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Abstract

This paper develops a novel methodology to simultaneously
learn a neural network and extract generalized logic rules.
Different from prior neural-symbolic methods that require
background knowledge and candidate logical rules to be pro-
vided, we aim to induce task semantics with minimal priors.
This is achieved by a two-step learning framework that it-
erates between optimizing neural predictions of task labels
and searching for a more accurate representation of the hid-
den task semantics. Notably, supervision works in both direc-
tions: (partially) induced task semantics guide the learning of
the neural network and induced neural predictions admit an
improved semantic representation. We demonstrate that our
proposed framework is capable of achieving superior out-
of-distribution generalization performance on two tasks: (i)
learning multi-digit addition, where it is trained on short se-
quences of digits and tested on long sequences of digits; (ii)
predicting the optimal action in the Tower of Hanoi, where
the model is challenged to discover a policy independent of
the number of disks in the puzzle.

1 Introduction
The recent rejuvenation of neural-symbolic synthesis
demonstrates that we can significantly benefit from a tight
integration of low-level perception and high-level reasoning
in tasks featuring out-of-distribution (OOD) generalization
(Manhaeve et al. 2018; Xu et al. 2018; Li and Srikumar
2019). It is especially the case on tasks whose semantics are
(implicitly) encoded as symbolic rules. Take the multi-digit
addition example shown in Fig. 1(left) as an example. Given
two numbers represented by a sequence of MNIST images,
the goal is to predict the sum of both numbers. Following
the orange arrows, it is possible to train neural nets (NNs) to
predict the sum directly. When the test sums are i.i.d. w.r.t.
the training samples, this task poses no challenge for NNs ei-
ther. However, the prediction accuracy could degrade if NNs
are provided with OOD samples (e.g., unseen combination
of digits or numbers with greater length). In contrast, from
a neural-symbolic perspective, we can adopt NNs to extract
invariant features z (in this case, the digit of every MNIST
image) first, and then employ logic rules for multi-digit addi-
tion to predict the sum. This model is more robust to various
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types of distribution shift of the input (e.g., longer numbers)
since the NN only needs to accurately predict the digit of
MNIST images and the addition rules are invariant to input
length.

Some prior work has success in addressing such an inte-
gration (Dai and Muggleton 2021). However, they often re-
quire abundant prior knowledge. Specifically, most of them
require the ground-truth symbolic knowledge to be pro-
vided (Yang, Ishay, and Lee 2020; Manhaeve et al. 2018).
In other word, such success has not been transferred to the
setting where priors on task semantics are limited or not
provided. We identify two challenges that hinder the devel-
opment of neural-symbolic models in this more generalized
setting. First, the lack of bidirectional supervision between
the neural and symbolic models poses great difficulties for
reliably learning meaningful symbolic features z. Specifi-
cally, an under-trained neural network cannot produce ac-
curate grounded facts for the symbolic model to learn logic
rules, and conversely, the symbolic model cannot provide ef-
fective supervision to refine the neural model. Existing ap-
proaches alleviate this problem by either providing strong
priors on the symbolic rules (Dai and Muggleton 2021;
Yang, Ishay, and Lee 2020) or learning symbolic models im-
plicitly (Wang et al. 2019; Amos and Kolter 2017), which
cannot deliver reliable reasoning results when facing out-of-
distribution samples. Next, even if supervision signals can
be properly propagated between the neural and symbolic
models, it is still possible that the NN predicts spurious fea-
tures, leading to bad generalization performance (an exam-
ple is provided in Sec. 6).

This paper makes an initial attempt to solve these crucial
yet under-explored problems. Both aforementioned chal-
lenges are mainly attributed to the gigantic set of candidate
rules considered by the symbolic model. In one direction, a
large number of plausible rules result in noisy update signals
to the NN. In the other direction, it is hard to search for good
symbolic rules from a vast candidate set. Instead of adding
prior knowledge to shrink the rule space, we propose to con-
trol the symbolic model’s complexity by gradually adding
plausible candidate rules with a symbolic search step. That
is, the model is first initialized with a few “general” rules.
After eliminating candidates that are very unlikely to hold,
we invoke the symbolic search algorithm to extend and spe-
cialize the remaining rules. This process continues until the
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Figure 1: Illustration of the multi-digit addition task (left) and the Tower of Hanoi optimal action prediction task (right).
Following the orange arrows, the output y of both tasks can be predicted end-to-end with NNs. However, the features captured
by such models are unlikely to generalize well to different scenarios (e.g., increased digit length and more disks in Hanoi).
Instead, following the blue arrows, NNs are used to capture invariant features z in the task, and then apply logical reasoning to
obtain the answer y. Accuracy will not degrade if z is invariant to the change of task scenarios.

model converges to a set of specific rules. To improve effec-
tiveness of the candidate set expansion procedure, we bor-
row wisdom from the knowledge compilation community,
and use Logic Circuits (LCs) (Darwiche 2011) to compactly
represent candidate rules. Rule expansion is done by effi-
cient structure learning of the LC. Further, by making use of
other properties of LCs (e.g., differentiability), we propose
NTOC , a neural-symbolic joint training method that learns
invariant features in the NN and generalizable task seman-
tics in the LC.

To understand when the proposed model can general-
ize well to unseen scenarios, we identify a special class
of OOD tasks. We show that the multi-digit addition task
and the Tower of Hanoi optimal action prediction task
shown in Fig. 1 fit in this class of OOD. Furthermore, we
demonstrate that our NTOC out-performs NNs and neural-
symbolic models on both tasks by a large margin.

2 Notation and OOD Generalization
Notation We write Boolean variables as uppercase letters
(e.g., X) and their assignments as lowercase letters (e.g., x).
Analogously, sets of Boolean variables and their joint as-
signments are denoted by bold uppercase (e.g., X) and low-
ercase (e.g., x) letters, respectively. Define the set of all val-
ues x for variables X as val(X). A literal represents a vari-
able (e.g., X) or its negation (e.g., ¬X). Propositional logic
formulas are constructed in the usual way, from literals and
logical connectives.

OOD Generalization Following Ye et al. (2021)’s for-
mulation, we consider supervised learning tasks where the
model has access to samples from a set of training do-
mains Etrain, while at test time it is required to make pre-
dictions on samples drawn from a set of test domains Etest.
For example, in the digit addition task (Fig. 1(left)), sam-
ples from Etrain and Etest may contain numbers with lengths
{2, 3} and {5, 6}, respectively. Similarly, in the Hanoi task
(Fig. 1(right)), samples from Etest may contain more disks
then those from Etrain. To achieve OOD generalization,
models need to extract features that are invariant across both
domains. However, since Etest is invisible during training, it
is impossible to achieve OOD generalization without proper
assumptions (Blanchard, Lee, and Scott 2011; Deshmukh
et al. 2019). One reasonable assumption is that features in-
variant across Etrain maintain their invariance in Etest. In-
tuitively, if the domains in Etrain and Etest share invariant

features, it is unlikely that spurious features that fail to gen-
eralize to test domains work well across all domains.

A Special Class This paper specifically considers OOD
tasks with a special type of invariant features; the features
are represented as a set of symbols, whose relation with the
output can be quantified by a set of logical rules. For ex-
ample, Fig. 1(right) illustrates the Tower of Hanoi problem,
where the task is to predict the next move given the current
state represented as a single image. One possible set of in-
variant features z consists of three boolean variables, each
representing the size relation between the top disks of two
pillars. They are invariant because NNs equipped with atten-
tion mechanism can learn to “focus on” the top disks regard-
less of the total number of disks. The features are symbolic
in the sense that there exits a set of logic rules that map them
to the optimal actions. We reveal the logical rules in Sec. 6.

3 Neural-Symbolic Joint Learning
This section elaborates the high-level design principles of
our proposed neural-symbolic joint learning framework. As
shown in Fig. 2(a), the joint learning model consists of a NN
fφ and a logical circuit model gθ, parameterized by φ and
θ, respectively. NN fφ maps input x to a |Z|-dimensional
vector pnn, where ∀i ∈ [|Z|], pnn

i denotes the probability
of variable Zi = true. Logic circuit (LC) gθ compactly
represents a set of weighted propositional logic rules, where
the weights characterizes the importance of the correspond-
ing rules. LC gθ takes pnn and y as inputs, and outputs a
scalar representing the probability of satisfaction. The LC as
a whole encodes potential task semantics between the NN
predicted features z and class labels y.

The training pipeline of the proposed model is illustrated
in Fig. 2(b). First, we train the NN with some primitive tasks,
such as teaching it size relationships between two disks in
the Hanoi problem. The pretraining step does not need to
teach the NN complete semantics of the input. And it is
used to provide a good initialization point to optimize the
neural-symbolic model.1 Afterwards, training proceeds by
iterating over the symbolic rule search and the neural model
learning steps, where the goal is to simultaneously learn
to predict invariant features z and induce the logical rules.
Among the three phases, the symbolic rule search step is
task-independent, while the others could be task-dependent.

1Alternative approaches such as loss that encourages large vari-
ance in z can be used in replacement of pretraining.
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Figure 2: Illustration of the proposed neural symbolic joint learning framework. (a) A NN fφ predicts the probability (i.e., pnn)
of a set of logical variables (i.e., Z). A symbolic model gθ termed Logic Circuit encodes logical constraints among variables
{Z,Y}, and outputs the SAT probability of (pnn,y). (b) The NN of the proposed framework is first pretrained with some
primitive tasks. Then, learning proceeds by iteratively updating learnable parameters φ and θ in the neural learning step and
searching a good structure of the Logic Circuit in the symbolic search step.

Specifically, the perception model needs to accommodate
the type of input data x (e.g., CNNs for images), and the
primitive pretraining task are designed to address the neces-
sary perception need of solving the task, with minimal prior
regarding the underlying invariance of the task (e.g., digit
classification for learning multi-digit addition, and disk size
comparison for tackling Hanoi).

3.1 Symbolic Rule Search

Given a set of probabilistic facts pnn predicted by the
NN and the corresponding labels y, we denote Dsym :=

{(pnn,(i),y(i))}Ni=1, where {(x(i),y(i))}Ni=1 are training
samples and pnn,(i) = fφ(x

(i)). The goal of the symbolic
rule search step is to adjust the set of rules (i.e., propositional
logic formulas) embedded in gθ such that (i) new rules satis-
fied by the samples in Dsym with high probability are added,
and (ii) rules that are strongly against Dsym are pruned away.

Concretely, Fig. 2(b) demonstrates an example where the
top logical model is transformed to the bottom one by con-
ducting structure search using Dsym. As shown on the right
side, both logical models can be written as parameterized
propositional logic formulas, which are equivalently ex-
pressed as the set of weighted logical formulas shown in the
respective boxes. Comparing the two rule sets, we observe
that this example structure search step adds two new rules.

Having demonstrated how to adjust embedded rules by
conducting structure search on the logical model, the next
immediate question is how to encourage the emergence of
good rules? Since good logic rules should be satisfied (with
high probability) by samples in Dsym, we define the objec-
tive as maximizing their probability of satisfaction, defined
via the Semantic Loss (Xu et al. 2018):

Definition 1 (Semantic Loss). For a set of Boolean vari-
ables Z, denote p as a |Z|-dimensional vector containing a
probability for each variable in Z, and α as a propositional
logic sentence over Z. The semantic loss between α and p

is defined as
Ls(α,p) := − log

∑
z|=α

∏
i:z|=Zi

pi

∏
j:z|=¬Zj

(1− pj), (1)

where |= denotes logical entailment. Logic sentence α en-
tails β iff all assignments that satisfy α also satisfy β.
Intuitively, Ls(α,p) becomes smaller as the prediction p
is closer to satisfying α, and Ls(α,p) reaches its mini-
mum 0 if p entails α. In the context of gθ and Dsym,
our goal is to add logic rules α with small semantic loss
Ls(α,Dsym) :=

∑
(pnn,y)∈Dsym

Ls(α ∧ y,pnn) to the LC
through some structure transformation steps.

However, minimizing the semantic loss alone does not
guarantee finding good symbolic rules since the semantic
loss does not control the specificity of the logic formula. For
example, if α models a tautology over Z, Ls(α,Dsym) re-
mains zero regardless of Dsym since any value z ∈ val(Z)
entails tautology. To avoid such trivial rules, we additionally
use the model count (i.e., number of satisfying assignments)
to control the specificity of the learned logic formula. In
summary, this step searches for logic formulas that (i) match
the dataset Dsym well and (ii) are specific enough (have rel-
atively low model count) to contain useful information. In
Sec. 5.1, we will demonstrate a practical implementation of
this symbolic search algorithm.

3.2 Neural Model Learning
As illustrated in Fig. 2(b), the neural learning step is respon-
sible for jointly optimizing the parameters in fφ and gθ. That
is, to adjust the NN to predict invariant features z while se-
lecting informative rules in the LC by maximizing its cor-
responding weight. Different from the well-studied task of
learning NNs under the supervision of groundtruth symbolic
knowledge (Manhaeve et al. 2018; Xu et al. 2018; Li and
Srikumar 2019; Xie et al. 2019), in the joint training frame-
work we do not have access to groundtruth rules. Instead,
the symbolic model gθ encodes a weighted set of rules. Con-
cretely, suppose gθ encodes k logic rules α1, . . . , αk, whose
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weights are θ1, . . . , θk, respectively.2 Both models are up-
dated by minimizing the following objective:

minimize
φ,θ

∑
(x,y)∈Dtrain

k∑
i=1

θi · Ls(αi ∧ y, fφ(x)), (2)

where
∑k

i=1 θi = 1. This objective is minimized when rules
αi closer to the (unknown) groundtruth have high weights,
and the neural network learns to predict ps that best sat-
isfy these “likely” rules. In this way, we cast the logic rule
selection problem into a continuous optimization problem.
In Sec. 5.2, we will concretize this idea by showing how the
rules are compactly represented and how to learn the weights
θ together with the parameters in the neural network.

4 Representation of the Symbolic Model
In this section, we first discuss the requirements on the sym-
bolic model posed by the symbolic rule search step and the
neural model learning step (Sec. 4.1). This motivates the use
of circuit representations, as they satisfy all requirements.
We then conclude this section with necessary backgrounds
on circuit representations (Sec. 4.2).

4.1 Key Requirements on the Symbolic Model
Firstly, a crucial requirement on implementing the sym-
bolic rule search algorithm is to efficiently compute both
search objectives: the semantic loss Ls(α,Dsym) and the
model count w.r.t. propositional logic sentence α. Exam-
ining the definition of semantic loss, we find that comput-
ing Ls(α,p) can be cast to a well-known automated reason-
ing task termed weighted model counting (WMC) (Chavira
and Darwiche 2008; Sang, Beame, and Kautz 2005a,b) that
generalizes model counting. Therefore, the first requirement
is reduced to efficient computation of WMC. Secondly, the
symbolic representation needs to be general enough to rep-
resent various logical sentences and flexible enough to sup-
port efficient search of new logical rules. Thirdly, in the neu-
ral model learning phase, we backpropagate the gradients
through the symbolic model to pnn to update the neural net-
work f . Therefore, we require the symbolic model’s objec-
tive (Eq. (2)) to be differentiable w.r.t. its input pnn.

Circuit representations (Darwiche 2011) satisfy all above
requirements. On the one hand, they can represent all possi-
ble propositional logical rules, and support linear-time (w.r.t.

2In LCs, the probability of a rule is implicitly defined by θ,
which allows us to represent exponentially many rules w.r.t. |θ|.

model size) computation of WMC. On the other hand, cir-
cuits are computation graphs with sum and product compu-
tational units, supporting gradient computation. We proceed
to formally introduce circuit representations.

4.2 Circuit Representations and the Computation
of Weighted Model Counting

Circuits represent functions, including logical sentences, as
(parametrized) computation graphs (Darwiche 2011; Dar-
wiche and Marquis 2002). By imposing different structural
constraints, circuits can compute various logical and prob-
abilistic queries efficiently. The basic syntax and semantics
of circuits are formalized in the following.

Definition 2 (Circuits). A circuit g(X) encodes a function
over X via a parametrized directed acyclic graph (DAG)
with a single root node nr. Similar to neural networks, every
node of the DAG defines a computational unit. Specifically,
each leaf node corresponds to an input unit represented by a
literal (e.g., X and ¬X), and each inner node n is either a
sum or product unit that receives inputs from its children, de-
noted in(n). Let p∈ [0, 1]|X| be a vector of probabilities for
variables X. The output gn(p) of each node n given input p
is defined recursively as

gn(p)=


hn(p) if n is an input unit,∑

c∈in(n) θn,c ·gc(p) if n is a sum unit,∏
c∈in(n) gc(p) if n is a product unit,

(3)

where hn is any univariate function defined by n, and θn,c
denotes the parameter corresponds to edge (n, c). In par-
ticular, Logic Circuits (LCs) are a subset of circuits where
hn(p) = pi if n encodes literal Xi and hn(p) = 1−pi if n
encodes literal ¬Xi. For ease of notation, we define gn(x)
as gn(p

x), where px
i = 1 for all i such that x |= Xi and

px
i =0 if x |=¬Xi. The size of a circuit g, denoted |g|, is the

number of edges in its DAG.

This paper focuses on LCs that (i) represents a set
of weighted logic formulas and (ii) supports linear time
(w.r.t. |g|) computation of arbitrary weighted model count-
ing queries.3 For example, the LC shown in Fig. 3 represents
the formula X3⇐(X1∧¬X2)∨(¬X1∧X2). By slightly abus-
ing notation, for any LC gn, we write x |= gn if x entails
the logic formula of gn. The WMC of gn w.r.t. weights p,
formally defined as

∑
x|=gn

∏
i:x|=Xi

pi

∏
j:x|=¬Xj

(1−pj),
can be computed by a feedforward evaluation of gn fol-
lowing Eq. (3) (Kimmig, Broeck, and De Raedt 2012). For
instance, the WMC between the LC in Fig. 3 and p =
[0.6, 0.8, 0.5] is 0.72. Since the semantic loss between gn
and p is the negative logarithm of the corresponding WMC,
it can also be computed efficiently. Additionally, since the
feedforward computation consists of only additions and
multiplications, the gradient ∇pL

s(gn,p) can be computed
by backpropagating through the DAG of gn.

3For (ii) to hold, circuits must be both decomposable and de-
terministic. We kindly refer readers to (Darwiche 2011), who are
interested in why these two properties are necessary.



X2 ¬X2

X1 ¬X1

m

n

(a) (b)

SPLIT(g, m, n, X2)

X2 ¬X2

X1 ¬X1

m

n2n1

Figure 4: An example of the SPLIT operation.
Algorithm 1: Symbolic Rule Search

1: Input: A dataset of probabilistic facts Dsym = {p(i)}Ni=1
2: Output: A logic circuit g
3: Initialize: g as a LC representing tautology
4: while termination conditions not met do
5: (m,n), v ← select an edge and a variable to SPLIT
6: g ← SPLIT(g,m, n, v)
7: Prune worlds in g that do not explain Dsym

8: end while

5 Practical Implementation
This section introduces the implementation details of our
proposed algorithm Neural to Circuit (NTOC). Details of
the symbolic rule search and the neural model learning al-
gorithms are provided in Sec. 5.1 and 5.2, respectively.

5.1 Symbolic Rule Search as Structure Learning
Recall the symbolic rule search step aims to find proposi-
tional logic rules that best explain the dataset Dsym. Dif-
ferent from existing approaches that select a good subset of
predefined rules, we directly learn a good LC gθ. This avoids
the need to provide task-specific background knowledge and
allows us to explicitly control the balance between how well
samples in Dsym satisfy g (i.e., Ls(g,Dsym)) and the speci-
ficity of g (i.e., its model count).

The proposed symbolic rule search algorithm (Alg. 1)
takes Dsym as input, and returns a LC representing the logic
rules. The algorithm starts with a LC that represents tautol-
ogy (line 3). At this point, the semantic loss Ls(g,Dsym)=0
and the model count of g is at its maximum. Alg. 1 then iter-
atively restricts g by pruning worlds w that are likely untrue.
This will lead to increase of the semantic loss and decrease
of the model count. The goal here is to prune worlds with a
good strategy to minimize the increase of Ls(g,Dsym) (i.e.,
maintain the correctness of the rules) while maximize the
decrease in model count (i.e., improve rule completeness).

Iterative pruning relies on the fact that every node n in a
LC corresponds to a logic sentence αn, thus pruning a node
is equivalent to discarding the worlds that entail αn. The
main loop (lines 4-8) consists of two key steps: (i) apply
transformations to the LC to expose prunable nodes (lines
5-6), and (ii) prune nodes by predefined criterions (line 7).
We proceed to describe both steps in detail.4

Step #1: SPLIT We use the SPLIT circuit transformation
(Liang, Bekker, and Van den Broeck 2017) to discover can-
didate nodes for pruning. Specifically, SPLIT takes as input
an edge (m,n) (m is a parent of n; m is a sum unit and n
is a product unit) and a variable X ∈ϕ(n), where ϕ(n), the
scope of n, is defined as the collection of variables defined
by all its descendent input nodes. Suppose n represents logic

4Details such as hyperparameters are given in Appx. A.1.

sentence αn, SPLIT first constructs two product units n1 and
n2, which represent αn∧X and αn∧¬X , respectively. The
algorithm then replaces (m,n) with two edges (m,n1) and
(m,n2). As an example, after applying SPLIT to the LC in
Fig. 4(a) w.r.t. (m,n) and X2, the circuit is transformed to
the one shown in Fig. 4(b). Since αn=(αn∧X)∨(αn∧¬X),
SPLIT does not change the LC’s semantics.
SPLIT can generate prunable units in the LC. Consider

again the example in Fig. 4. If the groundtruth sentence is
β = ¬X1∨¬X2, it is impossible to obtain a corresponding
LC by pruning nodes from the LC in Fig. 4(a), since we
cannot only eliminate the world ¬β = X1∧X2. However,
after SPLIT, we can eliminate X1∧X2 by pruning away n1.

Another key process in this step is to select which edge
and variable to SPLIT. Specifically, we select SPLIT candi-
dates by assigning a score to each edge-variable pair, and
choose the candidate with the highest score. The score is the
multiplication of two values: one measuring the number of
samples in Dsym that “activate” the edge, and the other esti-
mating the information gain of the split.

Step #2: node pruning We eliminate worlds from g via
two criterions. The first is to prune away units that almost
do not satisfy any sample. That is, the change in Ls(g,p)
is small for (almost) all samples. To accelerate the pruning
algorithm, we use a second criterion termed prune by con-
junction. Specifically, for unit n in LC g, denote g′ as the
LC obtained by conjoining n with a literal (e.g., X , ¬X).
If Ls(g′,p)−Ls(g,p) is small for (almost) all samples, we
eliminate worlds from g by conjoining n with the literal.

Termination conditions The trade-off between the ac-
curacy and specificity of the learned rules is controlled by
the termination condition. Specifically, define the improve-
ment of g′ over g as

I(g, g′) :=
Ls(g′,Dsym)− Ls(g,Dsym)

MC(g)− MC(g′)
,

which measures the increase in semantic loss per decrease in
model count. The smaller I(g, g′) is, the better the quality of
the transformation from g to g′, as it significantly decreases
the model count while not increasing the semantic loss by
too much. Define g0 as the initial LC representing tautol-
ogy and gt as the circuit learned at iteration t. We terminate
Alg. 1 at step t if I(gt−1, gt) > d · I(g0, gt), where d is a
hyperparameter chosen as 5 in all our experiments.

Computational complexity Since WMC is #P-
hard in general, for tasks with complex underlying logic
rules, neural-symbolic methods that explicitly use these
groundtruth rules (Manhaeve et al. 2018; Xu et al. 2018)
could be extremely slow for computing the semantic loss,
which makes them less scalable when facing such tasks. In
contrast, NTOC can gradually search for good approxima-
tions of the groundtruth rules, achieving a better balance be-
tween rule correctness and computational complexity.

5.2 NN Learning using Probabilistic Logic
Given task semantics represented by LC g, the neural model
learning step aims to maximize the probability of pnn sat-
isfying g∧y, where pnn is a vector of probabilities for z
and is the output of neural network f . That is, the goal is
to minimize the semantic loss Ls(g ∧ y,pnn), which can be



optimized by gradient-based algorithms since ∇pnnLs(g ∧
y,pnn) can be computed efficiently.

When the LC is learned from data and prone to error,
directly minimizing the semantic loss could lead to catas-
trophic failure. Take the two-digit addition task illustrated
in Sec. 2 as an example. Denote z1 and z2 as the symbolic
representations of both images, respectively. Suppose that in
addition to the groundtruth addition rules, g contains the fol-
lowing rule: (z1=“digit 0”)∧ (z2=“digit 0”). g is still cor-
rect in the sense that if the neural network correctly learns to
classify all digits, the semantic loss can still converge to its
minimum 0. However, in practice, minimizing the semantic
loss will likely lead to the trivial solution of predicting all
images as digit 0, which also minimizes the semantic loss.

To avoid such local minima, we make use of the fact that
for each z∈val(Z), only one y∈val(Y) is true. Specifically,
we enforce this constraint by maximizing the following ob-
jective: −Ls(g ∧ y,pnn)

log
∑

y′∈val(Y) exp(−Ls(g ∧ y′,pnn))
, (4)

which pushes pnn to satisfy g∧y (y is the label) but not g∧y′

(∀y′∈val(Y),y′ ̸=y).
While the above objective can avoid NN from being

trapped in certain local optima, neural learning could still
fail if g is not informative (e.g., it is a tautology). Fortu-
nately, since in this case the logic rules are often too gen-
eral, it is likely that the groundtruth logic sentence α∗ entails
g. That is, following the main idea in Sec. 3.2, if we prop-
erly select a set of sentences {αi}ki=1 that contains close-
to-optimal ones, we can jointly refine logic rules g and the
neural network f .

For LCs, learnable parameters are assigned to the edge
weights θn,c defined in Def. 2. Denote the equivalent logi-
cal formula of LC unit n as αn. Since the LCs we learn are
deterministic, for every sum unit n, the logic formulas of
its children, i.e., {αc : c ∈ in(n)}, are mutually exclusive:
∀c1, c2 ∈ in(n)(c1 ̸= c2), αc1 ∧αc2 = false. According to
Def. 2, the edge weights of n (i.e., {θn,c : c ∈ in(n)}) sum
up to 1. By making analogy with Eq. (2), each edge param-
eter θn,c can be viewed as the weights associated with logic
formula αc. Therefore, circuit representations provide a nat-
ural way to incorporate learnable parameters that weight the
logical formulas. Joint learning of the LC weights and the
NN parameters are simple, since parameterized LCs are still
differentiable, and the LC weights can be learned via well-
developed EM algorithms (Liu and Van den Broeck 2021).

A final question is which LC units should we weigh.
While it is possible to weigh all edges, adding too many
weights in the LC could render the learning process unsta-
ble. We choose to add learnable parameters to every sum
unit n whose scope ϕ(n) is Y, for the following reason. In
classification tasks, for any z∈val(Z), only one y∈val(Y)
holds. Therefore, adding weights to LC unit n with scope
Y allows the model to select a correct y that satisfies the
groundtruth constraint α∗.

In summary, given a LC g learned in the symbolic rule
search step, we first add learnable weights to g. We then
jointly optimize the LC weights and the neural network’s
parameters by maximizing Eq. (4).

6 Experiments
In this section, we evaluate the proposed NTOC model on
the multi-digit addition task and the Tower of Hanoi action
prediction task.5 In both tasks, we evaluate the model’s abil-
ity to (i) simultaneously training neural networks and ex-
tracting task semantics, and (ii) learn invariant features z
that generalize well across various test domains.

Baselines We compare the proposed model against two
NN models, LSTM (Sak, Senior, and Beaufays 2014) and
DNC (Graves et al. 2016), and a neural-symbolic model
DeepProbLog (Manhaeve et al. 2018). Both NN models
are selected for their ability to handle sequential predic-
tion tasks. Although not designed for joint training tasks,
DeepProbLog is considered as the SoTA approach in neural-
symbolic tasks such as injecting knowledge to NNs and in-
duce symbolic rules. Note that in the experiments, Deep-
ProbLog is additionally provided with the groundtruth logic
rules. Hence, it is considered as a loose performance upper
bound of other approaches. Appx. B describes the imple-
mentation details of the considered baselines. Additionally,
since some neural-symbolic models such as OptNet (Amos
and Kolter 2017) do not fit both tasks, we run additional
tasks in Appx. C to compare against these models.

Multi-digit addition Models are only informed that the
task has a recursive structure; except DeepProbLog, no con-
sidered model is provided with the multi-digit addition rules.
Specifically, the recursion prior is informed by first feeding
the two images corresponding to the ones place of the input
numbers to predict the output number’s ones place, followed
by feeding the images for the tens place, hundreds place,
etc. For NTOC, we use auxiliary variables, denoted Zin and
Zout, to carry memory across time steps. Specifically, zin

and zout are the input auxiliary variables from the previous
time step and fed to the next time step, respectively. For all
methods, 100 MNIST images are given for pretraining.

We challenge all models by training the models on num-
bers of length 3 and test them with numbers of length 5-20.
As shown in Tab. 1, NTOC achieves significantly better than
non-symbolic models (i.e., LSTM and DNC). Moreover,
NTOC is on-par with DeepProbLog, where the groundtruth
multi-digit addition rules are explicitly given. To trace the
source of error, we additionally evaluate all models with
numbers consist of MNIST images from the training set.
This bridges the generalization gap towards unseen digit im-
ages and directly challenges the model’s ability to learn gen-
eralizable addition rules. Results show that NTOC still out-
performs all baselines with no provided groundtruth task se-
mantics, which shows that the NTOC is able to learn gen-
eralizable symbolic rules. Moreover, we find that the main
error source of NTOC comes from the perception part, i.e.,
the misclassifications made by the NN.

Another benefit of NTOC is its speed. Existing neural-
symbolic approaches such as DeepProbLog and ∂ILP
(Evans and Grefenstette 2018) require a compilation step
to convert their symbolic models to low-level computation
modules, which takes hours or days even for very simple
tasks. In contrast, since LCs are represented as computation

5Our code can be found at https://github.com/sbx126/NToC.



Table 1: OOD performance (± std over 10 runs) on the multi-digit addition and Tower of Hanoi tasks. NTOC is compared
against two NN-based models (LSTM and DNC) and a neural-symbolic approach DeepProbLog). † Note that DeepProbLog is
additionally provided with groundtruth logical rules, and is considered as the performance upper-bound of other approaches.
Multi-digit addition: different configurations for digit number generalization and sequence length generalization. Tower of
Hanoi: a suit of different configurations for disks number generalization and movement-steps length generalization. Numbers
are sequence accuracies, i.e., the fraction of correctly predicted sequences.

Model Multi-digit addition [test seq length + train/test img] Tower of Hanoi

5 w/ test 10 w/ test 20 w/ test 5 w/ train 10 w/ train 20 w/ train Task #1 Task #2 Task #3

DeepProbLog† 89.68±1.34 80.87±2.32 timeout 95.16±0.81 90.59±1.41 timeout 89.01±1.36 96.69±0.39 88.37±1.29

LSTM 81.61±2.54 61.13±4.71 35.06±5.69 91.94±1.66 80.31±3.15 60.68±5.94 79.29±2.78 91.09±1.41 73.61±3.43
DNC 87.64±0.37 74.78±1.00 57.09±1.39 93.10±1.45 85.52±2.46 73.28±4.13 66.71±0.54 94.57±1.38 65.35±1.77
NTOC(ours) 91.20±0.73 82.93±1.95 68.60±3.14 97.90±0.29 95.79±0.53 91.92±0.99 86.07±0.28 94.82±0.19 84.32±0.41

graph, NTOC is free from compilation and can handle prob-
lems with many variables.

Tower of Hanoi optimal action prediction The goal of
this task is to predict the optimal next move given a game
state. As determined by the nature of the game, algorithms
need to select particular symbols to achieve good generaliza-
tion performance. We would like to reiterate that compared
to the previous task, only the perception model and primi-
tive task are different here. As illustrated by Fig. 1(right),
despite the different visual appearances of Hanoi states with
different number of disks, an invariant policy can be found
if the NN learns to always compare the size of the top disk
on each pillar.6 This experiment challenges the models to
automatically discover such an invariant policy without di-
rect supervision. In the pretraining step, we give 500 sam-
ples to teach the model to compare between disk sizes. For
every sample, each pillar contains at most one disk, so it
is impossible to learn the invariant feature solely from pre-
training. Furthermore, to ensure we are evaluating different
method’ ability to discover invariant features and policies,
we only provide 1,000 training samples, while testing them
on 10,000 samples. With this huge size difference between
training and testing set, no considered method can resort to
the shortcut of trying to remember Hanoi state-action pairs.

We use three types of OOD settings: #1 (# disk general-
ization): game states with 5 disks are used for training while
test samples contain 7 or 9 disks; #2 (sequence length gener-
alization): models are trained on sequences of length 3 and
tested on sequences of length 5; #3 (both): combination of
#1 and #2. Setting #2 is the simplest in terms of general-
ization, as spurious features could still help. In contrast, set-
tings #1 and #3, which require the the model to generalize to
more game states with more disks, are more appropriate test-
ing beds to test method’s ability to discover invariance. As
shown in Tab. 1, our proposed method NTOC out-performs
all baselines in all three settings. The lead is especially sig-
nificant on settings #1 and #3.

Interpretability An additional benefit of using explicit
logical models is interpretability. We examine the learned
circuit on Hanoi, and find that the optimal actions are only
related to the size relationship of top disks, and the last ac-
tion. By summarizing the learned rules, we interpret the ac-

6We use MNIST images in place of disks; disk sizes are repre-
sented by different MNIST digits.

tion policy as the following. Alternate actions between the
smallest disk and a non-smallest disk. When moving the
smallest disk, always move it to the left. If the smallest disk
is on the first pillar, move it to the third one. When moving
the non-smallest disk, take the only valid action. Details of
the circuit and its relation to this policy is shown in Appx. D.

7 Related Work and Conclusion
The integration of perception and symbolic reasoning has
been considered as a key challenge in machine learning
(Mattei and Walsh 2013; De Raedt et al. 2021; Garcez et al.
2019). A well-studied task in neural-symbolic computation
is to inject prior task semantics, often represented as logical
rules, into neural networks. E.g., Manhaeve et al. (2018) and
Xu et al. (2018) use techniques from knowledge representa-
tion to convert symbolic knowledge into differentiable rep-
resentations, and use these symbolic models to refine NNs.

When such priors do not exist, neural-symbolic algo-
rithms seek to learn the knowledge either explicitly or im-
plicitly. Specifically, implicit neural-symbolic models use
differentiable layers with logic-related inductive biases to
infer symbolic rules. For instance, Wang et al. (2019) in-
troduces a differentiable SAT solver to find the logical rules;
Dong et al. (2018) designs a neural network layer that mim-
ics the forward chaining procedure of first-order logic. How-
ever, since the reasoning process of these models are prone
to noise, they tend to suffer in OOD generalization. In con-
trast, some other approaches use informed search strategies
to find an informative set of rules that best explain the sym-
bols predicted by the neural network (Dai and Muggleton
2021; Yang, Ishay, and Lee 2020), though they often require
background knowledge written in the form of logical pro-
grams. ∂ILP (Evans and Grefenstette 2018) assigns learn-
able weights to a set of given rules, and uses a differen-
tiable forward chaining algorithm to learn the rules. How-
ever, ∂ILP requires accurate candidate rules and sufficient
negative samples, which are often hard to specify in prac-
tice. Another line of efforts show that non-symbolic models
are capable of solving certain neural-symbolic tasks (Cog-
nolato and Testolin 2022).

Different from all these existing approaches, our proposed
algorithm NTOC learns explicit symbolic rules without as-
suming the existence of background knowledge or candidate
rules. We show that the proposed model exhibits good out-
of-distribution generalization on two neural-symbolic tasks.
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Supplementary Material
A Details of the Proposed Neural-Symbolic Joint Learning Algorithm

This section provides additional details on the proposed symbolic rule search algorithm (Appx. A.1) and the neural model
learning algorithm (Appx. A.2).

A.1 The Symbolic Rule Search Algorithm
This section provides additional details on (i) how to select split candidates (Alg. 1, line 5) and (ii) the criterions for pruning
worlds in the LC (Alg. 1, line 7). Before that, we introduce the node flow of circuits, which is an important concept repeatedly
used in the rule search algorithm.
Definition 3 (Circuit flows). The node flow Fn(p) of every unit n in a circuit g is defined in a top-down manner: for the base
case, flow of the root node nr is defined as gnr (p). For every other node n, its flow is the sum of flows cumulated from all its
parents, denoted pa(n):

Fn(p) =
∑

m∈pa(n)

Fm,n(p), where Fm,n(p) =

{
Fm(p) · gn(p)·θm,n

gm(p) if m is a sum unit,
Fm(p) if m is a product unit.

Intuitively, Fn(p) denotes the contribution of n to the final value of g (i.e., gnr
(p)). That is, how much will gnr

(p) decrease
if n is removed from g.

Selecting SPLIT candidates We assign each candidate a score and select the SPLIT candidate with the maximum score.
Given dataset D = {p(i)}Ni=1, the score of each candidate (m,n,X) ((m,n) is an edge and X is a variable) is defined as

score(m,n,X) :=−
( N∑

i=1

Fm,n(p
(i))

)
·
(
pX log pX + (1−pX) log(1−pX)

)
,

where pX =

∑N
i=1 Fm,n(p

(i))·p(j)
X∑N

j=1 Fm,n(p(j))
.

The first term measures the “importance” of (m,n): if the edge is removed, how much will the value
∑N

i=1 g(p
(i)) decrease.

The second term estimates the information gain of splitting over (m,n,X). Intuitively, if the value of X for every sample p(i)

that “activates” (m,n) (with high edge flow) is close to 0 or 1, splitting (m,n,X) does not effectively separate the samples to
the two generated edges.

Circuit node pruning We adopt the two following criterions to prune worlds from LC g.
• For a node n in g, if the flow of most (≥ 1 − ϵ, where ϵ is a hyperparameter) samples are b-times smaller than the

average sample likelihood, we prune away this node. Here, ϵ and b are hyperparameters, and we fix ϵ = 0.002 and b = 2 for all
experiments.

• For each node n, node Dn as the collection of samples p such that Fn(p) is greater than 1/b times the average sample
likelihood. For any variable X , if most (≥ 1 − ϵ) samples in Dn have pX > 1 − η (resp. pX < η), we prune away worlds by
replacing n with the conjunction of n and X (resp. ¬X).

Computational complexity As mentioned in the last paragraph of Sec. 5.1, although each step in Alg. 1 takes linear time,
like most other learning tasks (e.g., finding the optimal parameters of a NN), finding the optimal LC that encodes the correct
logic formula is still NP-hard in general. In our experiments, we have shown that NTOC is able to discover the logic rules for
the multi-digit addition task and the Hanoi task. Although it might be hard to figure out very complex rules, NTOC is able to
effectively incorporate prior knowledge about the logic rules by using task-specific LC structures to improve search efficiency.
We will leave this to future work.

A.2 The Neural Model Learning Algorithm
This section provides additional details to the neural model learning algorithm. Specifically, we use expected flows (Choi, Dang,
and Van den Broeck 2021) to compute the target for EM updates, and use a step size of 0.02.

B Implementation Details
This section describes implementation details of the baseline models. Note that for all method, structure of the perception
network (i.e., the model that takes x as input and predicts z) is the same as used by NTOC , and only the symbolic model (i.e.,
the model that takes z as input and predicts y) is changed.

LSTM We use the standard LSTM layer in PyTorch with hidden dimension 40. The output of the LSTM is then connected to
a 2-layer MLP classifier to predict y. For the Tower of Hanoi task, we initialize the hidden state of the LSTM using embeddings
(i.e., nn.Embedding) obtained with the action that leads to the initial game state.



Table 2: Single-digit addition results. Test set accuracy on balanced/imbalanced training datasets with various sample sizes
(2000-20000). MLP refers to a 3-layer multi-layer perceptron; DeepPL stands for DeepProbLog (Manhaeve et al. 2018); OPT
denotes OPTNET (Amos and Kolter 2017); NToC stands for our proposed method NTOC. Different from the three other
models, DeepProbLog additionally takes the groundtruth symbolic knowledge as input. Therefore, its accuracies are considered
as the upper-bound for other approaches, including NTOC.

# samples Balanced data Imbalanced data

MLP OPT DeepPL NToC MLP OPT DeepPL NToC

2000 91.00±0.59 80.10±5.25 93.21±0.38 92.26±0.51 90.10±0.82 73.49±5.69 91.89±0.73 92.13±0.74
5000 94.59±0.40 90.20±1.25 95.30±0.29 94.98±0.27 94.01±0.37 77.58±5.53 94.33±0.28 94.73±0.39
10000 95.61±0.14 92.92±0.29 97.01±0.14 96.17±0.37 95.43±0.12 86.29±1.26 95.70±0.23 96.08±0.21
20000 96.31±0.13 95.09±0.29 97.00±0.01 96.75±0.34 96.11±0.18 92.65±2.51 96.79±0.02 96.63±0.14

DNC We use the code repository from https://github.com/RobertCsordas/dnc. Specifically, we use the LSTM controller
whose hyperparameters are taken from the LSTM model described above. We found most other hyperparameters (e.g., number
of read/write heads) insensitive to the overall performance. Therefore, other hyperparameters are set to the default value as
suggested in the repository. Additionally, we also initialize the memory of the DNC using embeddings of the last action for the
Tower of Hanoi task.

Deepproblog We use the author-provided code from https://github.com/ML-KULeuven/deepproblog.
OPTNET We perform all experiments with the following official code https://github.com/locuslab/optnet. We set

nHidden=40 and all other hyperparameters are kept as default.
NTOC For all experiments, NToC uses the Adam optimizer with learning rate 1e-3. For the multi-digit addition task, we

used a simple CNN with two Conv-ReLU-MaxPool blocks (hidden size 32 and 64, respectively), together with an FC layer to
map the input to the 10-dimensional Z. For the Hanoi task, all models (including baselines) use a CNN+attention model: first a
three-layer CNN is used to process visual features (hidden size 32, 64, 64), then a single multi-headed Attention layer is used
to enable to network to focus on specific parts of the input.

Hardware specifications All experiments are done on a workstation with 32 CPUs, 64 GB memory, and one 3090 GPU.

C Additional Experiments
Due to the sequential nature of the tasks in Sec. 6, some existing neural-symbolic approaches cannot be applied directly.
Therefore, we create a single-digit version of the MNIST addition task described in the paper. Specifically, the input x consists
of two MNIST images, and the label is their sum. We challenge the algorithms from two aspects — their sample complexity
and robustness to unseen digit combinations. Specifically, to examine the models’ sample complexity, we created four training
sets, with 2,000, 5,000, 10,000, and 20,000 samples, respectively. To examine the models’ ability to generalize to unseen digit
combinations, we additionally create four imbalanced datasets, where for all samples, the digit of the first MNIST image is
larger than or equal to that of the second image. As shown in Tab. 2, in all settings, NTOC out-performs MLP and OPT, and
performs on-par compared to DeepProbLog. This suggests that NTOC is capable of performing neural-symbolic joint learning
and generalize to rarely-observed digit combinations.

To further challenge the ability of NTOC to learn generalizable logic rules with minimum pretraining signal, we design the
following variant of the Hanoi task. Specifically, during pretraining, we only provide the model with two MNIST digits arranged
side-by-side on the input image, and train the neural network to predict whether the left digit is larger than the right digit. Since
we need at least six symbols to accomplish the Hanoi task, we replace the final classification layer of the NN with a randomly
initialized fully-connected layer with 6 outputs. In this setting, the pretraining task only teaches the NN to compare two digits,
and no information about which digits should be compared is implied in the pretraining step. Similar to the experiments in the
main paper, after pretraining, we train all models using game states with 2 disks and test them with game states containing 3
disks. Additionally, models are trained on sequences of length 2 and tested on sequences of length 5. As shown in the following
table, NTOC maintains its superior performance even under this more challenging setting.

Model NTOC(ours) LSTM DNC
Test accuracy 77.05±2.60 62.88±2.14 61.29±1.02

D Learned Circuit Representations of Task Semantics
In this section, we visualize and briefly describe task semantics learned by our circuit representation. We use the Tower of
Hanoi problem as an example since the learned circuit has moderate size.
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W1-W6: auxiliary variables
Y1-Y6: actions of the Tower of Hanoi task

Figure 5: Learned LC representation of the task semantics of the Tower of Hanoi problem.

The learned circuit is shown in Fig. 5, ∧ defines product nodes, ∨ denotes or nodes, and variables represents input nodes
corresponding to the labeled variables. Specifically, variables Z1 to Z6 are the symbols outputted by the neural network fφ; W1

to W6 denote the auxiliary variables; Y1 to Y6 represents the 6 possible actions.
Suppose the NN fφ predicts Pr(A) = 1 (A ∈ {Z2, Z4, Z5,W6}) and Pr(A) = 0 for all other variables A, we can query the

most likely output variable, which is Y2 = true (i.e., move the top disk from the second pillar to the third one) in this case.


