
Learning Logistic Circuits

Yitao Liang
Computer Science Department

University of California, Los Angeles
yliang@cs.ucla.edu

Guy Van den Broeck
Computer Science Department

University of California, Los Angeles
guyvdb@cs.ucla.edu

Abstract

This paper proposes a new classification model
called logistic circuits. On MNIST and Fashion
datasets, our learning algorithm outperforms
neural networks that have an order of magni-
tude more parameters. Yet logistic circuits have
a distinct origin in symbolic AI, forming a dis-
criminative counterpart to probabilistic-logical
circuits (ACs, SPNs, PSDDs). We show that
parameter learning for logistic circuits is con-
vex, and that a simple local search algorithm
can induce strong model structures from data.

1 Introduction

Circuit representations are a promising synthesis of sym-
bolic and statistical methods in AI. They are “deep”
layered data structures with statistical parameters, yet
they also capture intricate structural knowledge. Re-
cently, many target representations have been proposed
for learning discrete probability distributions (e.g., ACs
[7], Weighted SDD [1], PSDD [5], Cutset Networks [10]
and SPNs [9]). Collectively, these approaches achieve the
state of the art in density estimation and vastly outper-
form classical probabilistic graphical models learners [6].
However, it is rare to observe the same success when
deploying circuit representations for classification and
discriminative learning. Probabilistic circuit classifiers
lag behind the performance of neural networks [2].

In this paper, we propose a new classification model called
logistic circuits, which shares many syntactic properties
with the target representations mentioned earlier. One can
view logistic circuits as the discriminative counterpart
to probabilistic circuits. Owing to their elegant proper-
ties, learning the parameters of a logistic circuit can be
reduced to a logistic regression problem and is therefore
convex. Learning logistic circuit structure is reduced to

a simple local search problem using primitives from the
probabilistic circuit learning literature [6].

We run experiments on standard image classification
benchmarks (MNIST and Fashion) and achieve accuracy
higher than much larger MLPs and even CNNs. For ex-
ample, logistic circuits obtain 99.4% accuracy on MNIST.
Furthermore, we show our learner is very data efficient,
managing to still learn well with limited data.

2 Representation

This section introduces the logistic circuit representation.

Notation An uppercase X denotes a Boolean random
variable and a lowercase x denotes a specific assignment
to X . We use Boolean random and logical variables inter-
changeably. A set of variables X and its joint assignment
x are denoted in bold. A complete assignment x to all
variables is a possible world, or interchangeably a data
example. Literals are variables or their negation. Logical
sentences are constructed from literals and connectives
such as AND and OR in the usual way. An assignment x
that satisfies a logical sentence α is denoted x |= α.

2.1 Logical Circuits

A logical circuit is a directed acyclic graph representing
a logical sentence, as depicted in Figure 1a (ignoring
parameters for now). Each inner node is either an AND
gate or an OR gate.1 A leaf (input) node represents a
Boolean literal, that is,X or ¬X , where the node can only
be satisfied if X is set to 1 (true) respectively 0 (false).

The following properties are key for logical circuits to be
well-behaved [3]. An AND gate is decomposable if its
inputs depend on disjoint sets of variables. For example,
the top-most AND gates in Figure 1a depend on A in
one input and on {B,C,D} in their other input. In this

1We consider negation-normal-form circuits where no nega-
tion is allowed except at the leafs/inputs [3].

−4.6

2 −1.2

−1 3 42.3

−0.5 0.3 1.5 2.8

−4 1 3.9 4

A ¬A

B ¬B

C ¬C D¬D

(a) Logistic circuit

A B C D Pr(Y = 1 | ABCD)

1 0 1 1 4.31%
0 1 1 0 86.99%
1 1 1 0 99.70%

(b) Classification probabilities for select examples

Figure 1: A logistic circuit with example classifications.

paper, we assume every AND gate has two inputs and
call its left input prime and right input sub. An OR gate
is deterministic if for any single complete assignment, at
most one of its inputs can be set to 1. For example, the left
input to the root OR gate in Figure 1a is 1 precisely when
A = 1, and its other input is 1 precisely when A = 0.

Logical circuits can be extended to probabilistic circuits
that represents a probability distribution over binary ran-
dom variables, for example by parameterizing wires with
conditional distributions [5]. Probabilistic circuits have
been successfully used for generative learning [6].

2.2 Logistic Circuits

This paper proposes logistic circuits for classification.
Syntactically, they are logical circuits where every AND
is decomposable and every OR is deterministic. However,
logistic circuits further associate real-valued parameters
θ1, . . . , θm with the m input wires to every OR gate, as
well as a parameter with the root output wire of the entire
circuit. For example, the root OR node in Figure 1a
associates parameters 2 and −1.2 with its two inputs.

To give semantics to logistic circuits, we first character-
ize how a particular complete assignment x (one data
example) propagates through the circuit.

Definition 1 (Boolean Flow). Consider a deterministic
OR gate n. The Boolean flow f(n,x, c) of a complete

assignment x between parent n and child c is

f(n,x, c) =

{
1 if x |= c

0 otherwise

For example, under the assignmentA = 0,B = 1,C = 1,
D = 0, the root node in Figure 1a has a Boolean circuit
flow of 0 with its left child and 1 with its right child. Note
that the determinism property guarantees that under every
OR gate, for a given example x, at most one wire has a
flow of 1, and the rest is 0.

We are now ready to define the logistic circuit semantics.
Definition 2 (Logistic Circuit Semantics). A logistic cir-
cuit node n defines the following weight function gn(x).

– If n is a leaf (input) node, then gn(x) = 0.

– If n is an AND gate with p as its prime and s as its
sub, then gn(x) = gp(x) + gs(x).

– If n is an OR gate with (child node, wire parameter)
inputs (c1, θ1), . . . , (cm, θm), then

gn(x) =
∑
i

f(n,x, ci) · (gci(x) + θi) .

Moreover, the entire logistic circuit α rooted in node n
has weight gα(x) = gn(x) + θb, where θb denotes the
bias parameter at the output. From this weight, we obtain
the posterior distribution on class variable Y as

Prα(Y = 1 | x) = 1

1 + exp (−gα(x))
. (1)

With Boolean circuit flow, this definition essentially col-
lects all the parameters on wires with flow 1 that reach
the root to make a prediction. This is illustrated in Fig-
ure 1a by coloring red the gates and wires whose param-
eters and weight function are propagated upward. The
logistic circuit in Figure 1a defines the same posterior
predictions as the table in Figure 1b. Specifically, for the
example assignment A = 0, B = 1, C = 1, D = 0,
the weight function simply sums the parameters colored
in red: −4.6 − 1.2 + 2.3 + 3.9 + 1.5 = 1.9. We then
apply the logistic function (Eq. 1) to get the classification
probability Pr(Y = 1 | x) = 1

1+exp(−1.9) = 86.99%.

Real-Valued Data The semantics given so far assume
Boolean inputs x, which is a rather restrictive assumption
and prohibits many machine learning applications. Next,
we augment the logistic circuit semantics such that they
can classify examples with continuous values.

Instead of having either 1 or 0, we now have real-valued
variables q ∈ [0, 1]. We interpret each such variable as
parameterizing an (independent) Bernoulli distribution
(cf. [13]). Each continuous variable represents the prob-
ability of the corresponding Boolean random variable

X . For example, with q setting A = 0.4, B = 0.8,
C = 0.2, and D = 0.7, the probability of ¬A ∧D would
be (1− 0.4) · 0.7 = 0.42. The same distribution defines a
probability for each logical sentence, and therefore each
node in the logistic circuit. This allows us to generalize
the notion of Boolean flow as follows.
Definition 3 (Continuous Flow). Consider a determin-
istic OR gate n. Let q be a vector of probabilities, one
for each variable in X. The continuous flow f(n,q, c) of
vector q between parent n and child c is

f(n,q, c) = Prq(c | n) =
Prq(c)

Prq(c ∧ n)
=

Prq(c)

Prq(n)
,

where Prq(.) is the fully-factorized distribution where
each variable in X has the probability assigned by q.

Logistic circuit semantics now support continuous data
(after normalizing to [0, 1]), simply by replacing Boolean
flow with continuous flow in Definition 2. Appendix B
explains how the required probabilities can be computed
efficiently, linear in the size of the logistic circuit.

3 Parameter Learning

In this section, we present how the parameters of a logistic
circuit can be effectively learned from data.
Proposition 1. Any logistic circuit model can be reduced
to a logistic regression model over a particular feature set.
Corollary 2. Logistic circuit cross-entropy loss is convex.

In order to reduce a logistic circuit to a logistic regression
model, we need to write Equation 1 in the form

1

1 + exp(−x · θ)
,

where x is some vector of features extracted from the raw
example x (or p). This feature vector can only depend on
x (or p); not on the parameters θ. We show this transfor-
mation in Appendix A, together with efficient algorithms
to calculate features x from examples in Appendix B.

Given this correspondence, any convex optimization tech-
nique can now be brought to bear on the problem of
learning the parameters of a logistic circuit. In particular,
we will use stochastic gradient descent for this task.

4 Structure Learning

This section presents an algorithm to learn a compact
logical circuit structure for logistic circuits from data.

Learning Primitive The split operation was first intro-
duced to modify the structure of PSDD circuits [6]. We
adopt it here with minor changes2 as the primitive oper-

2Compared to the splits in LearnPSDD [6], we no longer
require the constraints to only be on prime variables.

Table 1: Classification accuracy of logistic circuits in
context with commonly used existing models.

ACCURACY % ON DATASET MNIST FASHION

BASELINE: LOGISTIC REGRESSION 85.3 79.3
BASELINE: KERNEL LOGISTIC REGRESSIONa 97.7 88.3
3-LAYER MLPb 97.5 84.8
RAT-SPN [8] 98.1 89.5
5-LAYER MLP c 99.3 89.8

LOGISTIC CIRCUIT (BINARY) 97.4 87.6
LOGISTIC CIRCUIT (REAL-VALUED) 99.4 91.3

CNN WITH 3 CONV LAYERS d 99.1 90.7
RESNET [4] 99.5 93.6

aBased on the implementation of pixel n-grams from vowpal wabbit.
bLayers are of size 784-1000-500-250-10 respectively.
cLayers are of size 784-1000-500-250-2000-250-10 respectively.
d3-by-3 padded filters are used in convolutional layers.

Table 2: Number of parameters of logistic circuits in
context with existing models, when achieving the classifi-
cation accuracy reported in Table 1.

NUMBER OF PARAMETERS MNIST FASHION

BASELINE: LOGISTIC REGRESSION <1K <1K
BASELINE: KERNEL LOGISTIC REGRESSION 1,521 K 3,930K

LOGISTIC CIRCUIT (REAL-VALUED) 182K 467K
LOGISTIC CIRCUIT (BINARY) 268K 614K

3-LAYER MLP 1,411K 1,411K
RAT-SPN [8] 8,500K 650K
CNN WITH 3 CONV LAYERS 2,196K 2,196K
5-LAYER MLP 2,411K 2,411K
RESNET [4] 4,838K 4,838K

ation for our structure learning algorithm. Splitting an
AND gate happens by imposing two additional constraints
that are mutually exclusive and exhaustive, in particular
by making two opposing variable assignments. Executing
a split creates partial copies of the gate and some of its
decedents. Furthermore, one can choose to duplicate ad-
ditional nodes up to a fixed depth (3 in our experiments).
Appendix C gives further details of the split operation.

Learning Algorithm Next, we present the overall
structure learning algorithm for logistic circuits, built on
top of the split operation. Iteratively, one spit is executed
to change the structure, followed by parameter learning.
We only consider single-variable constraints. Our algo-
rithm first selects which AND gate to split on, followed
by a selection of which variable to execute a split with.

When using gradient descent optimization, one hopes the
parameter on the AND gate output consistently has its par-
tial derivatives point in the same direction for all training
examples. This will steadily push the parameter to a large
magnitude. If this is not the case, we will use splits to

Table 3: Comparison of logistic circuits with MLPs when trained with different percentages of the dataset.

ACCURACY % WITH % OF TRAINING DATA
MNIST FASHION

100% 10% 2% 100% 10% 2%

5-LAYER MLP 99.3 98.2 94.3 89.8 86.5 80.9
CNN WITH 3 CONV LAYERS 99.1 98.1 95.3 90.7 87.6 83.8

LOGISTIC CIRCUIT (BINARY) 97.4 96.9 94.1 87.6 86.7 83.2
LOGISTIC CIRCUIT (REAL-VALUED) 99.4 97.6 96.1 91.3 87.8 86.0

alter the flow of examples through the circuit. Specifically,
those AND gates whose associated output parameter has
a large variance of its partial derivative (that is, the deriva-
tive of the loss function w.r.t. that parameter) requires
splitting for the parameters to improve. We simply select
the one with the highest training variance.

Given an AND gate to split, we consider candidate vari-
ables X to execute the split with. We construct two sets
of training examples that affect this node: in one group,
each example is weighted by the marginal probability
of X; in the other, with the marginal probability of ¬X .
Next, we calculate the within-group weighted variances
of the partial derivatives. The variable with the smallest
weighted variances gets picked, as this suggests the split
will introduce new parameters with gradients that align.

5 Empirical Evaluation

In this section, we empirically evaluate the competitive-
ness of our learner on three aspects: classification accu-
racy, model complexity, and data efficiency.

Setup & Data Preprocessing We choose MNIST and
Fashion3 as our testbeds. Since logistic circuits are in-
tended for binary classification, we use the standard “one
vs. rest" approach to construct an ensemble multi-class
classifier such that our method can be evaluated on these
two datasets. When running the binary logistic circuit, we
transform pixels that are smaller than their mean plus 0.05
standard deviation to 0 and the rest to 1. When running the
real-valued version, we transform pixels to [0, 1] by divid-
ing them by 255. All experiments start with a predefined
initial structure; we defer its details to Appendix D. The
learned structure with the highest F1 score on validation
after 48 hours of running is used for evaluation.

Classification Accuracy Table 1 summarizes the clas-
sification accuracy on test data. Learning a logistic circuit
on the binary data is on par with a 3-layer MLP; the real-
valued version outperforms 5-layer MLPs and even CNNs
with 3 convolutional layers. The fact that logistic circuits
achieve better accuracy than CNNs is surprising, since

3A dataset consisting of Zalando’s images. It is intended as
a more challenging drop-in replacement of MNIST [12].

the logistic circuits do not use convolutions, which are
specifically designed to exploit image invariances.

Besides, we would like to emphasis our comparison with
the two baselines. As parameter learning of logistic cir-
cuits is equivalent with logistic regression, one can view
structure learning of logistic circuits as a process of con-
structing composite features from raw samples. The sig-
nificant improvement over standard logistic regression
demonstrates the effectiveness of our method in extract-
ing valuable features; using kernel logistic regression can
only partially bridge the gap in performance, yet as shown
later, it does so at the cost of many more parameters.

Furthermore, we want to call attention to our comparison
with RAT-SPN. SPN is another form of circuit represen-
tation, with less restrictive structure. As so, parameter
learning in SPN is not convex and generally requires other
techniques such as EM. The empirical observation that
our method achieves better classification accuracy than
RAT-SPN demonstrates that in structure learning, impos-
ing more restrictions on the model’s structural syntax may
be beneficial. The syntactical restriction of logistic cir-
cuits requires decomposability and determinism; without
them, convex parameter learning does not appear to be
possible. As structure learning is built on top of parame-
ter learning, a well-behaved parameter-learning loss with
a unique optimum can provide more informative guid-
ance about how to adapt the structure, leading to a more
competitive structure learning algorithm overall.

Model Complexity & Data Efficiency Table 2 sum-
marizes the size of all compared models when achieving
the reported accuracy. We can conclude that logistic cir-
cuits are significantly smaller than the alternatives. Ta-
ble 3 summarizes the performance of the same compared
models when only limited training samples are provided.
Except on MNIST with 10% training samples, real-valued
logistic circuits achieve the best classification accuracy.
We refer to a more detailed discussion in Appendix E.

Acknowledgments

This work is supported by NSF grants #IIS-1657613, #IIS-
1633857 and DARPA XAI grant #N66001-17-2-4032.

References

[1] J. Bekker, J. Davis, A. Choi, A. Darwiche, and
G. Van den Broeck. Tractable learning for complex
probability queries. In Advances in Neural Informa-
tion Processing Systems 28 (NIPS), Dec. 2015.

[2] R. Benenson. What is the class of this image?
http://rodrigob.github.io/are_we_
there_yet/build/classification_
datasets_results.html, 2018.

[3] A. Darwiche and P. Marquis. A knowledge compi-
lation map. JAIR, 17:229–264, 2002.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In CVPR, June 2016.

[5] D. Kisa, G. Van den Broeck, A. Choi, and A. Dar-
wiche. Probabilistic sentential decision diagrams.
In KR, 2014.

[6] Y. Liang, J. Bekker, and G. V. den Broeck. Learn-
ing the structure of probabilistic sentential decision
diagrams. In UAI, 2017.

[7] D. Lowd and P. Domingos. Learning arithmetic
circuits. In UAI, pages 383–392, 2008.

[8] R. Peharz, A. Vergari, K. Stelzner, A. Molina,
M. Trapp, K. Kersting, and Z. Ghahramani. Proba-
bilistic Deep Learning using Random Sum-Product
Networks. ArXiv e-prints, June 2018.

[9] H. Poon and P. Domingos. Sum-product networks:
A new deep architecture. In UAI, 2011.

[10] T. Rahman, P. Kothalkar, and V. Gogate. Cutset net-
works: A simple, tractable, and scalable approach
for improving the accuracy of chow-liu trees. In
Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 630–
645. Springer, 2014.

[11] J. D. M. Rennie. Regularized logistic regression is
strictly convex. Technical report, MIT, 2005.

[12] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist:
a novel image dataset for benchmarking machine
learning algorithms. CoRR, abs/1708.07747, 2017.

[13] J. Xu, Z. Zhang, T. Friedman, Y. Liang, and G. V.
den Broeck. A semantic loss function for deep learn-
ing with symbolic knowledge. In ICML, 2018.

A Proof of Proposition 1

The real question of transforming a logistic circuit’s cross
entropy loss to that of a logistic regression boils down to
whether we can decompose gn into x · θ, which can be
proven to be true by induction.

Proof.

– Base case: n is a leaf (input) node. It is obvious gn
can be expressed as x · θ, as gn always equals 0.

– Induction step: assume g of all the nodes under node
n can be expressed asx·θ. Then we need to consider
two cases: (1) n is a logical AND gate; (2) n is a
decision node (i.e. logical OR gate).

* n is an AND gate with prime p and sub s. Given
gp = xp · θp and gs = xs · θs,

gn = xp · θp + xs · θs

=

[
xp

xs

]
·
[
θp
θs

]
* n is an OR gate with (child node, wire parame-

ter) inputs {(e1, θ1), . . . , (em, θm)}. Given gei =
xei · θei ,

gn =
∑
i

f(n,x, ei) · (xei · θei + θi)

=


f(n,x, e1) · xe1
f(n,x, e1)

. . .
f(n,x, em) · xem
f(n,x, em) | x)

 ·

θe1
θ1
. . .
θem
θm



Note this proof holds valid regardless of whether the input
sample x is binary or real-valued. With this proof, it is
obvious that learning parameters of a logistic circuit is
equivalent to optimizing a logistic regression. This is also
the main motivation why we name our representation as
logistic circuit. Due to the space limit, we do not present
the detailed proof that logistic regression is convex; we
refer readers to [11].

B Calculation of Features

In this section, we present how features can be efficiently
calculated from samples. Note in our algorithms we cal-
culate features for all nodes (OR gates, AND gates and
leaves). However, when calculating the classification

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

Algorithm 1: Feature vector x from binary sample x.
Input : an example x from the training data set
Result: feature vector x with entries 0 or 1.

x(root) := CalculateFeature(root)
Function CalculateFeature(n):

if IsLeaf(n) then
x(n) := x(n.variable) |= [n]

else if IsAndGate(n) then
x(n) :=

CalculateFeature(n.prime)
· CalculateFeature(n.sub)

else
// n is an OR gate
x(n) := 0
for e in n.inputs do

if CalculateFeature(e) = 1 then
x(n) := 1
break

return x(n)

Algorithm 2: Node probability of all nodes given x,
where x is real-valued. This is a bottom-up pass.
Input : an example x from the training data set
Result: p([n] | x): the node probability of [n] given x.

p(·) will be used in the top-down pass
(Algorithm 3) to obtain the final feature vector.

for n in the circuit’s nodes children before parents do
if IsLeaf(n) then

X := n.variable
if [n] is X then

p([n] | x) = x(X)

else
// [n] is ¬X
p([n] | x) = 1− x(X)

else if IsAndGate(n) then
p([n] | x) = p([n.prime] | x) · p([n.sub] | x)

else
// n is an OR gate
p([n] | x) := 0
for e in n.inputs do

p([n] | x) + = p([e] | x)

Algorithm 3: Feature x from real-valued sample x.
Input :An example x from the training data set
Result: Feature vector x, with entries from [0,1].

for n in all non-leaf nodes parents before children do
x(n) := 0

x(root) := p([root] | x)
for n in all non-root OR gates parents before children do

for e in n.inputs do
x(e) := x(n) · p([e] | x) / p([n] | x)
x(e.prime) + = x(e)
x(e.sub) + = x(e)

Algorithm 4: Split(e, n, c1, c2, d)
Input :e: the original AND gate to be split.

n: the AND gate’s parent OR gate.
c : mutually exclusive and exhaustive constraints.
d: depth of PartialCopy.

Result: e is split by constraining on c1, c2 .

RemoveAndGate(n, e)
if ContainVariables(e.prime,C) then

p1 := PartialCopy(e.prime, c1, d)
p2 := PartialCopy(e.prime, c2, d)
s1 := PartialCopy(e.sub, true, d)
s2 := PartialCopy(e.sub, true, d)

else
p1 := PartialCopy(e.prime, true, d)
p2 := PartialCopy(e.prime, true, d)
s1 := PartialCopy(e.sub, c1, d)
s2 := PartialCopy(e.sub, c2, d)

AndAndGate(n, NewAndGate(p1, s1))
AddAddGate(n, NewAndGate(p2, s2))

Algorithm 5: PartialCopy(n, c, d)
Input :n: node to copy; c : constraint, which is an

assignment to one variable in our setting;
d: depth of PartialCopy.

Result: constrained copy of n

if IsLeaf(n) then
if c.variable = n.variable then

if c |= [n] then
return n

else if [n] = > then
return NewLeaf(c)

else
return None

else
return n

else if IsAndGate(n) then
if d > 0 then

p := PartialCopy(n.prime, c, d− 1)
s := PartialCopy(n.sub, c, d− 1)

else
if c |= [n.prime] then

p := PartialCopy(n.prime, c, 0)
else

p := n.prime
if c |= [n.sub] then

s := PartialCopy(n.sub, c, 0)
else

s := n.sub
return NewAndGate(p, s)

else
// n is an OR gate
E := ∅
for e in n.inputs do

e′ :=PartiCopy(e, c, d)
E := E ∪ e′

return NewOrGate(E)

True β

β γ

α

A β ¬A

β ∧A β ∧ Ā γ

αminimal split on A

True β δ ε

β γ

α

A β δ ε

β ∧A γ

¬A

β ∧ Ā γ

α

depth-1 split on A

Figure 2: Split. Decision nodes have their base labeled.

probability, only features associated with AND gates are
used (see Definition 2 and Figure 1)4.

B.1 Binary Dataset

When samples are binary, we can take advantage of the
deterministic property, leading to an algorithm with aver-
age time complexity of O(logN)5, where N denotes the
number of nodes in the logistic circuit; see Algorithm 1.
Note these nodes that do not get visited would have fea-
ture of 0, and thus can be omitted in the later calculation
of classification probability.

B.2 Real-Valued Dataset

When input x is real-valued, the deterministic property is
relaxed and two passes over the whole logistic circuit (one
bottom-up and one top-down) are necessary, resulting in
an O(N) method; see Algorithm 2 and 3 for details.

Note instead of inputing one single sample each time, one
can directly supply Algorithm 2 and 3 with a vector of
samples. Our proposed calculation method is completely
compatible with matrix operations, and by doing so, one
can expect a large speedup.

C Details of Split Operation

We require the partial assignments (i.e. the newly imposed
constraints) in splits do not overlap both the prime and sub

4In feature calculation, AND gates actually act on behalf of
the wires from their parent OR gates to them.

5In worst case, time complexity is O(N).

A B ¬A ¬B C D ¬C ¬D

Figure 3: Initial structure of logistic circuits with 4 pixels
(8 terminal features).

variables. The mutual exclusiveness and exhaustiveness
of constraints ensure the original AND gate’s parent OR
gate remains deterministic after the split. To execute
a split, the original AND gate is removed and a new
AND gate is created for every partial assignment; see
Algorithm 4 for details.

PartialCopy make a copy and its descents up to the spec-
ified level d. The AND gates of the copy beyond the
specified level are redirected to the original logistic cir-
cuit. One can supply PartialCopy with a constraint. In
that case, only descendants that agree with the constraint
are kept. In order to propagate the constraint properly,
descents beyond depth d may be altered. See Algorithm 5
for details.

A minimal split has PartialCopies with d = 0 and thus
only expand as few elements and decision nodes as pos-
sible. Any non-minimal operations (d 6= 0) can be re-
produced by executing multiple minimal operations. The
difference between a minimal split and a depth-1 split is
visualized in Figure 2.

D Initial Structure

All experiments in this paper start with an initial structure
where every pixel has two corresponding features, one
for the pixel being true and the other false. Pixels are
paired up by AND gates at the level immediately above
the terminal. To be more specific, an AND gate is created
for every joint assignment to the pair. AND gates that
are created for the same pair would share one OR gate
parent. After this, OR gates are paired with AND gates
and every AND gate is connected to its own OR gate
parent until we reach the root. Figure 3 is an example
of the initial structure when there are 4 pixels. Note our
proposed structure learning algorithm is fully compatible
with other initial structures and one can create different

ad hoc initializations tailored to the specific applications.

E Data Efficiency

From a top-down perspective, each OR gate of a logis-
tic circuit presents a weighted choice between its wires.
Given so, one can view a logistic circuit as a decision
diagram. Under this perspective, splits refine OR gates’
branching rules. As each branching rule naturally applies
to multiple samples, we suspect that the splits selected
by our structure learning algorithm can reflect the very
general conditional feature information in the dataset and
thus may be very data efficient.

We design experiments to specifically investigate how
well our structure learning algorithm performs under the
setting where the number of training samples is limited.
We have two additional sets of experiments, where only
2% and 10% of the original training data is supplied re-
spectively. We mainly compare against 5-layer MLP and
CNN with 3 convolutional layers, whose performance
is on par with our method. As summarized in Table 3,
except on MNIST with 10% training samples, real-valued
logistic circuits achieve the best classification accuracy.
Moreover, in both versions of logistic circuits, when the
available training samples are reduced from 100% to 2%,
the accuracy only drops by around 3% when evaluating
on MNIST; around 5% on Fashion. In contrast, a much
larger drop occurs for 5-layer MLP and CNN. To be more
specific, MLP’s accuracy drops by 5% (9%) while CNN’s
accuracy drops by 4% (7%) on MNIST (Fashion). This
small magnitude of accuracy decrease illustrates how data
efficient the proposed structure learning algorithm is.

	Introduction
	Representation
	Logical Circuits
	Logistic Circuits

	Parameter Learning
	Structure Learning
	Empirical Evaluation
	Proof of Proposition 1
	Calculation of Features
	Binary Dataset
	Real-Valued Dataset

	Details of Split Operation
	Initial Structure
	Data Efficiency

