploitation tradeoff. Please refer to
Appendix A for a more detailed and thorough discussion of existing parallel MCTS algorithms.

Main challenges Since parallel MCTS algorithms have to initiate new rollouts before all assigned
simulation tasks are completed, they are generally not able to incorporate the information from all
initiated simulations into its statistics (i.e., Q and N ). As demonstrated in previous studies (e.g., Liu
et al. (2020)), this could lead to significant performance loss compared to sequential MCTS algorithms
since the tree policy (Eq. (1)) cannot properly balance exploration and exploitation when using such
statistics. Therefore, most existing algorithms seek to improve their performance by augmenting the
statistics Q and N used by the tree policy, which is done by either adjusting how statistics possessed
by different workers are synchronized/aggregated (e.g., LeafP, RootP) or adding additional side
information (e.g., VL-UCT, WU-UCT). Specifically, this can be formalized by introducing a set of
modified statistics (defined as Q and N ) in replacement of Q and N in the tree policy (Eq. (1)):

Q(s, a) := α(s, a) ·Q(s, a) + β(s, a) · Q̃(s, a), N(s, a) := N(s, a) + Ñ(s, a)1, (4)

where Q̃ and Ñ are a set of pseudo statistics that incorporate additional side information; α and β
control the ratio between Q and Q̃. Common choices of the pseudo statistics include virtual loss
(Segal (2010); Silver et al. (2016); for both Q̃ and Ñ ) and incomplete visit count (Liu et al. (2020);
for Ñ ). Given this formulation, a natural question is how to design Q and N in order to achieve good
parallel performance in MCTS?

3 OVERVIEW OF OUR MAIN THEORETICAL RESULTS

The main objective of this paper is to answer the above question by identifying key necessary
conditions of Q and N to achieve desirable performance2 in parallel MCTS algorithms. Throughout
the paper, we highlight two benefits of our theoretical results: in hindsight, they help identify
beneficial design principles used in existing algorithms (Sec. 4.3); furthermore, they offer simple and
effective guidelines for designing better (future) algorithms (Sec. 5).

The two necessary conditions are best illustrated in Fig. 2(a). Consider node s in a search tree where
we want to select one of its child nodes. Workers A and B are in their simulation steps, querying
an offspring node of s1 and s2, respectively. To introduce the necessary condition of N , we define
the incomplete visit count O(s, a), which was introduced by Liu et al. (2020) to track the number of
simulation tasks that has been initiated but not yet completed. For example, in Fig. 2(a), both the
edges associated with s1 and s2 have incomplete visit counts of 1 since workers A and B are still
simulating their offspring nodes. The necessary condition regarding N is stated as follows:

∀(s, a) ∈
{

edges in the search tree
}

N(s, a) ≥ N(s, a) +O(s, a). (5)

One potential benefit of adding incomplete visit count (i.e., O) into N is to improve the diversity of
exploration (Liu et al., 2020). Specifically, since increasing O leads to a decrease of the exploration
bonus (the second term) in the tree policy (Eq. (1)), nodes with high incomplete visit count will

1Given the N -related are counts of simulations, which means N shall never be smaller than N , this equation
is sufficient for the general purpose and there is no need for weights before N and Ñ .

2The notion of “desirable performance” will be formalized in Sec. 4.1.

3



𝑠

𝑠"𝑠# 𝑠$
A B

Necessary cond. of N Necessary cond. of 𝑄&

Note: 𝑁( ≔ 𝑁(𝑠, 𝑎() (same for 𝑂 and �̅�)

Parallel MCTS 𝔸 Seq. MCTS 𝔸234

𝑠" 𝑠"
(𝑁" + 𝑂"
rollouts)O1 =O2 =1 O3 =0

N Q

(a) Illustration of the two necessary conditions in Theorem 1. (b) The aveg. action value gap is negatively correlated w. episode reward.
Aveg. action value gap Aveg. action value gap

Ep
iso
de
re
w
ar
d

Ep
iso
de
re
w
ar
d

Assault Gravitar
VL-UCT
LeafP
Best linear fit

WU-UCT + virtual loss
VL-UCT
LeafP
Best linear fit

WU-UCT + virtual loss

AseqA

Figure 2: The necessary conditions to achieve vanishing excess regret and their implications.

be less likely to be selected by other workers, which increase the diversity of exploration. In our
example, the chance of selecting s3 is increased due to the introduction of O. Note that VL-UCT with
virtual loss (Segal, 2010; Silver et al., 2016) is the first to consider pre-adjusting action values and
visit counts to improve the exploration-exploitation tradeoff in MCTS. We refer readers interested in
the difference between VL-UCT and WU-UCT to Appendix A.1.

The necessary condition of Q focuses on the similarity between the action value maintained by the
parallel MCTS algorithm A and its sequential counterpart Aseq. Formally, it requires the following
action value gap G(s, a) to be zero for each edge (s, a) in the search tree:

G(s, a) :=
∣∣E
[
Q(s, a)

]
− E

[
QAseq
m (s, a)

]∣∣ (m = N(s, a) +O(s, a)), (6)

whereQ(s, a) is generated by the parallel MCTS algorithm A, QAseq
m (s, a) represents the action value

of a sequential MCTS algorithm Aseq that starts from the child node of (s, a) and runs for m rollouts,
and E[·] averages over the randomness in the simulation returns. Although seemingly nontrivial to
satisfy, we will show that it indeed provides important insights for designing better algorithms.

Finally, we revisit both necessary conditions and give a preview of their two benefits: (i) identifying
useful designs in existing algorithms that should be inherited by future algorithms (Section 4), and (ii)
revealing new design principles for future algorithms (Section 5). First, we identify key techniques
used in existing algorithms that are aligned with our theoretical findings. We found that none of
them satisfy the necessary condition on Q and only WU-UCT satisfies the necessary condition of
N . In hindsight, this implies that that the design of N in WU-UCT is consistent with our theoretical
guidelines. And we further confirm the benefit of this essential design by showing that it facilitates
WU-UCT to achieve a cumulative regret of O(lnn+M/

√
lnn) when the maximum tree depth is 2

(Thm. 2), where n is the total number of rollouts and M is the number of workers. Comparing to
sequential UCT, whose cumulative regret is O(lnn), WU-UCT merely incurs an excess regret of
O(M/

√
lnn) that goes to zero as n increase. Second and more importantly, the necessary condition

of Q can guide us in designing better (future) algorithms. Specifically, we show in Fig. 2(b) that the
action value gap G is a strong performance indicator of parallel MCTS algorithms. The scatter plots
obtained from two Atari games demonstrate that, regardless of algorithms and hyperparameters, there
is a strong negative correlation between the action value gap G and the performance. In Sec. 5, we
will demonstrate that finding a surrogate gap to approximate G and reducing its magnitude could
lead to significant performance improvement across a large number of Atari games.

4 PARALLEL MCTS: THEORY AND IMPLICATIONS

Following our aforementioned takeaways, we start this section with formalizing the evaluation criteria
of MCTS parallelization before presenting the rigorous development of our theoretical results.

4.1 WHAT IS EFFECTIVE PARALLEL MCTS?

We analyze the performance of parallel MCTS algorithms by examining their performance loss under
a fixed speedup requirement. To begin with, we define the following metrics.

Speedup The speedup of a parallel MCTS algorithm A using M workers3 is defined as

speedup =
runtime of the sequential MCTS

runtime of algorithm A using M workers
,

3A worker refers to a computation unit in practical algorithms that performs simulation tasks sequentially.

4



where the runtime of both the sequential and the parallel algorithms is measured by the duration of
performing the same fixed number of rollouts. Assuming simulation is much more time-consuming
compared to other steps,4 parallel MCTS algorithms have a speedup close to M (see also Section 5)
since all M workers will be occupied by simulation tasks most of the time.

Performance loss We measure the performance of a parallel MCTS algorithm A by expected
cumulative regret, a common metric also used in related theoretical studies (Kocsis et al., 2006; Auer
et al., 2002; Auer, 2002):

RegretA(n) :=

n∑

i=1

E
[
V ∗i (s0)− Vi(s0)

]
, (7)

where s0 is the root state of the search tree; n is the number of rollouts; Vi(s0) is the value estimate
of s0 obtained in the ith rollout of algorithm A, which is computed according to Eq. (2); similarly,
V ∗i (s0) is the estimated value of s0 acquired in the ith rollout of an oracle algorithm that always
select the highest-rewarded action; the expectation is performed to average over the randomness
in the simulation returns. Intuitively, cumulative regret measures the expected regret of not having
selected the optimal path. We measure the performance loss of a parallel MCTS algorithm A by
excess regret, which is defined as the difference between the regret of A and its sequential counterpart
Aseq (i.e., RegretA(n) − RegretAseq

(n)). We say algorithm A has vanishing excess regret if and
only if its excess regret converges to zero as n goes to infinity. Roughly speaking, having vanishing
excess regret means the parallel algorithm is almost as good as sequential MCTS under large n.5

Beside cumulative regret, simple regret is also widely used in related studies. While it is generally
agreed that simple regret is preferable in the Multi-Armed Bandit (MAB) setting given only the
final recommendation affect the performance, it is still debatable whether MCTS should seek to
minimize simple or cumulative regret (Pepels et al., 2014). Specifically, nodes in the search tree
need both good final performance (corr. to simple regret) to make good recommendations and good
any-time performance (corr. to cumulative regret) to backpropagate well-estimated values V (s). In
particular, Tolpin & Shimony (2012) highlighted this contradiction in MCTS and proposed a simple
yet effective solution — minimizing simple regret when selecting children of the root node while
minimizing cumulative regret at non-root nodes. Following this high-level idea, recently proposed
(sequential) MCTS algorithms largely use hybrid approaches that seek to minimize both simple regret
and cumulative regret (Feldman & Domshlak, 2014b;a; Kaufmann & Koolen, 2017; Liu & Tsuruoka,
2015; Hay et al., 2014). As argued in these work (e.g., Hay et al. (2014); Tolpin & Shimony (2012)),
simple regret and cumulative regret are both useful metrics that have a strong correlation with MCTS
algorithms’ performance, hence both are worth studying in the context of MCTS. In this paper, we
are in particular focused on excess cumulative regret, and leave analysis revolving around simple
regret to future work.

4.2 WHEN WILL EXCESS REGRET VANISH?

This section examines what conditions should be satisfied for a parallel MCTS algorithm to achieve
vanishing excess regret. To perform a unified theoretical analysis of existing parallel MCTS al-
gorithms, we introduce a general algorithm framework (formally introduced in Appendix B) that
covers most existing parallel MCTS algorithms and their variants as its special cases. Specifically,
Appendix B.3 provides a rigorous justification of how the general framework can be specialized to
LeafP, RootP, TreeP, VL-UCT, and WU-UCT. The following theorem gives two necessary conditions
for any algorithm specialized from the general framework to achieve vanishing excess regret.

Theorem 1. Consider an algorithm A that is specified from the general parallel MCTS framework
formally introduced in Appendix B. Choose Ñ(s, a) as a function of O(s, a). If there exists an edge
(s, a) in the search tree such that A violates any of the following conditions:
• Necessary cond. of Q: G(s, a) :=

∣∣E[Q(s, a)]−E[Q
Aseq
m (s, a)]

∣∣=0
(
m=N(s, a)+O(s, a)

)
, (8)

• Necessary cond. of N : N(s, a) ≥ N(s, a) +O(s, a), (9)
then there exists an MDPM such that the excess regret of running A on MDPM does not vanish.

4This holds in general since only the simulation step requires massive interactions with the environment.
5Note that with relatively small n, parallel MCTS is in general inferior to their sequential counterpart since

they are not able to collect sufficient information for effective exploration-exploitation tradeoff during selection.

5



Proof of the above theorem is provided in Appendix C.1. While the necessary condition of N is
rather straightforward, suggesting that the modified visit count N(s, a) should be no less than the
total number of simulations initiated (regardless of completed or not) from offspring nodes of (s, a)
(i.e., N(s, a)+O(s, a)), the necessary condition of Q needs further elaboration. Intuitively, the action
value gap G(s, a) measures how well the modified action value Q(s, a) of A approximates the action
value computed by its sequential counterpart Aseq (i.e., QAseq

m (s, a)). There are two main obstacles
toward lowering the action value gap and satisfy its necessary condition (i.e., Eq. (8)). First, as
demonstrated in Sec. 3 as well as previous studies (Chaslot et al., 2008; Liu et al., 2020), the statistics
used by the tree policy (Eq. (1)) in parallel MCTS algorithms tend to harm the effectiveness of the
tree policy, which leads to suboptimal node selections and hence biases the simulation outcomes
compared to that of the sequential algorithm. Second, as hinted by our notation, while the modified
action value Q(s, a) incorporates information from N(s, a) simulation returns, QAseq

m (s, a) is the
average of N(s, a)+O(s, a) simulation outcomes. This requires the modified action value Q to
incorporate additional information that helps “anticipate” the outcomes of incomplete simulations
through the pseudo action value Q̃.

4.3 RETHINKING EXISTING PARALLEL MCTS ALGORITHMS

In retrospect, we examine which techniques proposed in existing algorithms should be retained in
future parallel MCTS algorithms by inspecting whether they satisfy the two necessary conditions.
First, regarding Q, existing algorithms either modify how simulation returns from different workers
aggregate to generate action values (e.g., LeafP and RootP) or use virtual loss (Segal, 2010) to
penalize action value and visit counts of nodes with high incomplete visit count (e.g., VL-UCT),
which not necessarily minimize the action value gap G. Hence, based on our knowledge, the
necessary condition of Q is not satisfied by any existing algorithms. Next, regarding N , we found
that WU-UCT satisfies its necessary condition by using the sum of complete and incomplete visit
count as its modified visit count (i.e., N(s, a) :=N(s, a)+O(s, a)). Now a natural question to ask is
whether satisfying the necessary condition of N offers noticeable gain in WU-UCT’s performance,
which can be answered in the affirmative. Specifically, besides its empirical success reported in the
original paper, we demonstrate the superiority of WU-UCT from a theoretical perspective through
the following theorem.

Theorem 2. Consider a tree search task T with maximum depthD=2 (abbreviate as the depth-2 tree
search task): it contains a root node s and K feasible actions {ai}Ki=1 at s, which lead to terminal
states {si}Ki=1, respectively. Let µi := E[V (si)], µ∗ := maxi µi and ∆k := µ∗−µk, and further
assume: ∀i, V (si)−µi is 1-subgaussian (Buldygin & Kozachenko, 1980). The cumulative regret of
running WU-UCT (Liu et al., 2020) with n rollouts on T is upper bounded by:

∑

k:µk<µ∗

( 8

∆k
+ 2∆k

)
lnn+ ∆k

︸ ︷︷ ︸
RUCT(n)

+ 4M
∑

k:µk<µ∗

∆2
k√

lnn
︸ ︷︷ ︸

excess regret

,

where RUCT(n) is the cumulative regret of running the (sequential) UCT for n steps on T.

Proof of the above theorem is provided in Appendix C.2. Before interpreting the theorem, we
emphasize that this result only apply to tasks where the maximum depth of the search tree is 2, which
closely resembles the Multi-Armed Bandit (Auer et al., 2002; Auer, 2002) setup. Therefore, although
WU-UCT has some desirable properties that other existing algorithms do not, it is still far from
optimal when considering MCTS tasks in general.

Thm. 2 indicates that the regret upper bound of WU-UCT in the depth-2 tree search task consists
of two terms: the cumulative regret of the sequential UCT algorithm (i.e., RUCT) and an excess
regret term that converges to zero as n increases. Apart from showing a desirable theoretical property
of WU-UCT, this result suggests that designing algorithms that satisfy the necessary conditions in
Thm. 1 can potentially offers empirical as well as theoretical benefits.

In conclusion, by looking back at existing parallel MCTS algorithms, the necessary conditions
suggest that retaining WU-UCT’s approach to augment N would be beneficial. This left us with the
question how to make use of the necessary condition of Q to further improve existing parallel MCTS
algorithms, which will be addressed in the following section.

6



𝑎"
𝑎"

𝑎

𝑎"

(a) �̅�∗(𝑠, 𝑎) vs. �̅�(𝑠, 𝑎).

𝑠"𝑠* 𝑠+
B C

A

𝑉-./ 𝑠* ≔ 𝑉1 𝑠* +𝑉3 𝑠* /2�̅�∗(𝑠, 𝑎)

𝐺
(𝑠
,𝑎
)

𝑠′

(b) Key idea #1: thresholding 𝑂8. (c) Key idea #2: aggregate-and-backprop.

𝑎* 𝑎+
𝑠"𝑠* 𝑠+

𝑠′
𝑎+

𝑠
𝑎

𝑉1 𝑠*

𝑎*

𝑉3 𝑠*

𝑠"𝑠* 𝑠+

𝑠′
𝑎+

𝑠
𝑎

𝑎*

BU-UCTWU-UCT𝑠

𝑂8 𝑠9, 𝑎+
𝑂8 𝑠9, 𝑎"

𝑂8 𝑠9, 𝑎*

𝑎* 𝑎" 𝑎+

𝑂8

threshold
mmax ·M

do not select 𝑎* (𝑠*)

no simulation
return yet

Figure 3: The BU-UCT algorithm. (a) Motivation: The statistics G
∗

is strongly correlated with the
original gap G , suggesting that it can be used as a surrogate gap to guide algorithm design. (b) Key
idea #1: reducing G

∗
by thresholding O — only query nodes whose O is smaller than a threshold.

(c) Key idea #2: aggregate the simulation returns on a same node (e.g., s1) and then backpropagate.

5 THEORY IN PRACTICE: A PROMISING STUDY

In this section, we demonstrate that exploiting the proposed necessary conditions in Theorem 1
can immediately lead to a more effective parallel MCTS algorithms: Balance the Unobserved in
UCT (BU-UCT). The newly proposed BU-UCT, albeit preliminary, is shown to outperform strong
baselines (including WU-UCT, the current state-of-the-art) on 11 out of 15 Atari games. We want
to highlight that BU-UCT is only used as an illustrative example about how to use our theoretical
results in practice, and we hope this encouraging result could inspire more future work to develop
better parallel MCTS algorithms with our theory.

Algorithm Design Thm. 1 suggests that parallel-MCTS algorithms should be designed to satisfy
both necessary conditions. First, it is relatively easier to construct N to satisfy its necessary condition.
For example, we can borrow wisdom from WU-UCT to choose N(s, a) :=N(s, a)+O(s, a). On
the other hand, however, the necessary condition on Q (i.e., G(s, a)=0) is more difficult to satisfy
strictly. Nevertheless, we find that the magnitude of the average action value gap G(s, a) has a
strong negative correlation with the actual performance (i.e., episode reward) — see Fig. 2(b).6 And
the behavior holds true regardless of the algorithms (points with different colors represent different
algorithms) as well as the hyperparameters (points of the same color denote results obtained from
different hyperparameters). The phenomenon suggests that designing a parallel-MCTS algorithm
that reduces G could lead to better performance in practice. However, according to Eq. (8), directly
using the original gap G(s, a) for algorithm design is not practical because it requires running the
sequential UCT algorithm to compute QAseq

m . Therefore, a more realistic approach is to construct
a surrogate gap to approximate G(s, a) based on the available statistics. In the following, we give
one example to show how to construct such a surrogate gap for designing a better parallel MCTS
algorithms. Please refer to Appendix E for more potential options for the surrogate gap.

Let Oi(s, a) be the number of on-going simulations associated with the edge (s, a) at the ith rollout
step. We consider using the following statistics G

∗
(s, a) as a surrogate gap to approximate G(s, a):

G
∗
(s, a) :=max

a′∈A
O(s′, a′)=max

a′∈A

{ 1

n

n∑

i=1

Oi(s
′, a′)

}
(s′ is the next state following (s, a)), (10)

where n is the number of rollouts. Before discussing its key insights, we first examine the correlation
betweenG

∗
and the action value gapG. As shown in Fig. 3(a), except for a few outliers, G

∗
(s, a) and

G(s, a) have a strong positive correlation.7 Motivated by this observation, we seek to design a better
parallel MCTS algorithm by reducing the surrogate gap G

∗
(s, a). In the following, we introduce the

proposed algorithm BU-UCT, and highlight how it lowers the surrogate gap G
∗
(s, a).

Algorithm Details Built on top of WU-UCT, BU-UCT proposes to lower G
∗

through (i) threshold-
ing O, and (ii) aggregating-and-backpropagating simulation returns. The first idea, thresholding O,
seek to explicitly set an upper limit to O (and hence G

∗
). Specifically, BU-UCT keeps record of the

O values on all edges and assure edges whose O is above a threshold will not be selected by the tree

6Note that each game step requires a new search tree. Hence the action value gap is averaged w.r.t. (i) search
trees built at different game steps and (ii) different nodes in a search tree. See Appendix F.3 for more detail.

7Note that there are a few data points with G(s, a)>10 that the surrogate statistics cannot fit properly, which
indicates that there could exist better surrogate gap that potentially leads to better parallel MCTS algorithms.

7



policy. Concretely, this is achieved with the following modified action value Q:

Q(s, a) := Q(s, a) + I
[
O(s, a)<mmax ·M

]
, (11)

where mmax ∈ (0, 1) is a hyperparameter and M is the number of workers; the indicator function
I[·] is defined to be zero when the condition holds and −∞ otherwise. Consider the example given
in Fig. 3(b). Since O(s′, a1) is above the threshold mmax ·M , its corresponding Q(s′, a1) becomes
−∞ due to the second term of Eq. (11) and hence the tree policy will not allow the new worker A to
select a1, which will eventually decrease O(s′, a1) (and hence lower G

∗
(s, a)).

The second key idea, aggregating-and-backpropagating simulation returns, decreases G
∗

by reducing
the maximum value in {O(s′, a′) | a′ ∈A}. Intuitively, G

∗
(s, a) will be large only if some child

nodes of s′ are constantly (reflected by the “average” operator in the definition of O) selected by
multiple workers. Although it is highly desirable for the optimal child node to be extensively queried
constantly, it could be rather concerning if some nodes’ incomplete visit count is high even in earlier
stages, since this would suggest that its sibling nodes are insufficiently explored. Therefore, BU-UCT
decreases the maximum O (and hence G

∗
) by lowering N in earlier stages to encourage exploration

of other nodes. Specifically, as shown in Fig. 3(c), we define “earlier stages” as the period when
some child nodes (e.g., s3) of s′ have not received any simulation return yet. In this period, we
aggregate all simulation returns originated from s′’s same child node (e.g., VB(s1) and VC(s1)) into
their mean value (e.g., Vavg(s1)). That is, if a node s′ is in its “earlier stages”, the visit counts of all
its children are considered as 1 (i.e., ∀a∈A N(s′, a)=1) and their action values are the mean value
of their received simulation returns, respectively. Compared to backpropagating all simulation returns
individually, backpropagate aggregated statistics lowers N at all children of s′, which encourage
exploration in earlier stages and hence lowers G

∗
. Please refer to Algorithm 3 and Appendix G for

detailed explanation of the aggregation operation.

Experiment setup We follow the experiment setup in the WU-UCT paper (Liu et al., 2020).
Specifically, we compare BU-UCT with four baselines (i.e., LeafP, RootP, VL-UCT, and WU-UCT)
on 15 Atari games (the same 15 Atari games selected in the WU-UCT paper). We use a pretrained
PPO policy as the default policy during simulation. All experiments are performed with 128 rollouts
and 16 workers. See Appendix F for more details.

Experiment results First, we verify speedup. Across 15 Atari games, BU-UCT achieves an average
per-step speedup of 14.33 using 16 workers, suggesting that BU-UCT achieves (approximately) linear
speedup even with a large number of workers. Next, we compare the performance, measured by
average episode reward, between BU-UCT and four baselines. On Each task, we repeat 5 times with
the mean and standard deviation reported in Table 1. Thanks to its efforts to lower the action value
gap, BU-UCT outperforms all considered parallel alternatives in 11 out of 15 tasks. Pairwise student
t-tests further show that BU-UCT performs significantly better (p-value<0.05) than WU-UCT, TreeP,
LeafP, and RootP in 2, 8, 12, and 12 tasks, respectively; note except in RoadRunner where WU-UCT
tops the chart, in all other tasks BU-UCT performs statistically comparably to the baselines, which
promisingly renders it as a potential default choice, if one wants to try one parallel MCTS algorithm.

6 RELATED WORKS

MCTS has a profound track record of being adopted to achieve optimal planning and decision making
in complex environments (Schäfer et al., 2008; Browne et al., 2012; Silver et al., 2016). Recently,
it has also been combined with learning methods to bring mutual improvements (Guo et al., 2014;
Shen et al., 2018; Silver et al., 2017). To maximize the power of MCTS and enable its usage in
time-sensitive tasks, effective parallel algorithms are imperative (Bourki et al., 2010; Segal, 2010).
Specifically, leaf parallelization (Cazenave & Jouandeau, 2007; Kato & Takeuchi, 2010) manages
to collect better statistics by assigning multiple workers to query the same node, at the expense of
reducing the tree search diversity. In root parallelization, multiple trees are built and statistics are
periodically synchronized. It promises better performance in some real-world tasks (Bourki et al.,
2010), while being inferior on Go (Soejima et al., 2010). In contrast, tree parallelization assigns
workers to traverse the same tree. To increase search diversity, Chaslot et al. (2008) proposes a
virtual loss. Though having been adopted in some high-profile applications (Powley et al., 2011),
virtual loss punishes performance under even four workers (Mirsoleimani et al., 2017). So far,
WU-UCT (Liu et al., 2020) achieves the best tradeoff (i.e., linear speedup with small performance

8



Table 1: Performance on 15 Atari games. Average episode return (± standard deviation) over 5
trials are reported. The best average scores are highlighted in boldface. According to t-tests, BU-
UCT significantly outperforms or is comparable with the existing alternative on 14 games, except
RoadRunner where WU-UCT is better. “*”, “†”, “‡”, and “§” denote BU-UCT’s large-margin
superiority (p-value < 0.05) over WU-UCT, VL-UCT, LeafP, and RootP, respectively.

Environment BU-UCT (ours) WU-UCT VL-UCT LeafP RootP

Alien 5320±231 †‡ 5938±1839 4200±1086 4280±1016 5206±282
Boxing 100±0 †‡§ 100±0 99±0 95±4 98±1

Breakout 425±30 ‡§ 408±21 390±33 331±45 281±27
Centipede 1610419±338295 †‡§ 1163034±403910 439433±207601 162333±69575 184265±104405
Freeway 32±0 32±0 32±0 31±1 32±0
Gravitar 5130±499 ‡ 5060±568 4880±1162 3385±155 4160±1811

MsPacman 17279±6136 ‡§ 19804±2232 14000±2807 5378±685 7156±583
NameThisGame 47066±5911 *†‡§ 29991±1608 23326±2585 25390±3659 27440±9533

RoadRunner 44920±1478 †‡§ 46720±1359 24680±3316 25452±2977 38300±1191
Robotank 121±18 †‡§ 101±19 86±13 80±11 78±13

Qbert 15995±2635 § 13992±5596 14620±5738 11655±5373 9465±3196
SpaceInvaders 3428±525 § 3393±292 2651±828 2435±1159 2543±809

Tennis 3±1 †‡§ 4±1 −1±0 −1±0 0±1
TimePilot 111100±58919 *†‡§ 55130±12474 32600±2165 38075±2307 45100±7421
Zaxxon 42500±4725 ‡§ 39085±6838 39579±3942 12300±821 13380±769

loss) by introducing statistics to track on-going simulations. Another related line of works focus on
distributed multi-armed bandits (MAB) (Liu & Zhao, 2010; Hillel et al., 2013; Lai & Robbins, 1985;
Martı́nez-Rubio et al., 2019), which is similar to parallel MCTS; in both multiple workers collaborate
to improve the planning performance. Though inspiring, this line shares an overarching theme that
highlights inter-agent communication, making their results not directly adaptable to our setting.

While this work focuses on minimizing the cumulative regret in parallel MCTS, simple regret has
been considered as an alternative performance metric to analyze MCTS algorithms (Pepels et al.,
2014) and have inspired a great amount of interesting work that seek to minimize both the simple
regret and the cumulative regret in MCTS to achieve better performance (Tolpin & Shimony, 2012;
Hay et al., 2014; Feldman & Domshlak, 2014a; Kaufmann et al., 2012; Liu & Tsuruoka, 2015).

7 CONCLUSION

In this paper, we established the first theoretical foundation for parallel MCTS algorithm. In
particular, we derived two necessary conditions for the algorithms to achieve a desired performance.
The conditions can be used to diagnose existing algorithms and guide future algorithm design. We
justify the first benefit (i.e., diagnosing existing algorithms) by identifying the key design wisdom
inherent in existing algorithms. The second benefit (i.e., inspiring future algorithms) is demonstrated
by constructing a new parallel MCTS algorithm, BU-UCT, based on our theoretical guidelines.

REFERENCES

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3):235–256, 2002.

Amine Bourki, Guillaume Chaslot, Matthieu Coulm, Vincent Danjean, Hassen Doghmen, Jean-
Baptiste Hoock, Thomas Hérault, Arpad Rimmel, Fabien Teytaud, Olivier Teytaud, et al. Scalability
and parallelization of monte-carlo tree search. In International Conference on Computers and
Games, pp. 48–58. Springer, 2010.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in
games, 4(1):1–43, 2012.

Valerii V Buldygin and Yu V Kozachenko. Sub-gaussian random variables. Ukrainian Mathematical
Journal, 32(6):483–489, 1980.

9



Tristan Cazenave and Nicolas Jouandeau. On the parallelization of uct. In proceedings of the
Computer Games Workshop, pp. 93–101. Citeseer, 2007.

Guillaume MJ-B Chaslot, Mark HM Winands, and H Jaap van Den Herik. Parallel monte-carlo tree
search. In International Conference on Computers and Games, pp. 60–71. Springer, 2008.

Adrien Couëtoux, Martin Müller, and Olivier Teytaud. Monte carlo tree search in go, 2017.

Sam Devlin, Anastasija Anspoka, Nick Sephton, Peter I Cowling, and Jeff Rollason. Combining
gameplay data with monte carlo tree search to emulate human play. In Twelfth Artificial Intelligence
and Interactive Digital Entertainment Conference, 2016.

Zohar Feldman and Carmel Domshlak. On mabs and separation of concerns in monte-carlo planning
for mdps. In ICAPS, 2014a.

Zohar Feldman and Carmel Domshlak. Simple regret optimization in online planning for markov
decision processes. Journal of Artificial Intelligence Research, 51:165–205, 2014b.

Sylvain Gelly and Yizao Wang. Exploration exploitation in go: Uct for monte-carlo go. In NIPS: Neu-
ral Information Processing Systems Conference On-line trading of Exploration and Exploitation
Workshop, 2006.

Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard L Lewis, and Xiaoshi Wang. Deep learning for
real-time atari game play using offline monte-carlo tree search planning. In Advances in neural
information processing systems, pp. 3338–3346, 2014.

Nicholas Hay, Stuart Russell, David Tolpin, and Solomon Eyal Shimony. Selecting computations:
Theory and applications. arXiv preprint arXiv:1408.2048, 2014.

Eshcar Hillel, Zohar S Karnin, Tomer Koren, Ronny Lempel, and Oren Somekh. Distributed
exploration in multi-armed bandits. In Advances in Neural Information Processing Systems, pp.
854–862, 2013.

Hideki Kato and Ikuo Takeuchi. Parallel monte-carlo tree search with simulation servers. In 2010
International Conference on Technologies and Applications of Artificial Intelligence, pp. 491–498.
IEEE, 2010.

Emilie Kaufmann and Wouter M Koolen. Monte-carlo tree search by best arm identification. In
Advances in Neural Information Processing Systems, pp. 4897–4906, 2017.

Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On bayesian upper confidence bounds for
bandit problems. In Artificial intelligence and statistics, 2012.

Levente Kocsis, Csaba Szepesvári, and Jan Willemson. Improved monte-carlo search. Univ. Tartu,
Estonia, Tech. Rep, 1, 2006.

Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances in
applied mathematics, 6(1):4–22, 1985.

Anji Liu, Jianshu Chen, Mingze Yu, Yu Zhai, Xuewen Zhou, and Ji Liu. Watch the unobserved: A sim-
ple approach to parallelizing monte carlo tree search. In International Conference on Learning Rep-
resentations, April 2020. URL https://openreview.net/forum?id=BJlQtJSKDB.

Keqin Liu and Qing Zhao. Distributed learning in multi-armed bandit with multiple players. IEEE
Transactions on Signal Processing, 58(11):5667–5681, 2010.

Yun-Ching Liu and Yoshimasa Tsuruoka. Regulation of exploration for simple regret minimization
in monte-carlo tree search. In 2015 IEEE Conference on Computational Intelligence and Games
(CIG), pp. 35–42. IEEE, 2015.

David Martı́nez-Rubio, Varun Kanade, and Patrick Rebeschini. Decentralized cooperative stochastic
bandits. In Advances in Neural Information Processing Systems, pp. 4531–4542, 2019.

10

https://openreview.net/forum?id=BJlQtJSKDB


Eric Mazumdar, Roy Dong, Vicenç Rúbies Royo, Claire Tomlin, and S Shankar Sastry. A multi-
armed bandit approach for online expert selection in markov decision processes. arXiv preprint
arXiv:1707.05714, 2017.

S Ali Mirsoleimani, Aske Plaat, H Jaap van den Herik, and Jos Vermaseren. An analysis of virtual
loss in parallel mcts. In ICAART (2), pp. 648–652, 2017.

Tom Pepels, Tristan Cazenave, Mark HM Winands, and Marc Lanctot. Minimizing simple and
cumulative regret in monte-carlo tree search. In Workshop on Computer Games, pp. 1–15. Springer,
2014.

Erik Ragnar Poromaa. Crushing candy crush: predicting human success rate in a mobile game using
monte-carlo tree search, 2017.

Edward J Powley, Daniel Whitehouse, and Peter I Cowling. Determinization in monte-carlo tree
search for the card game dou di zhu. Proc. Artif. Intell. Simul. Behav, pp. 17–24, 2011.

Jan Schäfer, Michael Buro, and Knut Hartmann. The uct algorithm applied to games with imperfect
information. Diploma, Otto-Von-Guericke Univ. Magdeburg, Magdeburg, Germany, 11, 2008.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. arXiv preprint arXiv:1911.08265, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard B Segal. On the scalability of parallel uct. In International Conference on Computers and
Games, pp. 36–47. Springer, 2010.

Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing Guo, and Jianfeng Gao. M-walk: Learning to
walk over graphs using monte carlo tree search. In Advances in Neural Information Processing
Systems, pp. 6786–6797, 2018.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017.

Yusuke Soejima, Akihiro Kishimoto, and Osamu Watanabe. Evaluating root parallelization in go.
IEEE Transactions on Computational Intelligence and AI in Games, 2(4):278–287, 2010.

David Tolpin and Solomon Eyal Shimony. Mcts based on simple regret. In Twenty-Sixth AAAI
Conference on Artificial Intelligence, 2012.

Kazuki Yoshizoe, Akihiro Kishimoto, Tomoyuki Kaneko, Haruhiro Yoshimoto, and Yutaka Ishikawa.
Scalable distributed monte-carlo tree search. In Fourth Annual Symposium on Combinatorial
Search, 2011.

11



Supplementary Material
In this supplementary material, we first give a more detailed review of existing parallel MCTS
algorithms in Appendix A. We then formally introduce the general algorithm framework for parallel
MCTS algorithms (see Figure 4 as well as Algorithm 1) in Appendix B, especially showing how
existing algorithms fall into our general framework (Appendix B.3). Then we provide the detailed
proofs of the parallel algorithms in Appendix C. The supplementary ends up with more details on
the proposed algorithm BU-UCT (Appendix D), the surrogate statistics introduced in Section 5
(Appendix E), and additional details for the Atari experiments (Appendix F).

A EXISTING PARALLEL MCTS ALGORITHMS

Leaf Parallelization (LeafP) (Cazenave & Jouandeau, 2007), Root Parallelization (RootP) (Cazenave
& Jouandeau, 2007), and Tree Parallelization (TreeP) (Chaslot et al., 2008) develop different ways
to cooperate among the workers.8 As shown in Figure 1, LeafP and RootP parallelize MCTS from
the leaf nodes and the root node, respectively. Specifically, in LeafP, only a main process performs
sequential rollouts. However, during the simulation step, M workers simultaneously query the same
node choosed in the selection and expansion steps, and after all simulations complete, the simulation
returns are backpropagated to update node statistics along the selected path. In RootP, M workers
independently run sequential MCTS and maintain different search trees, each with a predefined
rollout budget. After all workers complete their jobs, the statistics are aggregated to make the final
decision (i.e. which action to take). On the other hand, in TreeP, the workers independently perform
sequential rollouts on a shared search tree. Node statistics updated by any worker are immediately
observable by other workers.

TreeP with Virtual Loss (VL-UCT) (Segal, 2010; Silver et al., 2016) and Watch the Unobserved
in UCT (WU-UCT) (Liu et al., 2020) pre-adjust the node statistics with side information before
the respective simulation tasks are initiated. As shown in Figure 1, to encourage different workers
to explore different nodes, VL-UCT penalizes the action value (i.e., Q) of nodes that are currently
being simulated by some workers so that other workers tend not to query this same set of nodes.
Specifically, it has the following two variants. The hard penalty version (Chaslot et al., 2008) adds
fixed virtual rewards rVL directly to the average return and uses the following expression in the tree
policy:

Q(s, a) := Q(s, a)−O(s, a) · rVL. (VL-UCT hard penalty)

Instead of directly penalizing Q, when a node is being simulated by a worker, the soft penalty version
(Silver et al., 2016) adds nVL virtual simulation returns each with reward −rVL:

Q(s, a) :=
Q(s, a) ·N(s, a)− rVL · nVL ·O(s, a)

N(s, a) + nVL ·O(s, a)
,

N(s, a) := N(s, a) + nVL ·O(s, a). (VL-UCT soft penalty)

Intuitively, the hard version of VL-UCT aggressively encourages different workers to explore different
nodes, while the soft version has diminishing effect as the visit count grows to infinity.

In anticipation that the confidence in our estimates of Q(s, a) will eventually increase if some child
nodes of (s, a) are currently being simulated, Liu et al. (2020) proposes to only adjust the visit count
N :

Q(s, a) := Q(s, a),

N(s, a) := N(s, a) +O(s, a). (WU-UCT)

A.1 VL-UCT AND WU-UCT

As illustrated above, WU-UCT is similar to VL-UCT as they adjust the visit count (i.e., N ) in similar
ways. Specifically, when nV L=1, both methods adjust the visit count in the same way. However,

8LeafP and RootP are originally called “single-run” parallelization (Cazenave & Jouandeau, 2007).

12



note that the methods they adjust action values (i.e., Q) is different — VL-UCT uses the adjusted
visit count (i.e., N ) as well as a hyperparameter rV L to adjust Q while WU-UCT proposes to keep
Q unchanged. (Note that for VL-UCT Q(s, a) is always different from Q(s, a) unless nV L=0 and
rV L=0, which is equivalent to not adding virtual loss.)

B A GENERAL FRAMEWORK FOR PARALLEL MCTS ALGORITHMS

This section formally introduce a general algorithm framework for parallel MCTS algorithms, which
is a critical component of Theorem 1. Specifically, since the necessary conditions stated in Theorem 1
only apply to algorithms that are specialized from the general algorithm framework, it is important
that the framework covers all major existing parallel MCTS algorithms and their variants. In the
following, we first introduce the general framework for parallel MCTS (Appendix B.1) and provide
additional details (Appendix B.2). Appendix B.3 then explains how existing approaches fit in the
general algorithm framework.

B.1 FORMAL INTRODUCTION OF THE GENERAL ALGORITHM FRAMEWORK

In the following, we first provide an overview of the general framework for parallel MCTS algorithms,
highlighting its two key modules, statistics collection and statistics augmentation, which allow it to
represent various existing methods. We then discuss both modules in detail.

Overview The general framework consists of a master process and M simulator processes. Simu-
lators perform simulations and return the outcomes (i.e. V (s)) back to the master. All simulators
communicate only with the master and perform one simulation at a time. M search trees {Tm}Mm=1
are maintained to mimic M distinct sets of statistics stored in existing algorithms. For example,
in RootP (Figure 1), each of the M workers maintain a search tree locally with different statistics,
which can be represented by the M search trees in the general algorithm framework, respectively. As
illustrated by the block diagram in Figure 4, the master performs rollouts repeatedly to gradually build
the M search trees and the statistics in them.9 During this process, statistics collection and statistics
augmentation are two crucial modules in the rollout process that make the general framework flexible
enough to represent various algorithms. Specifically, statistics collection consists of the tree selection,
simulation, and tree sync steps, which characterize how the master employs the simulators to obtain
simulation results and use them to update the M search trees. Statistics augmentation includes the
pseudo statistics pre-update and backpropagation steps, both aiming to improve node statistics in
individual search trees with additional side information to achieve better exploration-exploitation
tradeoff during node selection.

We briefly go through the rollout process, where the important steps will be further discussed later. In
Figure 4, at the beginning of each rollout, a search tree Tm is selected using the function fsel in the
tree selection step. Then, during node selection, Tm is traversed using a modified tree policy, where a
set of modified statistics (Qm and Nm) are adopted. The modified statistics are defined as follows:

Qm(s, a) := αm(s, a)Qm(s, a) + βm(s, a)Q̃m(s, a), (12)

Nm(s, a) := Nm(s, a) + Ñm(s, a), (13)

where Qm and Nm are the original statistics used in the sequential MCTS algorithm (Eq. (1)); Q̃m
and Ñm are a set of pseudo statistics that incorporate additional side information; αm and βm controls
the ratio between Qm and Q̃m. Note that Eqs. (12) and (13) resemble Eq. (4) in the main text. Then,
after expanding a new node in a similar manner to the sequential algorithm, the pseudo statistics
pre-update step10 adjusts the pseudo statistics using the functions fQ̃ and fÑ . Afterwards, it assigns
the simulation task to an idle simulator. Rollouts are started over again here unless all simulators are
occupied or have completed task not yet processed by the master. Otherwise, the master waits for a
completed simulation result and performs backpropagation, which consists of the traditional update
(i.e. Eqs. (2)-(3)) and a pseudo statistics post-update step. In the post-update step, pseudo statistics

9A rollout represents the process of executing all steps in the block diagram illustrated in Figure 4 once,
while a simulation refers to a step in the rollout process that queries a node’s value (i.e. V (s)).

10The statistics Om(s, a) in Figure 4 will be introduced in the “statistics augmentation” paragraph.

13



Nm(s, a) := Nm(s, a) + Ñm(s, a)

at = arg max
a∈A

{
Qm(st, a)+c

√
2 ln

∑
a′ Nm(st, a′)

Nm(st, a)

}

Selected trajectory: .

Expand
by an action

that has
not been taken
previously. Ñm(s, a)← fÑ(s, a, Qm, Nm, Om)

Q̃m(s, a)← fQ̃(s, a, Qm, Nm, Om)

Om(s, a)← Om(s, a) + 1

Node
Selection

Expansion Pseudo statistics pre-update

Simulator
1

Backpropagation

Select a search tree from the M search trees using the function . ···

Simulator
M

···

𝑠"

𝑎$

𝑎%

Recursively select child state using the
following tree policy until termination.

Tree selection
fsel

Simulation

Ñm̂(s, a)← gÑ(s, a, Qm̂, Nm̂, Om̂)

Q̃m̂(s, a)← gQ̃(s, a, Qm̂, Nm̂, Om̂)

Om̂(s, a)← Om̂(s, a)− 1

𝑠&

𝑠"

𝑠%

𝑠$
𝑎$

𝑎%

𝑎"

Tm ← T = fsyn({Tm}M
m=1) m = 1, . . . , M

Wait Tree sync
Assign simulation
task to an
idle simulator.

Update :∀(s, a) ∈ {(st, at)}T
t=0

Wait until a simulation
task complete and fetch
the returned result:

Update pseudo statistics and .pseudo statistics Expand a new node .

① Update with Eqs. (2)-(3).

Pseudo
statistics
post-update

② Update in :∀(s, a) ∈ {(st, at)}T
t=0

(sT , V̂ (st), m̂)

Perform synchronization
every steps:τsyn

∀m

TTMT1

T1 TM

···

Steps related to
statistics collection

Steps related to
statistics augmentation

Node selection Expansion

Wait
All simulators
are occupied?

No

Yes

Start of a rollout

Statement of Purpose

Anji Liu Ph.D. Applicant

My primary research passion is on learning to make good decisions in complex environ-
ments. To this end, I am dedicated to making contributions on reinforcement learning. I
am enthusiastic in developing practical algorithms that solve core RL problems as well as
theoretical results that provide new insights and potential solutions to the problem.

On the empirical side, I have improved the exploration effectiveness in model-free RL
by explicitly disentangling the exploration and exploitation objectives (AAMAS 2020) and
reduced the performance loss in parallel MCTS using the idea of best anticipating future
rewards (ICLR 2020 Full Oral).

The project on improving exploration strives to avoid the tradeoff between designing ex-
pressive policies (for the sake of exploration) and optimal policy (for the sake of exploitation).
To this end, I proposed to design analogous value and policy pairs, one for exploration and
the other for exploitation, such that we acquire both the flexibility to have both expressive
and optimal policy and guarantees (both theoretically and empirically justified) of training
effectiveness and stability.

The key idea behind the parallel MCTS algorithm is that though the return of on-going
simulations is unobservable, we can anticipate its effect on the search tree, and correspond-
ingly pre-adjust the statistics in it. This helps us design an algorithm that significantly
out-performs competitors on a suite of Atari games.

Recently, I have been focusing more on the theoretical side of RL, with two on-going
projects (will submit to ICML 2020). One of them is a comprehensive and theoretical study
of parallel MCTS algorithms, which aims to answer the question how to effectively design
parallel MCTS algorithms. In this paper, I derived a sequence of necessary conditions for
a good parallel MCTS algorithm, and empirically demonstrates that they can guide future
algorithm design.

In the other project, I am tackling a fundamental problem in model-based RL – that
the multi-step model error builds up quickly even if starting with negligible error in the first
step. In this work, we admit that the multi-step error is extremely hard to optimize (if not
impossible). Instead, we seek to gain more awareness of the multi-step error by propagating
the rollout uncertainty, which can also help decrease multi-step error. Specifically, I have
shown that there is a fundamental tradeoff between the one-step error and the multi-step
risk, which is controlled by the size of the model class. I further argue that using a family
of tractable probabilistic model, controlling the size of the model class can be viewed as ac-
cumulating uncertainty on the states, which helps us both to improve the multi-step rollout
accuracy and be aware of the multi-step error.

{(st, at)}T�1
t=0 (sT , aT )

(
D2

⇢,⇡( ) = D̂2
⇢,⇡( ) = 0.5

D2
⇢,⇡( ) = D̂2

⇢,⇡( ) = 0.5
D2

⇢,⇡( ) = D2
⇢,⇡( ) = 0.5 p2 = 1� p1

1

Statement of Purpose

Anji Liu Ph.D. Applicant

My primary research passion is on learning to make good decisions in complex environ-
ments. To this end, I am dedicated to making contributions on reinforcement learning. I
am enthusiastic in developing practical algorithms that solve core RL problems as well as
theoretical results that provide new insights and potential solutions to the problem.

On the empirical side, I have improved the exploration effectiveness in model-free RL
by explicitly disentangling the exploration and exploitation objectives (AAMAS 2020) and
reduced the performance loss in parallel MCTS using the idea of best anticipating future
rewards (ICLR 2020 Full Oral).

The project on improving exploration strives to avoid the tradeoff between designing ex-
pressive policies (for the sake of exploration) and optimal policy (for the sake of exploitation).
To this end, I proposed to design analogous value and policy pairs, one for exploration and
the other for exploitation, such that we acquire both the flexibility to have both expressive
and optimal policy and guarantees (both theoretically and empirically justified) of training
effectiveness and stability.

The key idea behind the parallel MCTS algorithm is that though the return of on-going
simulations is unobservable, we can anticipate its effect on the search tree, and correspond-
ingly pre-adjust the statistics in it. This helps us design an algorithm that significantly
out-performs competitors on a suite of Atari games.

Recently, I have been focusing more on the theoretical side of RL, with two on-going
projects (will submit to ICML 2020). One of them is a comprehensive and theoretical study
of parallel MCTS algorithms, which aims to answer the question how to effectively design
parallel MCTS algorithms. In this paper, I derived a sequence of necessary conditions for
a good parallel MCTS algorithm, and empirically demonstrates that they can guide future
algorithm design.

In the other project, I am tackling a fundamental problem in model-based RL – that
the multi-step model error builds up quickly even if starting with negligible error in the first
step. In this work, we admit that the multi-step error is extremely hard to optimize (if not
impossible). Instead, we seek to gain more awareness of the multi-step error by propagating
the rollout uncertainty, which can also help decrease multi-step error. Specifically, I have
shown that there is a fundamental tradeoff between the one-step error and the multi-step
risk, which is controlled by the size of the model class. I further argue that using a family
of tractable probabilistic model, controlling the size of the model class can be viewed as ac-
cumulating uncertainty on the states, which helps us both to improve the multi-step rollout
accuracy and be aware of the multi-step error.

{(st, at)}T�1
t=0 (sT , aT )

(
D2

⇢,⇡( ) = D̂2
⇢,⇡( ) = 0.5

D2
⇢,⇡( ) = D̂2

⇢,⇡( ) = 0.5
D2

⇢,⇡( ) = D2
⇢,⇡( ) = 0.5 p2 = 1� p1

1

Block diagram of a rollout in the general parallel MCTS framework

𝑠&

Tm̂
T −1

T −1

(sT , m)

Statement of Purpose

Anji Liu Ph.D. Applicant

My primary research passion is on learning to make good decisions in complex environ-
ments. To this end, I am dedicated to making contributions on reinforcement learning. I
am enthusiastic in developing practical algorithms that solve core RL problems as well as
theoretical results that provide new insights and potential solutions to the problem.

On the empirical side, I have improved the exploration effectiveness in model-free RL
by explicitly disentangling the exploration and exploitation objectives (AAMAS 2020) and
reduced the performance loss in parallel MCTS using the idea of best anticipating future
rewards (ICLR 2020 Full Oral).

The project on improving exploration strives to avoid the tradeoff between designing ex-
pressive policies (for the sake of exploration) and optimal policy (for the sake of exploitation).
To this end, I proposed to design analogous value and policy pairs, one for exploration and
the other for exploitation, such that we acquire both the flexibility to have both expressive
and optimal policy and guarantees (both theoretically and empirically justified) of training
effectiveness and stability.

The key idea behind the parallel MCTS algorithm is that though the return of on-going
simulations is unobservable, we can anticipate its effect on the search tree, and correspond-
ingly pre-adjust the statistics in it. This helps us design an algorithm that significantly
out-performs competitors on a suite of Atari games.

Recently, I have been focusing more on the theoretical side of RL, with two on-going
projects (will submit to ICML 2020). One of them is a comprehensive and theoretical study
of parallel MCTS algorithms, which aims to answer the question how to effectively design
parallel MCTS algorithms. In this paper, I derived a sequence of necessary conditions for
a good parallel MCTS algorithm, and empirically demonstrates that they can guide future
algorithm design.

In the other project, I am tackling a fundamental problem in model-based RL – that
the multi-step model error builds up quickly even if starting with negligible error in the first
step. In this work, we admit that the multi-step error is extremely hard to optimize (if not
impossible). Instead, we seek to gain more awareness of the multi-step error by propagating
the rollout uncertainty, which can also help decrease multi-step error. Specifically, I have
shown that there is a fundamental tradeoff between the one-step error and the multi-step
risk, which is controlled by the size of the model class. I further argue that using a family
of tractable probabilistic model, controlling the size of the model class can be viewed as ac-
cumulating uncertainty on the states, which helps us both to improve the multi-step rollout
accuracy and be aware of the multi-step error.

{(st, at)}T�1
t=0 (sT , aT ) eQm

fNm

(
D2

⇢,⇡( ) = D̂2
⇢,⇡( ) = 0.5

D2
⇢,⇡( ) = D̂2

⇢,⇡( ) = 0.5
D2

⇢,⇡( ) = D2
⇢,⇡( ) = 0.5 p2 = 1� p1

1

Statement of Purpose

Anji Liu Ph.D. Applicant

My primary research passion is on learning to make good decisions in complex environ-
ments. To this end, I am dedicated to making contributions on reinforcement learning. I
am enthusiastic in developing practical algorithms that solve core RL problems as well as
theoretical results that provide new insights and potential solutions to the problem.

On the empirical side, I have improved the exploration effectiveness in model-free RL
by explicitly disentangling the exploration and exploitation objectives (AAMAS 2020) and
reduced the performance loss in parallel MCTS using the idea of best anticipating future
rewards (ICLR 2020 Full Oral).

The project on improving exploration strives to avoid the tradeoff between designing ex-
pressive policies (for the sake of exploration) and optimal policy (for the sake of exploitation).
To this end, I proposed to design analogous value and policy pairs, one for exploration and
the other for exploitation, such that we acquire both the flexibility to have both expressive
and optimal policy and guarantees (both theoretically and empirically justified) of training
effectiveness and stability.

The key idea behind the parallel MCTS algorithm is that though the return of on-going
simulations is unobservable, we can anticipate its effect on the search tree, and correspond-
ingly pre-adjust the statistics in it. This helps us design an algorithm that significantly
out-performs competitors on a suite of Atari games.

Recently, I have been focusing more on the theoretical side of RL, with two on-going
projects (will submit to ICML 2020). One of them is a comprehensive and theoretical study
of parallel MCTS algorithms, which aims to answer the question how to effectively design
parallel MCTS algorithms. In this paper, I derived a sequence of necessary conditions for
a good parallel MCTS algorithm, and empirically demonstrates that they can guide future
algorithm design.

In the other project, I am tackling a fundamental problem in model-based RL – that
the multi-step model error builds up quickly even if starting with negligible error in the first
step. In this work, we admit that the multi-step error is extremely hard to optimize (if not
impossible). Instead, we seek to gain more awareness of the multi-step error by propagating
the rollout uncertainty, which can also help decrease multi-step error. Specifically, I have
shown that there is a fundamental tradeoff between the one-step error and the multi-step
risk, which is controlled by the size of the model class. I further argue that using a family
of tractable probabilistic model, controlling the size of the model class can be viewed as ac-
cumulating uncertainty on the states, which helps us both to improve the multi-step rollout
accuracy and be aware of the multi-step error.

{(st, at)}T�1
t=0 (sT , aT ) eQm

fNm

(
D2

⇢,⇡( ) = D̂2
⇢,⇡( ) = 0.5

D2
⇢,⇡( ) = D̂2

⇢,⇡( ) = 0.5
D2

⇢,⇡( ) = D2
⇢,⇡( ) = 0.5 p2 = 1� p1

1

Statement of Purpose

Anji Liu Ph.D. Applicant

My primary research passion is on learning to make good decisions in complex environ-
ments. To this end, I am dedicated to making contributions on reinforcement learning. I
am enthusiastic in developing practical algorithms that solve core RL problems as well as
theoretical results that provide new insights and potential solutions to the problem.

On the empirical side, I have improved the exploration effectiveness in model-free RL
by explicitly disentangling the exploration and exploitation objectives (AAMAS 2020) and
reduced the performance loss in parallel MCTS using the idea of best anticipating future
rewards (ICLR 2020 Full Oral).

The project on improving exploration strives to avoid the tradeoff between designing ex-
pressive policies (for the sake of exploration) and optimal policy (for the sake of exploitation).
To this end, I proposed to design analogous value and policy pairs, one for exploration and
the other for exploitation, such that we acquire both the flexibility to have both expressive
and optimal policy and guarantees (both theoretically and empirically justified) of training
effectiveness and stability.

The key idea behind the parallel MCTS algorithm is that though the return of on-going
simulations is unobservable, we can anticipate its effect on the search tree, and correspond-
ingly pre-adjust the statistics in it. This helps us design an algorithm that significantly
out-performs competitors on a suite of Atari games.

Recently, I have been focusing more on the theoretical side of RL, with two on-going
projects (will submit to ICML 2020). One of them is a comprehensive and theoretical study
of parallel MCTS algorithms, which aims to answer the question how to effectively design
parallel MCTS algorithms. In this paper, I derived a sequence of necessary conditions for
a good parallel MCTS algorithm, and empirically demonstrates that they can guide future
algorithm design.

In the other project, I am tackling a fundamental problem in model-based RL – that
the multi-step model error builds up quickly even if starting with negligible error in the first
step. In this work, we admit that the multi-step error is extremely hard to optimize (if not
impossible). Instead, we seek to gain more awareness of the multi-step error by propagating
the rollout uncertainty, which can also help decrease multi-step error. Specifically, I have
shown that there is a fundamental tradeoff between the one-step error and the multi-step
risk, which is controlled by the size of the model class. I further argue that using a family
of tractable probabilistic model, controlling the size of the model class can be viewed as ac-
cumulating uncertainty on the states, which helps us both to improve the multi-step rollout
accuracy and be aware of the multi-step error.

Tm Tm

(
D2

⇢,⇡( ) = D̂2
⇢,⇡( ) = 0.5

D2
⇢,⇡( ) = D̂2

⇢,⇡( ) = 0.5
D2

⇢,⇡( ) = D2
⇢,⇡( ) = 0.5 p2 = 1� p1

1

Statement of Purpose

Anji Liu Ph.D. Applicant

My primary research passion is on learning to make good decisions in complex environ-
ments. To this end, I am dedicated to making contributions on reinforcement learning. I
am enthusiastic in developing practical algorithms that solve core RL problems as well as
theoretical results that provide new insights and potential solutions to the problem.

On the empirical side, I have improved the exploration effectiveness in model-free RL
by explicitly disentangling the exploration and exploitation objectives (AAMAS 2020) and
reduced the performance loss in parallel MCTS using the idea of best anticipating future
rewards (ICLR 2020 Full Oral).

The project on improving exploration strives to avoid the tradeoff between designing ex-
pressive policies (for the sake of exploration) and optimal policy (for the sake of exploitation).
To this end, I proposed to design analogous value and policy pairs, one for exploration and
the other for exploitation, such that we acquire both the flexibility to have both expressive
and optimal policy and guarantees (both theoretically and empirically justified) of training
effectiveness and stability.

The key idea behind the parallel MCTS algorithm is that though the return of on-going
simulations is unobservable, we can anticipate its effect on the search tree, and correspond-
ingly pre-adjust the statistics in it. This helps us design an algorithm that significantly
out-performs competitors on a suite of Atari games.

Recently, I have been focusing more on the theoretical side of RL, with two on-going
projects (will submit to ICML 2020). One of them is a comprehensive and theoretical study
of parallel MCTS algorithms, which aims to answer the question how to effectively design
parallel MCTS algorithms. In this paper, I derived a sequence of necessary conditions for
a good parallel MCTS algorithm, and empirically demonstrates that they can guide future
algorithm design.

In the other project, I am tackling a fundamental problem in model-based RL – that
the multi-step model error builds up quickly even if starting with negligible error in the first
step. In this work, we admit that the multi-step error is extremely hard to optimize (if not
impossible). Instead, we seek to gain more awareness of the multi-step error by propagating
the rollout uncertainty, which can also help decrease multi-step error. Specifically, I have
shown that there is a fundamental tradeoff between the one-step error and the multi-step
risk, which is controlled by the size of the model class. I further argue that using a family
of tractable probabilistic model, controlling the size of the model class can be viewed as ac-
cumulating uncertainty on the states, which helps us both to improve the multi-step rollout
accuracy and be aware of the multi-step error.

Tm Tm

(
D2

⇢,⇡( ) = D̂2
⇢,⇡( ) = 0.5

D2
⇢,⇡( ) = D̂2

⇢,⇡( ) = 0.5
D2

⇢,⇡( ) = D2
⇢,⇡( ) = 0.5 p2 = 1� p1

1

Statement of Purpose

Anji Liu Ph.D. Applicant

My primary research passion is on learning to make good decisions in complex environ-
ments. To this end, I am dedicated to making contributions on reinforcement learning. I
am enthusiastic in developing practical algorithms that solve core RL problems as well as
theoretical results that provide new insights and potential solutions to the problem.

On the empirical side, I have improved the exploration effectiveness in model-free RL
by explicitly disentangling the exploration and exploitation objectives (AAMAS 2020) and
reduced the performance loss in parallel MCTS using the idea of best anticipating future
rewards (ICLR 2020 Full Oral).

The project on improving exploration strives to avoid the tradeoff between designing ex-
pressive policies (for the sake of exploration) and optimal policy (for the sake of exploitation).
To this end, I proposed to design analogous value and policy pairs, one for exploration and
the other for exploitation, such that we acquire both the flexibility to have both expressive
and optimal policy and guarantees (both theoretically and empirically justified) of training
effectiveness and stability.

The key idea behind the parallel MCTS algorithm is that though the return of on-going
simulations is unobservable, we can anticipate its effect on the search tree, and correspond-
ingly pre-adjust the statistics in it. This helps us design an algorithm that significantly
out-performs competitors on a suite of Atari games.

Recently, I have been focusing more on the theoretical side of RL, with two on-going
projects (will submit to ICML 2020). One of them is a comprehensive and theoretical study
of parallel MCTS algorithms, which aims to answer the question how to effectively design
parallel MCTS algorithms. In this paper, I derived a sequence of necessary conditions for
a good parallel MCTS algorithm, and empirically demonstrates that they can guide future
algorithm design.

In the other project, I am tackling a fundamental problem in model-based RL – that
the multi-step model error builds up quickly even if starting with negligible error in the first
step. In this work, we admit that the multi-step error is extremely hard to optimize (if not
impossible). Instead, we seek to gain more awareness of the multi-step error by propagating
the rollout uncertainty, which can also help decrease multi-step error. Specifically, I have
shown that there is a fundamental tradeoff between the one-step error and the multi-step
risk, which is controlled by the size of the model class. I further argue that using a family
of tractable probabilistic model, controlling the size of the model class can be viewed as ac-
cumulating uncertainty on the states, which helps us both to improve the multi-step rollout
accuracy and be aware of the multi-step error.

Tm Tm

(
D2

⇢,⇡( ) = D̂2
⇢,⇡( ) = 0.5

D2
⇢,⇡( ) = D̂2

⇢,⇡( ) = 0.5
D2

⇢,⇡( ) = D2
⇢,⇡( ) = 0.5 p2 = 1� p1

1

Statement of Purpose

Anji Liu Ph.D. Applicant

My primary research passion is on learning to make good decisions in complex environ-
ments. To this end, I am dedicated to making contributions on reinforcement learning. I
am enthusiastic in developing practical algorithms that solve core RL problems as well as
theoretical results that provide new insights and potential solutions to the problem.

On the empirical side, I have improved the exploration effectiveness in model-free RL
by explicitly disentangling the exploration and exploitation objectives (AAMAS 2020) and
reduced the performance loss in parallel MCTS using the idea of best anticipating future
rewards (ICLR 2020 Full Oral).

The project on improving exploration strives to avoid the tradeoff between designing ex-
pressive policies (for the sake of exploration) and optimal policy (for the sake of exploitation).
To this end, I proposed to design analogous value and policy pairs, one for exploration and
the other for exploitation, such that we acquire both the flexibility to have both expressive
and optimal policy and guarantees (both theoretically and empirically justified) of training
effectiveness and stability.

The key idea behind the parallel MCTS algorithm is that though the return of on-going
simulations is unobservable, we can anticipate its effect on the search tree, and correspond-
ingly pre-adjust the statistics in it. This helps us design an algorithm that significantly
out-performs competitors on a suite of Atari games.

Recently, I have been focusing more on the theoretical side of RL, with two on-going
projects (will submit to ICML 2020). One of them is a comprehensive and theoretical study
of parallel MCTS algorithms, which aims to answer the question how to effectively design
parallel MCTS algorithms. In this paper, I derived a sequence of necessary conditions for
a good parallel MCTS algorithm, and empirically demonstrates that they can guide future
algorithm design.

In the other project, I am tackling a fundamental problem in model-based RL – that
the multi-step model error builds up quickly even if starting with negligible error in the first
step. In this work, we admit that the multi-step error is extremely hard to optimize (if not
impossible). Instead, we seek to gain more awareness of the multi-step error by propagating
the rollout uncertainty, which can also help decrease multi-step error. Specifically, I have
shown that there is a fundamental tradeoff between the one-step error and the multi-step
risk, which is controlled by the size of the model class. I further argue that using a family
of tractable probabilistic model, controlling the size of the model class can be viewed as ac-
cumulating uncertainty on the states, which helps us both to improve the multi-step rollout
accuracy and be aware of the multi-step error.

Tm Tm

(
D2

⇢,⇡( ) = D̂2
⇢,⇡( ) = 0.5

D2
⇢,⇡( ) = D̂2

⇢,⇡( ) = 0.5
D2

⇢,⇡( ) = D2
⇢,⇡( ) = 0.5 p2 = 1� p1

1

Wait for a complete simulation task

Notation table

fsel

{Tm}M
m=1

Qm, Nm

Q̃m, Ñm

Qm, Nm

Om

τsim

τsyn

M search trees
Original statistics
Pseudo statistics
Modified statistics
# on-going simulations
Functions that update
pseudo statistics
Tree selection function
Simulation interval
Synchronization interval

fQ̃, fÑ , gQ̃, gÑ

State being simulated

Search tree index

Tm̂

𝑠$

𝑠% aT−1

sT−1

Tree selection

Tree sync Simulation

Pseudo statistics pre-update

Backpropagation
Has on-going simulation
or has completed not yet
processed by the master

Assign simulation
tasks

Qm(s, a) := αm(s, a)Qm(s, a) + βm(s, a)Q̃m(s, a)

Figure 4: The proposed general framework that covers existing parallel MCTS algorithms. The
overall diagram is on the top-left, the notation is on the top-right, and the details are in other boxes.

are adjusted with gQ̃ and gÑ . Finally, information from different search trees are synchronized every
τsyn rollouts, where τsyn is defined as the synchronization interval.

Statistics collection By choosing different fsel and τsyn (in the tree selection and tree sync step,
respectively), the simulators cooperate in different collaboration models that appear in various
existing algorithms. Specifically, if tree sync happens in all rollout steps (i.e. τsyn = 1), then the
M search trees are always identical during node selection, which can be regarded as M workers
performing sequential rollouts (Section 2) on a shared search tree, representing TreeP. On the other
hand, when having no communication between the search trees until finishing the last rollout (i.e.
τsyn =nmax, the total number of rollouts), and letting fsel choose the search tree that is updated in
the backpropagation step of the previous rollout (i.e. Tm̂), then the M search trees can be regarded as
search trees maintained by M independent sequential MCTS algorithms, which resembles RootP.1

Statistics augmentation Statistics augmentation focuses on using extra side information besides
the simulation returns to improve the tree policy. Specifically, besides the statistics extracted from
completed simulations (i.e. Qm and Nm), the general framework also uses pseudo statistics (i.e.
Q̃m and Ñm) to incorporate information from on-going simulations into its tree policy. Central to
the pseudo statistics is the incomplete sample count Om that keeps track of the number of initiated
but not yet completed simulations for each node Liu et al. (2020). It is used to construct pseudo
statistics through the pseudo statistics pre-/post-update steps. For example, by choosing αm(s, a)=1,
βm(s, a)=0, fÑ (s, a)=gÑ (s, a)=Om(s, a), the general framework is specialized into WU-UCT.1

Finally, Table 2 summarizes how different hyperparameter choices in the general parallel MCTS
framework specialize the general algorithm to various existing parallel MCTS algorithms. Please
refer to Appendix B.3 for rigorous justifications for such specializations.

B.2 ADDITIONAL DETAILS OF THE GENERAL ALGORITHM FRAMEWORK

In this subsection, we provide additional details for the general framework of parallel MCTS algorithm.
Specifically, we introduce the general framework using Algorithm 1, highlighting details that are not

11The functions α, β, fsel, fQ̃, fÑ , gQ̃, gÑ and the synchronization interval τsyn are hyperparameters. When
set differently, the algorithm can be specialized to different parallel MCTS algorithms.

14



Table 2: Different choices of the parameters in the general parallel MCTS algorithm framework
correspond to various existing parallel MCTS algorithms. Nm and Om are abbreviation of Nm(s, a)
and Om(s, a), respectively. nmax is the total number of rollouts. rVL and nVL are hyperparameters
specific to VL-UCT. m′ and m̂ are the index of the search tree selected in the previous tree selection
step and updated in the previous backpropagation step, respectively.

Algorithm fsel(m
′, m̂) τsyn αm(s, a) βm(s, a) Q̃m(s, a) Ñm(s, a)

UCT 1 1 1 0 0 0

LeafP (m′ + 1)%M M 1 0 0 0
RootP m̂ nmax 1 0 0 0
TreeP randint(M) 1 1 0 0 0

WU-UCT randint(M) 1 1 0 0 Om
VL-UCT (hard) randint(M) 1 1 Om −rVL 0

VL-UCT (soft) randint(M) 1 Nm
Nm+nVL·Om

nVL·Om
Nm+nVL·Om

−rVL nVL ·Om

stated clearly enough in the main text. We proceed by introducing each of the steps shown in the
block diagram in Figure 4.

Tree selection The tree selection function fsel takes m′ and m̂ as input. According to Line 15, m′
denotes the index of the search tree selected in the previous rollout. m̂ is the index of the search tree
being updated in the backpropagation step during the previous rollout (see Lines 10 and 11).

Node selection Note that the terminal conditions can be customized. Here we adopt a widely used
set of terminal conditions: either the node contains unexpanded child nodes or its depth exceed dmax.

Expansion Identical to the expansion step in sequential MCTS.

Pseudo statistics pre-update Although explicitly written here, Q̃m and Ñm may not need to be
explicitly stored during implementation since this computation may be done during node selection.

Simulation The search tree index m is passed to the simulator as record. Recall that the M search
trees maintained by the master respectively mimic the “search trees” maintained by the M workers in
practical algorithms, the index m helps Algorithm 1 to mimic the activation of different “workers”.

Wait Similarly, the search tree index m̂ is returned so that the algorithm knows which search tree to
update the statistics.

Backpropagation Additional to the updation of Qm and Nm, pseudo-statistics are also updated.

Tree sync We provide a formal definition of the synchronization function fsyn. Note that the
following descriptions are only for rigorous purpose, practical algorithms do not need to actually
implement the following algorithm.

The input of fsyn is a set of M search trees {Tm}Mm=1 and the output is a synchronized search tree T .
Intuitively, fsyn performs union of the M individual search trees and aggregate their newly acquired
statistics after the previous synchronization (see Algorithm 2). Therefore, it can be divided into two
steps: topology construction phase and the statistics aggregation phase. The topology construction
phase generates a new tree topology for T by taking the union of the topologies from {Tm}Mm=1. It
can be implemented by the following steps. We begin with a search tree T with only one root node
representing the initial state (i.e., the input s0 in Algorithm 1). In addition, we initialize a set of node,
Vsyn, with the root node s0. We then repeat the following steps until Vsyn is empty: (i) (randomly)
take out an element s from Vsyn and delete it from Vsyn, (ii) for all a ∈ A, if the edge (s, a) exists in
at least one of the M search trees {Tm}Mm=1, we grow the tree T by attaching this edge (s, a) along
with its next state s′ to node s, and (iii) add node s′ to the set Vsyn.

To explain the statistics aggregation phase of fsyn (i.e., the second phase), we have to introduce two
sets of additional statistics associated with each edge (s, a) at the M input search trees {Tm}Mm=1.
Specifically, for each edge (s, a) in the search tree Tm, letRm(s, a) be a set that consists of elements
in the following form and is constructed in a recursive manner (to be explained later):

Rm(s, a) = {(Vs,a, ξs,a) : Vs,a := V (s′), ξs,a ∈ {0, 1}}, (17)

15



Algorithm 1 A general framework of parallel MCTS algorithms.
1: input: EnvironmentM; number of simulator processes M ; number of rollouts N ; functions
αm(∀m), βm(∀m), fsel, fQ̃, fÑ , gQ̃, gÑ ; synchronization interval τsyn; initial state s0; maxi-
mum depth dmax.11

2: initialize: number of completed simulations ncomplete←0; search tree No. m′←M and m̂←1;
M search trees {Tm}Mm=1, each with node set Vm←{s0} and edge set Em←∅:

Tm := 〈(Vm, Em), {Qm, Q̃m, Nm, Ñm, Om}〉,
where the statistics {Qm, Q̃m, Nm, Ñm, Om} are initialized to zero.

3: while ncomplete < N do
4: (Tree selection) Select a search tree Tm where m = fsel(m

′, m̂) ∈ {1, . . . ,M}.
5: (Node selection) Traverse over Tm according to the following tree policy and collect a

sequence of traversed state action pair {(st, at)}T−1
t=0 , where s0 is the root node and sT−1 is

the state that satisfies one of the following conditions: (i) it contains unexpanded child nodes,
(ii) its depth exceed dmax:

at = arg max
a∈A

{
Qm(st, a) + c

√
2 ln

∑
a′ Nm(st, a′)

Nm(st, a)

}
, (14)

where the adjusted statistics Qm and Nm are given by

Qm(s, a) := αm(s, a)Qm(s, a) + βm(s, a)Q̃m(s, a), (15)

Nm(s, a) := Nm(s, a) + Ñm(s, a). (16)

6: (Expansion) Pick an expandable action aT−1 at sT−1 and add node sT (the next state follow-
ing (sT−1, aT−1)) to tree Tm.

7: (Pseudo statistics pre-update) Pre-update pseudo statistics for all (s, a) ∈ {(st, at)}T−1
t=0 :

Om(s, a)← Om(s, a) + 1,

Q̃m(s, a)← fQ̃(s, a,Qm, Nm, Om),

Ñm(s, a)← fÑ (s, a,Qm, Nm, Om).
8: (Simulation) Assign simulation task (sT ,m) to a simulator process.
9: if there exist simulators without an assigned task then continue

10: (Wait) Wait until a simulation task completes and fetch the simulation return (sT , V (sT ), m̂).
11: (Backpropagation) Update Qm̂ and Nm̂ in the search tree Tm̂ using the same rule as

Eqs. (2) and (3); perform pseudo-statistics post-update on the search tree Tm̂ for all
(s, a) ∈ {(st, at)}T−1

t=0 :
Om̂(s, a)← Om̂(s, a)− 1,

Q̃m̂(s, a)← gQ̃(s, a,Qm̂, Nm̂, Om̂),

Ñm̂(s, a)← gÑ (s, a,Qm̂, Nm̂, Om̂).
12: if ncomplete ≡ τsyn − 1 (mod τsyn) then
13: (Tree sync) Synchronize the statistics in different search trees such that:

Tm ← T = fsyn({Tm}Mm=1) m = 1, . . . ,M.
14: end if
15: ncomplete ← ncomplete + 1; m′ ← m

16: end while
17: return T = fsyn({Tm}Mm=1) (or return the “best” action for the initial state s0)

where s′ is the next state of (s, a), and V (s′) is recursively defined (over Tm) according to Eq. (2)
starting from the simulation return V (sT ).12 ξs,a = 1 means that Vs,a at this edge (s, a) has
been synchronized in the previous synchronization cycles and 0 otherwise. When an edge (s, a)
is initialized (e.g., expanded), an empty set Rm(s, a) will be initialized accordingly. During the

12We drop the dependency on m in the above set ofRm(s, a) for simplicity of notation.

16



backpropagation phase of Algorithm 1, for each traversed edge corresponding to the complete
simulation with return (sT , V (sT ), m̂) (assume the traversed edges are {(st, at)}T−1

t=1 ), we update the
setsRm̂(st, at) (t = 0, . . . , T ) by recursively computing V (st) using Eq. (2) and add the element
(V (st+1), 0) into the setRm̂(st, at).

During the statistics aggregation phase, for each edge (s, a) ∈ T , we perform the following steps to
construct the setR(s, a): (i) initialize an empty setR(s, a), (ii) traverse all elements (Vs,a, ξs,a) ∈
R1(s, a) and add it toR(s, a) if ξs,a=1, (iii) traverse all elements (Vs,a, ξs,a) ∈ ∪Mm=1Rm(s, a)13

and add (Vs,a, 1) to R(s, a) if ξs,a = 0. The intuition of the above procedure is that both the
synchronized elements (ξs,a = 1) and elements that have not been synchronized yet (ξs,a=0) are
added toR(s, a) only once. We then calculate the statistics Q and N at the output search tree T as
follows:

Q(s, a) :=
1

|R(s, a)|
∑

〈V,ξ〉∈R(s,a)

V, (18)

N(s, a) := |R(s, a)|, (19)

where |R(s, a)| denotes the cardinality of the setR(s, a). Finally, the synchronization of the on-going
simulation count O(s, a) is performed in the following manner: for each edge (s, a) ∈ T ,

O(s, a)←
M∑

m=1

Om(s, a), (20)

where Om(s, a) is set to zero if this particular edge (s, a) does not appear in Tm. The details for the
implementation of fsyn are summarized in Algorithm 2.

B.3 SPECIALIZATION OF THE GENERAL FRAMEWORK INTO EXISTING PARALLEL MCTS
ALGORITHMS

In this subsection, we show how the existing algorithms introduced in Appendix A could be viewed
as special cases of Algorithm 1. Table 2 demonstrates how different choices of the hyperparameters
in Algorithm 1 could lead to different parallel algorithms. The functions fQ̃, fÑ , gQ̃, and gÑ are

omitted in Table 2 since they can be inferred from Q̃m and Ñm. Note that for some methods the
equivalence exists only when the simulation phase takes much more time than the other phases.
Nevertheless, this holds in general (Liu et al., 2020; Chaslot et al., 2008) and therefore does not affect
our analysis.

LeafP Consider the following identification in Algorithm 1: fsel(m
′, m̂) := (m′ + 1)%M , where

% denotes the modulo operator, αm(s, a) = 1, and βm(s, a) = Q̃m(s, a) = Ñm(s, a) = 0. If
we further choose τsyn = M , Algorithm 1 will be equivalent to LeafP for the following reasons.
First, since synchronization happens at time steps τsyn, 2τsyn, . . . (i.e., M, 2M, . . . ), the search trees
{Tm}Mm=1 are identical at the end of these time steps. We now show that the algorithm status at the
ends of the rollouts M, 2M, . . . in Algorithm 1 is equivalent to the algorithm status of LeafP at the
ends of the rollouts 1, 2, . . . , respectively (note that in each rollout of LeafP, M simulation returns
of the same node is acquired). Specifically, during the M rollouts in the general framework (i.e.,
Algorithm 1), each search tree is selected only once due to the specific setting of fsel (i.e., sequentially
select all search trees). Since the M trees are identical and the tree policy (Eq. (14)) is deterministic,
each of the M rollouts will independently expand and simulate one unique search tree among the
M trees at the same leaf node position, which keeps all the M trees having an identical topology.
Finally, the synchronization step aggregates the M simulation returns into a single search tree. As a
result, it becomes equivalent to having M workers to simulate the same node in the simulation step
of LeafP. Figure 5 illustrates the above equivalence between LeafP and the general framework under
this identification.

TreeP Consider the choice of αm(s, a) = 1 and βm(s, a) = Q̃m(s, a) = Ñm(s, a) = 0, and let the
synchronization be excuted at each rollout cycle in Algorithm 1 (i.e., τsyn = 1, also see Table 2).
We now show that this resembles the TreeP algorithm. First, since synchronization happens at every
rollout cycle, the M search trees are identical at the beginning of each rollout cycle in Algorithm 1,

13∪ refers to the set union.

17



Algorithm 2 The synchronization function fsyn

1: input: M search trees {Tm}Mm=1.
2: initialize: a search trees T := 〈(V, E), {Q,N}〉, where V ← {s0} is the set of nodes, and
E ← ∅ is the set of edges (s0 is the root node of T ).

3: # Phase 1: Topology construction
4: Initialize Vsyn := {s0}.
5: while Vsyn not empty do
6: s← pop(Vsyn)
7: for a ∈ A do
8: if (s, a) exists in at least one of the M search trees {Tm}Mm=1 then
9: s′ ← the next state following (s, a)

10: Add edge (s, a) and node s′ to T
11: Add s′ to the set Vsyn
12: end if
13: end for
14: end while

15: # Phase 2: Statistics aggregation
16: For all trees Tm and edges (s, a), define Rm(s, a) according to equation (17). Rm(s, a) is

maintained during rollouts as described in Section B.2.
17: for all edges (s, a) in T do
18: R(s, a) := ∅
19: for all (Vs,a, ξs,a) ∈ R1(s, a) do
20: if ξs,a = 1 then
21: Add (Vs,a, ξs,a) toR(s, a)
22: end if
23: end for
24: for m = 1, . . . ,M do
25: for all (Vs,a, ξs,a) ∈ Rm(s, a) do
26: if ξs,a = 0 then
27: Add (Vs,a, 1) toR(s, a)
28: end if
29: end for
30: end for
31: Update Q(s, a), N(s, a), and O(s, a) according to equations (18)-(20), respectively.
32: end for

33: return search tree T

and can be regarded as a global search tree since all simulation returns are gathered immediately at
the end of each rollout cycle (according to the definition of fsyn). Second, the simulator processes
are independent, and whenever a simulator completes, its simulation return will be updated to the
global search tree (in the backpropagation phase) by the synchronization step performed at every
time step, which resembles TreeP. Finally, whenever a worker is idle, the algorithm will traverse the
global search tree to assign a new simulation task to it, which mimics the setting in TreeP that each
worker individually perform rollouts and update the global statistics. See Figure 6 for an illustration
of the intuition for this equivalence.

RootP Consider the following choice of hyperparameters: fsel(m
′, m̂) := m̂, (i.e., always select the

search tree updated in the backpropagation step in the most recently completed rollout), αm(s, a) = 1,
βm(s, a) = Q̃m(s, a) = Ñm(s, a) = 0, and τsyn = Nmax (i.e., synchronize after all the jobs at all
the workers are totally completed). This setting is equivalent to RootP for the following reasons. First,
since τsyn = Nmax, all the M search trees act independently (i.e., building their own search trees)
and will not be aggregated by fsyn until all rollouts are completed. Second, we can show that the
rollout cycles in Algorithm 1 will preserve the independence of the operations at these M search trees
under the above identification. To see this, note that, by fsel(m, m̂) :=m̂, Algorithm 1 at the current
rollout cycle will always select the search tree Tm̂ that has returned its simulation in the previous
rollout cycle. This means that, in the current rollout cycle, Algorithm 1 will continue to perform
rollouts and employ another worker to simulate this same search tree Tm̂. For this reason, it can be

18



M independent
simulations

M independent
simulations

(a) LeafP.

···

Search tree #2 Search tree #MSearch tree #1

···

Search tree #2Search tree #1

Synchronization

Search tree #M

(b) Equivalent LeafP by Algorithm 1.

Figure 5: Illustration of how LeafP can be viewed as a special case of Algorithm 1. In (b), each of
the M trees initializes an identical simulation task to the simulator processes and synchronization
happens after all M simulation tasks are completed. This is analogous to (a), where M workers are
assigned to simulate a same node independently.

M workers performing rollouts
on a global search tree.

(a) TreeP.

Search tree #2 Search tree #MSearch tree #1

···

(b) Equivalent TreeP by Algorithm 1.

Figure 6: Illustration of how TreeP can be viewed as a special case of Algorithm 1. Performing
M independent rollouts on M search trees and then synchronizing the statistics per rollout cycle
(τsyn = 1) is equivalent to having M workers independently performing rollouts and updating the
statistics on one global search tree in TreeP. This equivalence holds in general, regardless of whether
virtual loss or pseudo-statistics are used. However, without them, the vanilla TreeP normally will
quicly collapse into a mode that is similar to LeafP.

viewed as if we have M virtual “designated” workers to perform rollouts and simulations for these
M search trees independently, which is exactly what RootP does. Since we assume other phases
consume much less time than the simulation phase, these M virtual “designated” workers are almost
bound to continuously performe rollouts and simulation process without long waits. Finally, different
variants of RootP (e.g., certain workers only operate on some child nodes of the search tree) can also
be modeled by Algorithm 1 by setting Q̃m at these nodes. For instance, Q̃m can be chosen to be big
enough such that at the root node the algorithm will always choose these same child nodes. Figure 7
illustrates the equivalence between RootP and Algorithm 1 under the above identification.

VL-UCT Since it is a variant of TreeP, the workers’ collaboration model in VL-UCT is identical to
that of TreeP. Therefore, we can follow the same setting in τsyn =1 and fsel. On the other hand, we
choose the pseudo statistics as shown in Table 2. Specifically, for VL-UCT with hard penalty, we
select (also see Table 2)

αm(s, a) = 1, βm(s, a) = Om(s, a),

Q̃m(s, a) = −rVL, Ñm(s, a) = 0.

19



···

Worker #1
Worker #2

Worker #M

(a) RootP.

Search tree #2 Search tree #MSearch tree #1

···

(b) Equivalent RootP by Algorithm 1.

Figure 7: Illustration of how RootP could be viewed as a special case of Algorithm 1. Each subtree
in RooP corresponds to one of the M search trees in Algorithm 1. Under a particular identification,
Algorithm 1 can be viewed as having M virtual “designated” workers that operate independently on
these M search trees, which is equivalent to what RootP does.

And for VL-UCT with soft penalty, we choose

αm(s, a) =
Nm(s, a)

Nm(s, a) + nVL ·Om(s, a)
,

βm(s, a) =
nVL ·Om(s, a)

Nm(s, a) + nVL ·Om(s, a)
,

Q̃m(s, a) = −rVL,

Ñm(s, a) = nVL ·Om(s, a).

WU-UCT Although not exactly based on TreeP, WU-UCT follows the same master-worker
architecture as in Algorithm 1. We now show that WU-UCT can also be viewed as a special case of
Algorithm 1 under the identification to be explained below. Similar to TreeP, we set τsyn = 1, i.e.,
the statistics from the M search trees are synchronized at the end of each rollout cycle. Likewise, we
set fsel(m

′, m̂) = randint(M); that is, it selects a random search tree in the selection phase.14 In
addition, we make the following choices (see Table 2)

αm(s, a) = 1, βm(s, a) = Q̃m(s, a) = 0,

Ñm(s, a) = Om(s, a).

C PROOFS: PARALLEL ALGORITHMS FOR MONTE CARLO TREE SEARCH

This section provides proofs for Theorems 1, and 2, which locate in Sections C.1 and C.2, respectively.

C.1 THE NECESSARY CONDITIONS

To help elaboration, we first introduce the following additional definitions. Define Aseq as the
sequential MCTS algorithm introduced in Section 2 (Kocsis et al., 2006). T A

s,n is defined as the search
tree with root node s and is constructed by a (parallel) MCTS algorithm A with n rollouts. Whenever
it is clear from context, we omit the subscript n for notation simplicity. Let V A

s,n(s′) be the cumulative
reward V (s′) obtained in the backpropagation step (i.e. computed by Eq. (2)) when performing a
rollout using algorithm A on the search tree T A

s,n (if s′ is not selected during the rollout, V A
s,n(s′) :=0).

Note that V A
s,n(s′) is indeed a random variable due to the stochasticity in the simulation returns.

Following the above definitions as well as the terminology in the general algorithm framework
(Appendix B.1), we give a formal version of Theorem 1.
Theorem 3 (A formal version of Theorem 1). Consider an algorithm A that is specified from the
general parallel MCTS framework by choosing Ñm(s, a) = f(Om(s, a)) (m = 1, . . . ,M ), where

14In the original paper, WU-UCT also parallelizes the expansion step. However, since we assume the
simulation phase is much more time-consuming then other phases, we ignore this detail.

20



r

Pull arm No. 3𝑠
𝑎# 𝑎$ 𝑎%

𝑠# 𝑠$ 𝑠%

(a) MAB with K = 3.

r

Select node No. 3

r

𝑠

𝑠"𝑠# 𝑠$

Subtree of 𝑠"

A “mini-MAB”
defined by s and
its child nodes s1,
s2, and s3.

(b) Equivalent mini-MAB in a search tree.

Figure 8: Demonstration of the mini-MABs in MCTS search trees that resembles a multi-armed
bandit (MAB). (a): a MAB with three arms. (b): s, s1, s2, and s3 define a mini-MAB that resembles
the MAB in (a).

f(·) : Z+
0 →R is a function. If there exists an edge (s, a) in any of the M search trees {Tm} such

that algorithm A violates any of the following conditions (with s′ defined as the next state following
(s, a)):
• Necessary cond. of Q: E[Qm(s, a)]= 1

n

∑n
n′=1 E[V

Aseq

s′,n′ (s
′)] (n=Nm(s, a)+Om(s, a)), (21)

• Necessary cond. of N : f(x) ≥ x (∀x ∈ Z+
0 ), (22)

then there exists an MDPM such that the excess regret of running A on MDPM does not vanish.

In the following, we provide the formal proof of Theorem 3, which states two necessary conditions
for having vanishing excess regret in parallel MCTS algorithms. Before delving into the proof, we use
Figure 8 to introduce the concept of mini-MAB. Specifically, in a search tree, each node and its child
nodes represent a two-layer search tree that resembles a MAB with the same number of children. We
define this two-layer search tree as mini-MAB. Note that one core difference between mini-MABs
and MABs is that the reward acquired by a child node of mini-MABs are rewards obtained from a
sub-tree rooted at the child node (Figure 8(b)), while for MAB all child nodes produce i.i.d. rewards
following a pre-defined distribution.

Proof of Theorem 1 (Theorem 3. To obtain vanishing excess regret, it is necessary to show the fol-
lowing: the excess regret of the mini-MABs that represent nodes on the optimal path in the search
tree should decrease as t increases. This necessary condition holds since all nodes on the optimal
path will be visited Ω(t) times when t is sufficiently large (see Kocsis et al. (2006)), and if any of the
nodes have nonvanishing excess regret, the tree search algorithm will suffer from nonvanishing regret.
In the following, we derive the necessary conditions for algorithms that have vanishing excess regret
in mini-MABs.

Consider a mini-MAB whose root node is s (assume it is on the optimal path). The actions are
defined as {ak}Kk=1 and the next state following (s, ak) is defined as sk. In order to achieve vanishing
excess regret during parallel, it is necessary to have vanishing excess regret when this mini-MAB
is parallelized while rollouts its child nodes are performed sequentially. That is, assume we use
the sequential algorithm Aseq to produce reward for all child nodes of the mini-MAB rooted at s.
Correspondingly, we define µk,n as the expected reward obtained by executing action ak for the nth
time. That is,

µk,n :=
1

n

n∑

n′=1

E[V
Aseq

τs,ak (n′)(s
′)]. (23)

Similarly, define µ∗n := maxk µk,n.

Define Qk,n,o as the estimated value of the kth child node of the mini-MAB when there are n
initialized simulations and o on-going simulations (which means that there are n − o completed
simulations). Formally, Qk,n,o can be written as (reflects Eq. (13)/Eq. (4) in the general framework)

Qk,n,o := αkQk,n−o + βkQ̃k,n,o, (24)

where αk := α(s, ak) and βk := β(s, ak) (assume s as the root node of the mini-MAB); Q̃k,n,o :=

Q̃(s, ak) is the pseudo value. Note that αk and βk might also depend on n and o.

21



We define Tk(t) as the number of times action ak is selected in the first t rollouts. According to the
regret decomposition identity Mazumdar et al. (2017), Regret(t) can be decomposed with respect to
different arms:

Regret(t) =
∑

k∈{1,...,K},k 6=k∗
∆kE [Tk(t)]

where ∆k := maxk′ E[Qt(s, ak′)]−E[Qt(s, ak)] is the expected regret of selecting action ak instead
of the best action in the mini-MAB. Therefore, to achieve vanishing excess regret, it is necessary
to show that the number of times a suboptimal action is chosen (i.e. E[Tk(t)]) for a parallel MCTS
algorithm should be the number of times such action is taken in sequential MCTS plus a term that
vanishes as t goes to infinity.

Define et,n,o :=
√

(2 ln t)/(n+ f(o)), where f(·) is defined in Theorem 3. We lower bound Tk(t)
by (k∗ is the index of the optimal action)

Tk(t) =

t∑

τ=1

[Actionτ = ak]

≥
t∑

τ=1

min
n,n′∈[0,τ ];o,o′∈[0,M−1]

1

[
Qk∗,n,o+eτ,n,o≤Qk,n′,o′+eτ,n′,o′

]

We lower bound the probability of the event Qk∗,n,o+eτ,n,o≤Qk,n′,o′+eτ,n′,o′ using one minus the
sum of the probability of the two following events:

Qk∗,n,o ≥ µ∗n − eτ,n,o, (25)

Qk,n′,o′ ≤ µk,n′ + eτ,n′,o′ , (26)

where µk,n := 1
nE[
∑n
t=1Qt(s, ak)] is defined as the average value return of the first n

times ak is taken; µ∗n denotes the same quantity defined for the optimal action a∗ :=
arg maxa′ E[

∑n
t=1Qt(s, a

′)]. Note that this bound (i.e. Eqs. (25) and (26)) holds since by def-
inition µ∗n−o > µk,n−o.

We first give an outline of the proof regarding the necessary condition of Q. We shall first show that if
E[Qk∗,n,Ok∗,t ] ≥ µ∗n and E[Qk,n′,Ok,t ] ≤ µk,n′ are not satisfied, there exists a mini-MAB task, n0,
and pε ∈ (0, 1) such that for any n > n0, the probability of both Eq. (25) and Eq. (26) are smaller
than pε. Hence Tk(t) will be lower bounded by (1− 2pε) · t, meaning that the suboptimal arm k will
be pulled Ω(t) times. Therefore, the algorithm cannot achieve vanishing excess regret. Next, given
that (i) E[Qk∗,n,Ok∗,t ] ≥ µ∗n and E[Qk,n′,Ok,t ] ≤ µk,n′ should be satisfied, and (ii) the algorithm
does not know which arm is optimal (i.e., it cannot distinguish between k and k∗), the algorithm has
to satisfy E[Qk∗,n,Ok∗,t ] = µ∗n and E[Qk,n′,Ok,t ] = µk,n′ , which gives the necessary condition of Q.
Details are provided as follows.

Define µk,n1,n2 as the average reward of the kth arm of the mini-MAB from its n1th rollout to its
n2th rollout (n1 ≤ n2). Similarly µ∗n1,n2

defines the same quantity for the optimal arm k∗. We have
the following results (for any integer 0 ≤ o ≤ n):

µ∗n =
n− o
n

µ∗n−o +
o

n
µ∗n−o+1,n, (27)

µk,n =
n− o
n

µk,n−o +
o

n
µk,n−o+1,n. (28)

Using the above results, Eqs. (25) and (26) can be equivalently written as

αk∗
(
Qk∗,n−o − µ∗n−o

)
+ βk∗Q̃k∗,n,o + αk∗µ

∗
n−o − µ∗n ≥ −eτ,n,o, (29)

αk (Qk,n′−o′ − µk,n′−o′) + βkQ̃k,n′,o′ + αkµk,n′−o′ − µk,n′ ≤ eτ,n′,o′ , (30)

where φk is a variable that depend on k, n, and o. By definition, we have E[Qk∗,n−o] = µ∗n−o and
E[Qk,n′−o′ ] = µk,n′−o′ . We then focus on the following terms in the above equations:

βk∗Q̃k∗,n,o+αk∗µ
∗
n−o−µ∗n, (31)

22



βkQ̃k,n′,o′+αkµk,n′−o′−µk,n′ . (32)

We show that vanishing excess regret cannot be achieved unless Eqs. (31) and (32) have ≤ 0 and ≥ 0
expectation value, respectively. Otherwise, there exists n0 such that for any n > n0 and o < M (by
definition), eτ,n,o and eτ,n′,o′ will have smaller absolute value than Eqs. (31) and (32), respectively.
For Eq. (30), this means that when n > n0 its left-hand side has higher expectation value than its
right-hand side, which means there exists pε ∈ (0, 1) such that the probability of Eq. (30) is smaller
than pε. This argument similarly applies to Eq. (29). As mentioned before, Eqs. (29) and (30) have
probability upper bound means the suboptimal arm k will be pulled Ω(t) times, which makes the
parallel MCTS algorithm fail to achieve vanishing excess regret.

Given that the parallel MCTS algorithm belongs to the general framework (Algorithm 1), there are
three types of pseudo statistics that can be added to Q̃, which are (i) statistics related to all complete
simulations, (ii) statistics related to all incomplete simulations, and (iii) statistics non-related to
simulation returns. Given this, we decompose the pseudo value Q̃k,n,o into three terms:

Q̃k,n,o := Q̃
µk,n−o
k,n,o + φk · Q̃µk,n−o+1,n

k,n,o + Q̃Rk,n,o,

where E[Q̃
µk,n−o
k,n,o ] = µk,n−o, E[Q̃

µk,n−o+1,n

k,n,o ] = µk,n−o+1,n, and Q̃Rk,n,o is independent of both
µk,n−o and µk,n−o+1,n. For the optimal arm k∗ (the following holds for other arms as well), we have

βk∗Q̃k∗,n,o + αk∗µ
∗
n−o − µ∗n

(a)
=βk∗(Q̃

µk∗,n−o
k∗,n,o +φk · Q̃µk∗,n−o+1,n

k∗,n,o + Q̃Rk∗,n,o)+(αk∗ −
n− o
n

)µ∗n−o −
o

n
µ∗n−o+1,n

=

(
βk∗Q̃

µk∗,n−o
k∗,n,o +(αk∗−

n− o
n

)µ∗n−o

)
+
(
βk∗φk∗Q̃

µk∗,n−o+1,n

k∗,n,o − o
n
µ∗n−o+1,n

)
+Q̃Rk∗,n,o, (33)

where (a) uses the result of Eq. (27). The expectation value of Eq. (33) is
(
βk∗ + αk∗ −

n− o
n

)
µ∗n−o +

(
βk∗φk∗ −

o

n

)
µ∗n−o+1,n + E[Q̃Rk∗,n,o]. (34)

Similarly, for arm k we have

βkQ̃k,n′,o′ + αkµk,n′−o′ − µk,n′
(a)
=βk(Q̃

µk,n′−o′

k,n′,o′ +φk · Q̃
µk,n′−o′+1,n′

k,n′,o′ + Q̃Rk,n′,o′)+(αk −
n′ − o′
n′

)µk,n′−o′ −
o′

n′
µk,n′−o′+1,n′

=

(
βkQ̃

µk,n′−o′

k,n′,o′ +(αk−
n′ − o′
n′

)µk,n′−o′

)
+

(
βkφkQ̃

µk,n′−o′+1,n′

k,n′,o′ − o
′

n′
µk,n′−o′+1,n′

)
+Q̃Rk,n′,o′ ,

(35)

and its expectation value is
(
βk + αk −

n− o
n

)
µk,n−o +

(
βkφk −

o

n

)
µk,n−o+1,n + E[Q̃Rk,n,o]. (36)

We now argue that in order for the mini-MAB to achieve vanishing excess regret, the expectation of
the three terms in the above equation should all be 0. Specifically, previously we have shown that
Eqs. (31) and (32) should have ≤ 0 and ≥ 0 expected values. However, as suggested by Eqs. (34)
and (36), since the algorithm does not know which arm is optimal, and both equations have the same
form, it is impossible to have Eq. (34) < 0 while Eq. (36) > 0. Hence, both equations should be equal
to zero. Since µ∗n−o and µ∗n−o+1,n (µk,n−o and µk,n−o+1,n) are task-specific, to make Eqs. (34) and
(36) equals to zero, we should have (∀k):

βk + αk −
n− o
n

= 0,

βkφk −
o

n
= 0,

E[Q̃Rk,n,o] = 0.

23



Plug in the above results into Eq. (24), we conclude that one necessary condition for having vanishing
excess regret in the mini-MAB is (∀k)

E[Qk,n,o]=αkµk,n−o + βk

(
Q̃
µk,n−o
k,n,o + φkQ̃

µk,n−o+1,n

k,n,o + Q̃Rk,n,o

)

= (αk + βk)µk,n−o + βkφkµk,n−o+1,n + E[Q̃Rk,n,o]

=
n− o
n

µk,n−o +
o

n
µk,n−o+1,n

(a)
= µk,n,

where (a) uses the result in Eq. (27).

According to the definition of µk,n, the necessary condition for having vanishing excess regret is

E[Qk,n,o′ ] = µk,n =
1

n

n∑

n′=1

E[V
Aseq

τs,ak (n′)(s
′)].

Equivalently, it can be written as

E[Q(s, ak)] = µk,n′ =
1

n

n∑

n′=1

E[V
Aseq

τs,ak (n′)(s
′)],

where n = N(s, ak) + O(s, ak). This completes the proof of the first necessary condition in
Theorem 1.

Assuming the first necessary condition is satisfied, we proceed to prove the second necessary condition.
Note that according to the assumption on Ñ made in the theorem, we have:

N(s0, ak) = N(s0, ak) + f(O(s0, ak)),

where f can be any function whose domain is {x | 0 ≤ x ≤ M − 1, x ∈ Z} and whose range is
[0,+∞).

Suppose at time step τ0 (τ0 < τsim), arm k has been visited n0+1 times (one of them is the done at the
initialization phase of the corresponding edge (s, ak)). We consider the quantity Pr(Qk,n0+1,n0

≤
µk + eτ0,n0+1,n0

), which represents the probability of Eq. (26) in the circumstance specified by k,
τ0, and n0:

Pr(Qk,n0+1,n0
≤ µk,n0+1 + eτ0,n0+1,n0)

(a)
= Pr(Qk,n0+1,0 ≥ µk,n0+1 + eτ0,n0+1,n0

)

(b)

≤ exp(−n0 + 1

2
e2
τ0,n0+1,n0

)

(c)
= exp(−n0 + 1

2

2 log g(τ0)

f(n0) + 1
)

=
1

g(τ0)
n0+1

f(n0)+1

, (37)

where (a) uses the assumption that the first necessary condition is satisfied (i.e. Qk,n0+1,n0
=

Qk,n0+1), (b) follows the Chernoff-Hoeffding bound on the 1
n0+1 -subgaussian random variable

Qk,n0+1, and (c) expands the definition of eτ0,n0+1,n0
(g(·) is defined as follows). Suppose we have

f(n0) = n′0 < n0 (without loss of generality assume f(x) = x (x 6= n0)). We first show that in this
case g(τ0) = τ0 − n0 + n′0. Specifically, according to the tree policy (Eq. (14)), we have

g(τ) =
∑

k

N(s, ak)

=
∑

k

N(s, ak) + f(O(s, ak))

=
∑

k

N(s, ak) +O(s, ak) +
(
f(O(s, ak))−O(s, ak)

)
.

24



First, notice that at rollout step τ0, we have
∑
kN(s, ak) + O(s, ak) = τ0. The reason is that at

rollout step τ0, Algorithm 1 has initialized τ0 simulations in total, and each simulation is either
observed (will be counted by N(s, ak)) or unobserved (will be counted by O(s, ak)). Next, we
look at the last term f(O(s, ak)) − O(s, ak). By assumption, it equals to n′0 − n0 if and only if
O(s, ak) = n0, and is otherwise zero. Therefore, at rollout step τ0, as long as no other edges have
n0 on-going simulations, we can conclude that g(τ0) = τ0 − n0 + n′0. Therefore, Eq. (37) can be
further simplified as

Pr(Qk,n0+1,n0
≤ µk,n0+1 + eτ0,n0+1,n0

) ≤(τ0 − n0 + n′0)
−n0+1

n′0+1 . (38)

We focus on the condition of having nonvanishing excess regret. Specifically, we focus on the
condition of Eq. (38) being greater than the upper bound in the sequential case (i.e. when all
n0 unobserved samples are observed), which is 1

τ0
Chernoff-Hoeffding inequality of subgaussian

variables:

(τ0 − n0 + n′0)
−n0+1

n′0+1 >
1

τ0
⇔ τ0 > (τ0 − n0 + n′0)

n0+1

n′0+1 .

For any n0 and n′0, there exists t0 such that when τ0 > t0, we have

τ0 − (τ0 − n0 + n′0)
n0+1

n′0+1 > n0 − n′0, (39)

where n0 − n′0 is nonvanishing as τ0 increases. Therefore, it will incur a nonvanishing term in the
probability of Eq. (26), which will result in a nonvanishing regret term. Therefore, to have vanishing
cumulative regret, we should not have f(n0) = n′0 < n0. This confirms the necessary condition
f(x) > x.

C.2 THEORETICAL JUSTIFICATION OF WU-UCT

This section provides formal proof of Theorem 2, which indicates WU-UCT achieves vanishing
excess regret under the depth-2 setup. In the following, we first justify the statement “RUCT (n) is
the cumulative regret of running the (sequential) UCT for n steps on T”, i.e., the expected cumulative
regret of the UCT algorithm under the depth-2 setup.

Cumulative regret upper bound of UCT in the depth-2 case Define ak∗ as the optimal action
that leads to the highest expected reward. According to the regret decomposition identity Mazumdar
et al. (2017), Regret(t) can be decomposed with respect to different arms:

Regret(t) =
∑

k∈{1,...,K},k 6=k∗
∆kE [Tk(t)] , (40)

where ∆k := µ∗ − µk, µ∗ := maxk µk, k∗ := arg maxk µk, and Tk(t) is defined as the number of
times arm k is selected in the first t rollouts. This suggests that we only need to bound the expected
visit counts of all suboptimal arms (i.e., E [Tk(t)] (k 6= k∗)). Qt(s0, ak) is defined as the reward
estimate for arm k at the end of the tth rollout, and Nt(s0, ak) denotes the visit count of arm k at the
end of rollout step t. To simplify notation, we additionally define Qk,n as the (empirical) average
reward of arm k after the nth observation of that arm (i.e., n simulation returns have been obtained).

The event Armτ = k means the kth arm is pulled at time t. According to the definition of Tk(t), we
have (define l as an arbitrary positive integer; et,n :=

√
(2 ln t)/n)

Tk(t) = 1 +

t∑

τ=K+1

1 [Armτ = k]

≤ l +

t∑

τ=K+1

1 [Armτ = k, Tk(τ − 1) ≥ l]

(a)

≤ l +

t∑

τ=K+1

1

[
Qτ−1(s0, ak∗) + eτ,Nτ−1(s0,ak∗ ) ≤ Qτ−1(s0, ak) + eτ,Nτ−1(s0,ak)

]

≤ l +

t∑

τ=K+1

1

[
min

0<n<τ
Qk∗,n + eτ,n ≤ max

l≤n′<τ
Qk,n′ + eτ,n′

]

25



≤ l +

t∑

τ=1

max
n∈[1,τ−1]

max
n′∈[1,τ−1]

1

[
Qk∗,n + eτ,n ≤ Qk,n′ + eτ,n′

]
. (41)

where (a) uses the fact that the necessary condition of choosing arm k at rollout step τ is that the
upper confidence bound of the kth arm is greater than or equal to that of the optimal arm k∗.

We bound the probability of the event Qk∗,n + eτ,n ≤ Qk,n′ + eτ,n′ using the sum of the following
three events’ probability:

Qk∗,n ≤ µ∗ − eτ,n, (42)
Qk,n′ ≥ µk + eτ,n′ , (43)
µ∗ < µk + 2eτ,n′ . (44)

Since the rewards received from arm k minus its expectation (i.e., Rk − µk) are independent 1-
subgaussian random variables (by the assumption made in Theorem 2), we can show that Qk,n is
1/n-subgaussian (since it is the average of n 1-subgaussian random variables Buldygin & Kozachenko
(1980)). The Chernoff-Hoeffding bound for subgaussian random variables state that if random variable
X is σ2-subgaussian, we have Pr (X ≥ ε) ≤ exp

(
−ε2/(2σ2)

)
. Plug in Eqs. (42) and (43), we have

Pr (Qk∗,n ≤ µ∗ − eτ,n) ≤ 1/τ, (45)
Pr (Qk,n′ ≥ µk + eτ,n′) ≤ 1/τ. (46)

Next, we focus on Eq. (44):

µk + 2et,n > µ∗ ⇔ µk + 2

√
2 ln t

sk
> µ∗ ⇔

√
2 ln t

sk
>

∆k

2
⇔ sk <

8 ln t

∆2
k

.

Therefore, when n′ ≥
⌈

8 ln t
∆2
k

⌉
, Eq. (44) is guaranteed to be false. So we have

E [Tk(t)] ≤
⌈

8 ln t

∆2
k

⌉
+

t∑

τ=1

(Pr (Qk∗,n ≤ µ∗ − eτ,n) + Pr (Qk,n′ ≥ µk + eτ,n′))

≤
⌈

8 ln t

∆2
k

⌉
+

t∑

τ=1

2

τ

≤
(

8

∆2
k

+ 2

)
ln t+ 1.

Plugging this result in Eq. (40) gives the regret upper bound

Regret(t) ≤ RUCT :=
∑

k∈{1,...,K},k 6=k∗

[(
8

∆k
+ 2∆k

)
ln t+ ∆k

]
.

Next, we justify the cumulative regret upper bound of WU-UCT.

Formal proof of Theorem 2

Proof of Theorem 2. Before delving into the proof, we briefly review WU-UCT Liu et al. (2020).
WU-UCT constructs a global search tree that is operated only by the main/master process. The master
process repeatedly perform rollouts and assign simulation and expansion tasks to the workers and
collect results from them. Specifically, the main process performs selection with the modified tree
policy (14) (with the hyperparameter specified according to Table 2), where an incomplete update
process increments the incomplete visit count O(s0, ak) of the traversed nodes by one. Expansions
and simulations are done in parallel by the workers, and we refer readers interested in the details
to Liu et al. Liu et al. (2020). During backpropagation, an additional complete update process
decrements O(s, a) of the traversed nodes by one.

On the high level, WU-UCT has a parallel architecture similar to TreeP, where all statistics are
globally available (thus τsyn = 1). We start the proof by a high-level demonstration, and then follow
the key intuitions to formalize it.

26



Cost A: Oi* increment by
1 in (at most) these steps.

τ + tmax
d tττ − tmax

d τ − tmin
d

ConditionA: the observed
sample at time step 𝜏 is not i*.

Condition B: the union of [arm i* is not
pulled at step 𝜏] for all 𝜏 in this interval.

Effect of Oi* on the optimal armGeneral conditionA: if arm i* is pulled.

Figure 9: The influence of WU-UCT on the expected cumulative regret (comparing to the sequential
case) by pre-updating Oi∗ .

We argue that when dealing with the MAB problem, WU-UCT can be treated as a sequential
UCT where some of the observed samples are replaced by unobserved samples without actual
simulation return. First, note that with the help of the adjustment on the visit count (i.e., N(s0, ak) :=
N(s0, ak) +O(s0, ak)), at time step τ , we can upper bound Tk(t) by

Tk(t) ≤ l +

t∑

τ=K+1

1

[
Qτ−1(s0, ak∗) + eρ(τ),Nτ−1(s0,ak∗ ) ≤ Qτ−1(s0, ak) + eρ(τ),Nτ−1(s0,ak)

]
,

(47)

where ρ(τ) :=
∑K
k=1N(s0, ak) according to the tree policy defined by Eq. (14). By the definition

N(s0, ak) := N(s0, ak) +O(s0, ak) we can easily verify that ρ(τ) = τ : note that at the end of the
τ th rollout, there are τ assigned simulation tasks, and each task is either observed (is recorded in N )
or unobserved (is recorded in O). Therefore, we can rewrite Eq. (47) as

Tk(t) ≤ l +

t∑

τ=K+1

1

[
Qτ−1(s0, ak∗) + eτ,Nτ−1(s0,ak∗ ) ≤ Qτ−1(s0, ak) + eτ,Nτ−1(s0,ak)

]
. (48)

The key observation we want to emphasize here is that with the help of the adjustment on the
visit count (i.e., N(s0, ak) := N(s0, ak) +O(s0, ak)), the time step represented by ρ(τ) has been
calibrated to be the same with the sequential case, i.e., ρ(τ) := τ . In this way, as we shall proceed
to show, though according to Table 2, WU-UCT has τsim = M , it has vanishing regret. Under this
observation, the main difference between WU-UCT and the sequential UCT is that its value estimates
{Qτ (s0, ak)}Kk=1 are less informative compared to UCT. Specifically, for the incomplete simulations,
though N(s0, ak) is adjusted by O(s0, ak) and resemble the sequential case, these simulation returns
V̂ (sk) are not available and the variance of the estimate is relatively high compared to the sequential
algorithm. Keep in mind this similarity between WU-UCT and UCT. In the following, we analyze
the excess regret caused by the inaccurate Qτ (s0, ak).

Following Eq. (48), we have

Tk(t) ≤ l +

t∑

τ=K+1

1

[
Qτ−1(s0, ak∗) + eτ,Nτ−1(s0,ak∗ ) ≤ Qτ−1(s0, ak) + eτ,Nτ−1(s0,ak)

]

(a)

≤ l +

t∑

τ=K+1

1

[
Qτ−1(s0, ak∗) + eτ,Nτ−1(s0,ak∗ ) ≤ Qτ−1(s0, ak) + eτ,Nτ−1(s0,ak)

]

(b)

≤ l +

t∑

τ=1

max
n∈[1,τ−1]

max
n′∈[1,τ−1]

1

[
Qk∗,n + eτ,n+Oτ (s0,ak∗ ) ≤ Qk,n′ + eτ,n′+Oτ(s0,ak)

]

(c)

≤ l +

t∑

τ=1

max
n∈[1,τ−1]

max
n′∈[1,τ−1]

1

[
Qk∗,n + eτ,n+Oτ (s0,ak∗ ) ≤ Qk,n′ + eτ,n′

]
.

27



where (a) uses the fact that WU-UCT do not adjust the value (i.e. Q̃(s, a) = 0), which results
in Qτ−1(s0, ak∗) = Qτ−1(s0, ak∗); (b) largely follows Eq. (41), and (c) is based on the fact that
eτ,n1

> eτ,n2
(n1 < n2).

The main difference between the above upper bound and the corresponding upper bound of UCT
(Eq. (41)) is the potential lag in Q, i.e., it has Oτ (s0, ak) less observed value estimates V̂ (sk∗)
compared to that expected by the confidence interval c. Similar to Eqs. (42)-(44), the probability
of the event in the indicator function 1[·] can be bounded by the sum of the probability of the three
following events:

Qk∗,n ≤ µ∗ − eτ,n+Oτ (s0,ak∗ ), (49)

Qk,n′ ≥ µk + eτ,n′ , (50)
µ∗ < µk + 2eτ,n′ . (51)

Therefore, we only need to analysis the extra regret caused by Oτ (s0, ak∗) in Eq. (49). Specifically,
Figure 9 illustrate the affection on the regret caused by the existence of incomplete simulations (i.e.,
ongoing simulations whose return is currently unavailable) of the optimal arm. The remainder of the
proof uses the following definition.

Definition 1 (Simulation interval τsim). Between the period of a simulation task (s,m) being assigned
to a worker in the simulation step and being returned in the wait step (i.e. the simulation completes),
there are at most τ sim−1 and at least τ sim−1 other returned simulation result (s′, V, m̂) where
m̂=m.

In the case of WU-UCT, since the algorithm contains only one global search tree, τ sim and τ sim
measure the maximum and minimum rollout steps taken from a simulation task being assigned and
being returned.

As demonstrated by Figure 9, the main cost of the on-going simulations on the optimal arm is that it
make the value estimate Q less accurate, and there will be an underestimation on the upper confidence
bound since we shrinked the exploration term in 14 over-optimistically. Concretely, we formalize
the condition of the loss and the cost/effect of it. To have Oτ (s0, ak∗) increased at time step τ ,
the precondition should be that the arm k∗ is pulled at that time step (i.e., general condition A). In
addition to that, we have to make sure that the observed/returned task/simulation at time τ is not for
arm k∗ (i.e., condition A) since if that is the case, Oτ (s0, ak∗) would not change before and after
time τ , and thus no additional cost will be added. Since condition A is hard to directly quantify, we
instead rely on a looser condition that has guaranteed larger probability of it. Specifically, condition
B (Figure 9) is a quantifiable constraint that satisfies the above statement. Condition B is based on the
fact that only the tasks initiated between time τ − τ sim and τ − τ sim is possible to terminate at time
τ , where we define τ sim as the maximum simulation interval and τ sim as the minimum simulation
delay. To justify Pr(condition A) ≤ Pr(condition B), we can verify that the converse of condition B
(i.e., arm i∗ is pulled in all time steps between τ − τ sim and τ − τ sim. Without loss of generality, in
the following we assume the simulation interval is always equal to τsim.

Therefore, at an abstract level, the additional expected cumulative regret incurred by WU-UCT
compared to the (sequential) UCT can be written as:

Pr (General condition A) · Pr (Condition B) · Pr (Cost A) . (52)

We upper bound equation (52) by

Pr (Condition B) · Pr (Cost A) , (53)

We now consider each of the probabilities.

Condition B As hinted by the description of condition B in Figure 9, the probability of condition B
is upper bounded by

(τ sim − τ sim + 1) · max
τ0∈[τsim,τsim]

max
n∈[1,τ−1]

max
n′∈[1,τ−1]

{
Pr(Qk∗,n ≤ µ∗ − eτ−τ0,n)

+ Pr(Qk,n′ ≥ µk + eτ−τ0,n′)
}

≤2 · τ sim − τ sim + 1

τ − τ sim

(a)
=

2

τ − τsim
,

28



where (a) uses our assumption that τ sim = τ sim = τsim.15 Note that in this case we do not need
to consider the case where Oτ (s0, ak) > 0 since they are bounded by the cost A term in previous
time steps and would be redundant to consider again here. Specifically, the excess regret caused by
the on-going simulation at time step τ − τsim has been upper bounded by the cost A term in their
respective rollout step that they are initialized.

Cost A The cost here refers to the additional expected regret incurred by using the adjusted
confidence interval √

2 ln τ

Nτ (s0, ak∗) +Oτ (s0, ak∗)
(Oτ (s0, ak∗) > 0)

instead of the optimistic one (in the sequential case)
√

2 ln τ
Nτ (s0,ak∗ ) . Formally, cost A can be bounded

by

max
O∈[1,M−1]

τ+τsim∑

t=τ

max
n∈[1,τ−1]

max
n′∈[1,τ−1]

{
Pr(Qk∗,n+O ≤ µ∗ − et,n+O+1)

+ Pr(Qk,n′+O ≥ µk + et,n′+O+1)

− Pr(Qk∗,n+O ≤ µ∗ − et,n+O)

− Pr(Vk,s′+O ≥ µi + et,n′+O)
}

≤ max
O∈[1,M−1]

τ+τsim∑

t=τ

2
[
t−

O
O+1 − t−1

]

≤ 2

(
τsim√
τ
− τsim

τ

)
. (54)

Finally, we plug in the upper bounds of the conditions and costs into Eq. (53), which gives

4

τ − τsim

(
τsim√
τ
− τsim

τ

)
.

Finally, we upper bound the total cost incurred on E [Ti(t)] by
t∑

τ=d 8 ln t

∆2
i

e

4

τ − τsim

(
τsim√
τ
− τsim

τ

)
(55)

Since τsim is not dependent on t, there exists t∗ ∈ Z+ such that whenever t > t∗, we have
τsim < d 8 ln t

∆2
k
e / 2. Therefore, Eq. (55) is upper bounded by

4τsim

t∑

τ=d 8 ln t

∆2
k

e/2

[
1

τ
√
τ
− 1

τ2

]
≤ 2τsim

[
2

√
∆2
k

4 ln t
− ∆2

k

4 ln t

]
. (56)

Note that Eq. (48) is the regret bound of E[Tk(t)], plugging in Eq. (40) finishes the proof, that is, the
cumulative regret of WU-UCT on the MAB case is upper bounded by

RUCT(n) + 4τsim
∑

k:µk<µ∗

2∆k

√
∆2
k

4 lnn
.

Since in WU-UCT, τsim = M , the above quantity is equal to

RUCT(n) + 4M
∑

k:µk<µ∗

2∆k

√
∆2
k

4 lnn
.

15If this assumption does not hold, it will only add a constant term (independent to the number of rollout
steps) in the final regret, which will not affect our main result.

29



�̅�#∗(𝑠, 𝑎)

𝐺
(𝑠
,𝑎
)

𝐺
(𝑠
,𝑎
)

𝐺
(𝑠
,𝑎
)

�̅�*∗(𝑠, 𝑎) �̅�+∗(𝑠, 𝑎)

𝐺
(𝑠
,𝑎
)

�̅�,∗(𝑠, 𝑎)

Figure 10: Relation between four additional surrogate gaps (i.e., G
∗
1(s, a), G

∗
2(s, a), G

∗
3(s, a), and

G
∗
4(s, a)) and the action value gap (i.e., G(s, a)).

D ADDITIONAL DETAILS FOR BU-UCT

This section provides additional details of the BU-UCT algorithm, including an algorithm table
(Appendix D.1) and introduction of all its hyperparameters (Appendix D.2).

D.1 ALGORITHM TABLE FOR BU-UCT

The algorithm table of BU-UCT is provided in Algorithm 3.

D.2 HYPERPARAMETERS OF BU-UCT

The following provides a list of all hyperparameters in BU-UCT. We briefly discuss the recommended
values for each hyperparameter.

• mmax. mmax ∈ (0, 1) is the hyperparameter that controls the degree we penalize O. Specifically,
if an edge (s, a) has O(s, a) ≥ mmax ·M (M is the number of workers), action a will not be selected
by the tree policy when we are currently at node s. In our experiments, we choose mmax =0.8.

• Maximum tree depth/width. These hyperparameters should depend on the complexity of the tasks
as well as the total computation budget. In our experiments, both the maximum tree depth and the
maximum tree width are set to 100 and 20, respectively.

• Number of expansion/simulation workers. Expansion and simulation workers perform expansion
and simulation tasks, respectively. In our experiments, we use 1 expansion worker and 16 simulation
workers.

• The tree policy balancing factor c. c balance the exploration term (the second term) and the
exploitation term (the first term) in the tree policy (Eq. (1)). In our experiments, it is selected as the
standard deviation of the cumulative reward received by each node. For example, for node s, c is
computed by the standard deviation of all cumulative reward received by s (i.e., all V (s)).

E ALTERNATIVE SURROGATE STATISTICS

Figure 10 presents four surrogate gaps (i.e., G
∗
1(s, a), G

∗
2(s, a), G

∗
3(s, a), and G

∗
4(s, a)) that also

exhibit positive correlation with the action value gap G(s, a). G
∗
1(s, a), G

∗
2(s, a), and G

∗
3(s, a) all

exhibit positive correlation with the action value gap (although their fitness scores are worse than
G
∗
(s, a) introduced in the main text); G

∗
4(s, a) is a very related statistics of G

∗
(s, a) but it is not

correlated with G(s, a). Note that the surrogate gaps presented here are not exhaustive, and better
statistics with stronger correlation with the action value gap could exists. The goal of presenting
these additional gaps is to help inspire future work for designing more principled parallel MCTS
algorithms. In the following, we introduce the three surrogate gaps in detail.

• G∗1(s, a): G
∗
1(s, a) is the standard deviation of the n (the number of rollouts) simulation returns

related to the node s′ (the next state following (s, a)):

G
∗
1(s, a) := Std

[{
Vi(s

′)
}n
i=1

]
,

where Std[A] denotes the standard deviation of all values in the set A.

30



BA
A B C

𝑠′

𝑠#𝑠$ 𝑠%
A B C

𝑠′

𝑠#𝑠$ 𝑠%
After several
rollouts

After several
rollouts

C

𝑠′

𝑠#𝑠$ 𝑠%

𝑖 = 1 𝑖 = 1𝑖 = 𝑛 𝑖 = 𝑛Moderate 𝑂+(𝑠 -, 𝑎$) Large 𝑂+(𝑠 -, 𝑎#)

BA C

𝑠′

𝑠#𝑠$ 𝑠%

Figure 11: A key implication of the surrogate gap G
∗

introduced in the main text: high G
∗

potentially
indicates overly exploitation of some (suboptimal) child nodes.

• G∗2(s, a): Define Qi(s, a) as the modified action value related to the edge (s, a) at the ith rollout
step. G

∗
2(s, a) denotes the standard deviation of the n modified action values {Qi(s, a)}ni=1:

G
∗
2(s, a) := Std

[{
Qi(s, a)

}n
i=1

]
.

• G
∗
3(s, a): Similar to G

∗
1(s, a), G

∗
3(s, a) is the coefficient of variance (i.e., standard deviation

divided by mean) of the n simulation returns {Vi(s′)}ni=1:

G
∗
3(s, a) :=

Std
[{
Vi(s

′)
}n
i=1

]

Aveg
[{
Vi(s′)

}n
i=1

] ,

where Aveg[A] denotes the average of all values in the set A.

• G∗4(s, a): G
∗
4(s, a) is defined as follows

G
∗
4(s, a) := O(s, a) =

1

n

n∑

i=1

Oi(s
′, a′).

Despite its subtle difference with G
∗
(s, a) (recall that G

∗
(s, a) := maxa′∈AO(s′, a′), where s′ is

the next state following (s, a)), G
∗
4(s, a) is barely correlated with the action value gap G(s, a) while

G
∗
(s, a) has strong (positive) correlation with it. Therefore, we conclude being extensively simulated

by multiple workers does not necessarily results in high action value gap, which makes sense as the
optimal child should be extensively exploited; instead, it is the maximum O among its child nodes
that strongly correlates with G, which might suggests that how well the tree policy can properly
balance exploration and exploitation is of great importance. This point is further elaborated in the
following.

Consider the two example tree search processes shown in Figure 11. On the left side, if the child
nodes of s′ (i.e., s1, s2, and s3) are visited equally often at earlier stages (i.e., when s′ has been visit
for only a few times) and only start exploiting the nodes with higher action value (i.e., Q) after certain
number of rollouts, the statistics O(s′, ai) (i=1, 2, 3) will be relatively small since O is averaged
across different rollout steps (i.e., different i for Oi). Hence, in this case, the surrogate gap G

∗
(s, a)

((s, a) is the edge that lead to s′) will be relatively small, which suggests that the action value gap is
also small. This match our intuition since properly explore all child nodes before exploiting the best
one is beneficial and should lead to good performance. In contrast, consider a second case shown
on the right side of Figure 10. In this case, exploitation happens even at the very beginning stage.
The agent keeps assigning simulation tasks to query (offspring nodes of) s2. In this case, O(s′, a2)

is high according to its definition. This leads to high surrogate gap G
∗
(s, a), which suggests that

the performance on this node is less desirable compared to the previous example. In fact, exploit
certain nodes aggressively at earlier stages will cause other nodes under-explored, which makes the
agent unable to recognize which child node is the most rewarding. If the agent does not happen to
select the optimal node to exploit, it will fail to find an optimal action. Although implicit, the second
modification (i.e., modification #2) proposed by BU-UCT try to solve this problem by penalizing
over-exploitation (through lowering N ) in earlier stages.

Another advantage of BU-UCT’s second modification is to encourage the algorithm to search deeper
and wider. Again use Figure 10(left) as an example. For BU-UCT, if N(s′, s1)=m, then m distinct
offspring nodes of s1 have been assigned simulation tasks. However, for its base algorithm WU-UCT,
since s1 might be queried by multiple workers, it will have less than m distinct offspring nodes of s1

being assigned simulation tasks when N(s′, s1)=m. This allows BU-UCT to explore deeper and

31



Table 3: Speedup achieved by BU-UCT using 16 workers on 15 Atari games. Elapsed time represents
the average wall clock time to run a single tree search step (i.e., build a search tree with 128 rollouts).
Speedup is calculated by dividing the (average) elapsed time using 1 worker by the (average) elapsed
time using 16 workers.

Environment Elapsed time/s
(1 worker)

Elapsed time/s
(16 workers)

Speedup
(16 vs. 1 worker(s))

Alien 54.19 3.81 14.20
Boxing 54.71 3.55 15.37

Breakout 44.27 3.56 12.42
Centipede 50.18 3.34 15.01
Freeway 56.98 3.75 15.16
Gravitar 39.44 2.90 13.55

MsPacman 44.18 3.18 13.88
NameThisGame 43.36 3.06 14.13

RoadRunner 45.36 3.03 14.92
Robotank 54.08 3.80 14.19

Qbert 43.25 3.06 14.10
SpaceInvaders 45.11 3.14 14.36

Tennis 54.35 3.72 14.58
TimePilot 41.81 2.91 14.34
Zaxxon 46.09 3.09 14.88

potentially provide more accurate value estimate of s1 compared to WU-UCT. In an extreme case,
if WU-UCT assigns m workers to simulate s1, it can only obtain the simulation return at node s1,
which makes its action value Q(s′, a1) less accurate.

F ADDITIONAL DETAILS FOR EXPERIMENTS

This section provides additional experiment results and implementation details of the Atari exper-
iments. First, Appendix F.1 provides results of BU-UCT’s speedup test on 15 Atari games. Next,
Appendix F.2 describes additional implementation details of the Atari experiments. Finally, Ap-
pendix F.3 provides details regarding the demonstrative experiment in Figure 2(b) (i.e., average action
value gap vs. episode reward).

F.1 SPEEDUP TEST FOR BU-UCT

The speedup of BU-UCT with 16 workers compared to its sequential counterpart (i.e., 1 worker) is
shown in Table 3. Across 15 Atari games, BU-UCT achieves on average 14.33 times speedup using
16 workers, which suggests that BU-UCT can better retain the performance of UCT compared to the
baselines while achieving desired speedup.

F.2 EXPERIMENT DETAILS OF THE ATARI GAMES

MCTS simulation Each simulation worker is equipped with a pre-trained policy network (that
predicts π(a|s)) and a pre-trained value network (that estimate V (s)). Both networks are pre-trained
by the Proximal Policy Optimization (PPO) (Schulman et al., 2017) algorithm. Table 4 summarizes
the performance on the 15 Atari games using only the PPO policy. For a simulation started from
state s0, we use the PPO policy network to interact with the environment for 100 steps, which forms
a trajectory s0, a0, r0, s1, . . . , s99, a99, r99, s100. If the environment does not terminate, the full
simulation return is computed by the intermediate rewards plus the value of s100, i.e., the simulation
return is Rsim :=

∑99
i=0 γ

iri+γ
100V (s100). To reduce the variance of Monte Carlo sampling, we

average it with the value V (s0). The final simulation return is R :=0.5Rsim+0.5V (s0).

Hyperparameters and experiment details for BU-UCT For all parallel MCTS algorithms, we
choose the maximum tree depth/width as 100/20, respectively. The discount factor γ is set to
0.99 (note that the reported score is not discounted). Additional details regarding hyperparameters
are shown in Appendix D.2. Experiments are deployed on machines with 88 CPU cores and
8 NVIDIA R© P40 GPUs. To minimize speed fluctuation caused by difference in the machines’
workload, we ensure that the total number of processes is smaller than the total number of CPU cores.

32



Table 4: Performance of the PPO policy on 15 Atari games.
Environment PPO policy

Alien 850
Boxing 7

Breakout 191
Centipede 1701
Freeway 32
Gravitar 600

MsPacman 1860
NameThisGame 6354

RoadRunner 26600
Robotank 13

Qbert 12725
SpaceInvaders 1015

Tennis -10
TimePilot 4400
Zaxxon 3504

Hyperparameters and experiment details for baseline algorithms For WU-UCT (Liu et al., 2020),
we reuse their code provided on GitHub. We also reuse the implementation of the baseline algorithms
(i.e., VL-UCT, LeafP, and RootP) provided by Liu et al. (2020). All algorithms are implemented in
Python, especially utilizing its “multiprocessing” module. All hyperparametes of LeafP and RootP
have been covered in the previous paragraph. For VL-UCT, we report the better performance among
the following two hyperparameter setups: rV L=1.0 and rV L=5.0 (see Appendix A).

F.3 DETAILS FOR THE ACTION VALUE GAP VS. PERFORMANCE EXPERIMENTS

This section describes the experiment setup of the scatter plot between average action value gap and
episode reward (i.e., Figure 2(b)).

General setup Each node in the scatter plots represents a full run in the corresponding Atari
game. That is, at each time step, we use MCTS to plan for the best action to execute, until the game
terminates. Note that for each time step we need to construct a search tree and perform rollouts on it.

Average action value gap The reported average action value is averaged across (i) search trees
constructed at different time steps of the game, and (ii) (for a single search tree) the action value
gap G(s, a) with respect to different edges (s, a). Note that to minimize noise, we use a weighted
average over action value gap G(s, a) for different edges. The weight is the complete visit count of
that node (i.e., N(s, a)).

Episode reward We adopt the most common performance measure used in Atari — the episode
reward. It sums up the reward obtained at all time steps without discount.

Hyperparameters All experiments are run with a set of randomly selected hyperparameters. For
all algorithms, we randomly select the number of workers from the range [4, 32]. All experiments
perform in total 512 rollouts. A random default policy was used to reduce the time consumption.
Maximum depth/width of the search tree is 100/20. For hard virtual loss (see Appendix A), rV L is
selected from the range [0, 10]; for soft virtual loss, rV L is selected from the range [0, 20] and nV L is
selected from the range [1, 5].

G BU-UCT

Please refer to Algorithm 3 for an algorithm table of the proposed BU-UCT algorithm. In the
following, we formally introduce the two key ideas proposed by BU-UCT — thresholding O and
aggregating-and-backpropagating simulation returns.

Thresholding O We maintain an additional statistics O(s, a) (defined in Eq. (10)) for all edges
(s, a) in the search tree:

O(s, a) =
1

n

n∑

i=1

Oi(s
′, a′),

33



where n is the current number of rollouts and Oi(s, a) is the number of on-going simulations
associated with the edge (s, a) at the ith rollout step. O is maintained by the incomplete update
function (Algorithm 4, Line 5). This function is called whenever a simulation task has been assigned
to a worker, and is also used to update the incomplete visit count O(s, a). O is then used to adjust the
action value Q used by the selection step:

Q(s, a) :=Q(s, a)−∞·1
[
O(s, a)≥mmax ·M

]
(i.e., Eq. (11)).

Aggregating-and-backpropagating simulation returns If a node s is in its “earlier stages” (i.e.,
some of its children have not received simulation returns), BU-UCT aggregates the simulation
returns originated from each of its child node into a single simulation return. This is done by two
modifications in Algorithm 3. First, in the selection step (i.e., Algorithm 3, Line 5), whenever we are
at a node s that is in its “earlier stages” (i.e., ∃a∈A N(s, a)=0), then the visit count used in the tree
policy is set as 1 for all a ∈ A:

N(s, a) := 1.

Otherwise the visit count N(s, a) is the sum of complete and incomplete visit count of edge (s, a):

N(s, a) := N(s, a) +O(s, a).

The second modification is located in the complete update function (Algorithm 5), which is called
after a simulation has completed and is used to update node/edge statistics (i.e., the standard back-
propagation step). Specifically, as shown in Lines 8-11 of Algorithm 5, when all children of node s
have received at least one simulation return, we reset the complete visit count N of all child edges to
1:

∀a′ ∈ A N(s, a′)← 1.

34



Algorithm 3 BU-UCT
1: Input: environment emulator E , root tree node sroot, maximum simulation step Tmax, maximum simulation

depth dmax, number of expansion workers Nexp, and number of simulation workers Nsim

2: Initialize: expansion worker poolWexp, simulation worker poolWsim, game-state buffer B, t← 0, and
tcomplete ← 0

3: while tcomplete < Tmax do
4: # Selection
5: Traverse the tree top down from root node sroot with the tree policy shown below (i.e., Eq. (1)) until (i)

its depth greater than dmax, (ii) it is a leaf node, or (iii) it is a node that has not been fully expanded and
random() < 0.5. Specifically, when we are at node st, we select the following action at using the tree
policy:

at =argmax
a∈A

{
Q(st, a)+c

√
2 ln

∑
a′N(st,a′)

N(st, a)

}
(tree policy),

where Q(s, a) :=Q(s, a)−∞·1
[
O(s, a)≥mmax ·M

]
(i.e., Eq. (11)); N(s, a) :=N(s, a)+O(s, a) if

∀a∈A N(st, a) > 0 and otherwise N(s, a) := 1. After the selection step, we are at a leaf node s of the
search tree.

6: # Assign expension and simulation tasks
7: if expansion is required then
8: Assign expansion task (t, s) to poolWexp // t is the task index.
9: else

10: Assign simulation task (t, s) to poolWsim if episode not terminated
11: Call incomplete update(s); if episode terminated, also call complete update(t, s, 0.0)
12: end if
13: t← t+ 1 // Accumulate iteration count
14: # Fetch expansion tasks
15: ifWexp fully occupied then
16: Wait for a expansion task with return: (task index τ , current state s, expended action a, reward r,
17: expended state s′ (the next state following (s, a)), and terminal signal d); expand the tree according
18: to τ , s, a, s′, r, and d; assign simulation task (τ, s) to poolWsim

19: Call incomplete update(t, s)
20: else continue
21: # Fetch simulation tasks and backpropagate
22: ifWsim fully occupied then
23: Wait for a simulation task with return: (task index τ , node s, cumulative reward r̄)
24: Call complete update(τ, s, r̄); tcomplete ← tcomplete + 1
25: else continue
26: end while

Algorithm 4 incomplete update
1: input: node s
2: while n 6= null do
3: a← the previous action selected at this node
4: O(s, a)← O(s, a) + 1 // Update incomplete visit count
5: O(s, a)← N(s,a)−1

N(s,a)
O(s, a) + 1

N(s,a)
O(s, a) // Update average incomplete visit count

6: s← PR(s) // PR(s) denotes the parent node of s
7: end while

Algorithm 5 complete update
1: input: task index t, node s, reward r̄
2: while n 6= null do
3: Retrieve the selected action a and the corresponding reward r according to task index t
4: N(s, a)← N(s, a) + 1; O(s, a)← O(s, a)− 1 // Update complete and incomplete visit count
5: r̄ ← r + γr̄ // Calculate cumulative reward
6: Q(s, a)← N(s,a)−1

N(s,a)
Q(s, a) + 1

N(s,a)
r̄ // Update action value

7: s← PR(s) // PR(s) denotes the parent node of s
8: // Now all child nodes of s has at least one complete simulation return (note that this condition will

be satisfied only once for each node)
9: if N(s, a) = 1 && ∀a′∈A\{a} N(s, a′) > 0 then

10: ∀a′∈A N(s, a′)← 1
11: end if
12: end while

35


	Introduction
	Preliminary: MCTS and its Parallelization
	Overview of Our Main Theoretical Results
	Parallel MCTS: Theory and Implications
	What is Effective Parallel MCTS?
	When Will Excess Regret Vanish?
	Rethinking Existing Parallel MCTS Algorithms

	Theory in Practice: A Promising Study
	Related Works
	Conclusion
	Existing parallel MCTS algorithms
	VL-UCT and WU-UCT

	A General Framework for Parallel MCTS Algorithms
	Formal Introduction of The General Algorithm Framework
	Additional Details of the General Algorithm Framework
	Specialization of the General Framework into Existing Parallel MCTS Algorithms

	Proofs: Parallel Algorithms for Monte Carlo Tree Search
	The Necessary Conditions
	Theoretical Justification of WU-UCT

	Additional Details for BU-UCT
	Algorithm Table for BU-UCT
	Hyperparameters of BU-UCT

	Alternative Surrogate Statistics
	Additional Details for Experiments
	Speedup Test for BU-UCT
	Experiment Details of the Atari Games
	Details for the Action Value Gap vs. Performance Experiments

	BU-UCT

