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Abstract

These lecture notes accompany the AAAI 2020 tutorial on probabilistic circuits, by Anto-
nio Vergari, Robert Peharz, YooJung Choi, and Guy Van den Broeck. They cover the first
half of the tutorial, that is, the motivation of tractable models, the probabilistic circuit
representation, and its inference algorithms.

This is a working document; updates will be made available at starai.cs.ucla.edu/

papers/LecNoAAAI20.pdf. The tutorial slides covering additional topics such as learning
of probabilistic circuits and a survey of their applications are available at starai.cs.ucla.
edu/slides/AAAI20.pdf. Kindly send corrections and feedback to yjchoi@cs.ucla.edu.

1. Probabilistic Inference: Models, Queries and Tractability

In the following, we will formalize the idea of performing probabilistic inference as com-
puting quantities of interest of a probability distribution by querying probabilistic models,
here playing the role of compact representations of probability distributions. We will then
categorize these queries into families of functions to characterize the complexity of different
probabilistic inference tasks. We will later discuss what makes a family of probabilistic
model tractable w.r.t. a class of queries. We assume the readers to be familiar with the ba-
sic concepts and rules of probability calculus while referring them to (Koller and Friedman,
2009; Feller, 2008; Rosenthal, 2006) for background.

Notation. We use uppercase letters for random variables (RVs), e.g., X,Y , and lowercase
ones for their corresponding assignments e.g., x, y. Analogously, indexed sets of RVs are
denoted by bold uppercase letters, e.g., X, Y, and their joint values by the corresponding
lowercase ones, e.g., x, y. A specific RV in a set, and a value in a joint assignment, is
indexed by a subscript, e.g., Xi and xi, respectively. Concatenation XY denotes the union
of disjoint sets. Let val(X) define the set of possible values that RV X can assume, i.e., its
domain. Analogously, val(X) indicates the cartesian product val(X1)×val(X2)×. . .×val(Xk)
for X = {Xi}ki=1. Let p(X) be a probability distribution of RV X and let supp(X) be the
support of p(X), i.e., {x ∈ val(X) | p(x) > 0}. For example, a Boolean variable X has
supp(X) = {0, 1}; we adopt the shorthand X and ¬X for the indicator functions JX = 1K
and JX = 0K, respectively.
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1.1 Probabilistic Queries

Intuitively, a probabilistic model can be seen as a black-box that is able to answer ques-
tions we pose about the uncertainty around some configurations of the world (Koller and
Friedman, 2009). That is, asking about some quantities of interest of the joint probabil-
ity distribution it encodes. For instance, one might ask one probability distribution for
the probability mass or density associated to certain observed configurations (also called
evidence) alternatively for its mode or one of its moments, e.g., its mean value of probabil-
ity. Following the terminology adopted in the (probabilistic) databases literature, we name
these questions queries (Koller and Friedman, 2009; Suciu et al., 2011; Van den Broeck
et al., 2017).

The traffic jam example. We demonstrate how probabilistic inference can be formalized
into query answering by building a simple real-life scenario in which such queries are pivotal
to support decision making under uncertainty. Imagine being a commuter in New York City.
To decide which route to take each day to work and avoid traffic jam you could query the
probabilistic model embedded in your GPS navigator. Among the several queries you might
want to ask your navigator, there might be:

q1 : “What is the probability that on Monday there will be a traffic jam
on 5th Avenue?”

q2 : “Which day is the most likely for there to be a traffic jam on my
route to work?”

Both q1 and q2 are queries trying to quantify the uncertainty about specific configu-
rations of the world, captured by the probabilistic model m inside your navigator. That
is, m encodes a joint probability distribution pm(X) over a collection of random variables
X. Let X = {D,T, Jstr1 , . . . , JstrK} where D is a categorical RV describing the Day with
val(D) = {Mon,Tue,Wed,Thu,Fri, Sat,Sun}; T is a continuous variable with val(T) = [0, 24)
indicating the Time of the day with arbitrary precision. Lastly, let {Jstri}Ki=1 be a finite
number of binary RVs, each indicating the presence of a traffic jam on the i-th street.

Note that in this example, as it frequently is in real-world scenarios, the joint probability
distribution is defined over both continuous and discrete RVs. Moreover, these variables
can be heterogeneous in nature; that is, each might represent a different likelihood model,
e.g., Gaussian, Bernoulli, Poisson distibutions, etc.. In these lecture notes, we will always
assume that these joint distributions, even when conditioned on some evidence, define proper
probability masses (resp. probability densities) over the corresponding subset of discrete
RVs (resp. continuous RVs). To lighten the notation, we will denote with p either a
probability mass, a probability density or a mixed joint distribution making the distinction
explicit only if ambiguous from context.

In essence, a query is a function of the probability distribution encoded in a probabilis-
tic model, whose output is a quantity characterizing or characterized by that probability
distribution. For instance, the output of query q1 in the our example is defined as the
probability mass of a partially-observed configuration e = (D = Mon, J5th = 1) (also called
partial evidence) for a subset of the RVs in X, E ⊂ X:

pm(D = Mon, J5th = 1). (1)
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This is an example of a classical marginal query, where to compute q1 we are required to
marginalize out the the RVs not in E. On the other hand, the output of query q2 returns the
mode of the distribution obtained from pm after observing a more complex kind of evidence,
involving the disjunction of simpler traffic jam events:

arg max
d

pm(D = d ∧
∨

i∈route
Jstri). (2)

As one might intuit at this point, computing q2 must be at least as hard as computing
q1. Computing q2 requires performing marginalization as for q1 (as we do not care about
the variable T) in addition to performing maximization and dealing with more complex
logical constraints.

Query classes. Informally, a class of queries comprises of all the queries that share the
same “structure”, and hence present the same computational challenges. More formally, a
query class, denoted as Q, is a collection of functions that operate on probability distri-
butions and that can be characterized by the mean of their inputs, outputs and/or by the
operations their computation involves. As we will see later, query classes play a crucial role
in inducing classes of tractable probabilistic models. Indeed, tractability is not a universal
property, but it is specific to classes of queries: a model might be amenable to efficiently
compute queries from one class but not from another.

In the following, we review the query classes that are most commonly used in probabilis-
tic inference and learning: complete evidence (EVI) queries, marginals (MAR), conditionals
(CON) and maximum a priori (MAP), and briefly tease more advanced classes including
marginal MAP (MMAP) queries.

Definition 1 (Complete evidence queries (EVI)) Let p(X) be a joint distribution over
RVs X. The class of complete evidence queries QEVI is the set of queries that compute
the probability p(X = x) for any complete configuration (also called complete evidence)
x ∈ val(X) for RVs X.

For conciseness, we often write p(X = x) as p(x).

Example 1 Consider the probability distribution pm defined over the RVs X as in the traffic
jam example. Then the question “What is the probability that at 12 o’clock on Monday there
will be a traffic jam only on 5th Avenue?” can be answered by the EVI query:

pm(D = Mon,T = 12.0, J5th = 1,
∧
j 6=5th

Jj = 0)

As answering an EVI query corresponds to compute the likelihood of model m for a
certain complete configuration, the class of queriesQEVI is at the core of maximum likelihood
learning of probabilistic models (Koller and Friedman, 2009).

Definition 2 (Marginal queries (MAR)) Let p(X) be a joint distribution over RVs X.
The class of marginal queries QMAR is the set of queries that compute probabilities of the
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following form:

p(Z1 ∈ I1, Z2 ∈ I2, . . . , Zk ∈ Ik,E = e) =

∫
I1×I2×...×Ik

p(Z, e) dZ (3)

=

∫
I1

∫
I2
. . .

∫
Ik
p(Z1, Z2, . . . , Zk, e) dZ1dZ2 . . . dZd (4)

where e ∈ val(E) is a partial configuration (also called partial evidence) for any subset of
RVs E ⊆ X, and Z = X \ E is the set of k RVs integrated over intervals {Ii}ki=1 each of
which is defined over the domain of its corresponding RV in Z: Ii ⊆ val(Zi) for i = 1, . . . , k.

Note that for the sake of simplicity, in the above definition we adopted the more general
integral symbol to subsume both multi-dimensional finite integrals for continuous RVs and
(potentially infinite) nested summations for discrete ones. We will adopt this notational
convention consistently from here on.

Moreover, note that the above definition for MAR queries generalizes the more usual
one where the RVs Z are integrated (summed) over their whole domains, i.e., Ii = val(Zi).
Furthermore, QMAR also include queries on the joint cumulative distribution function (CDF)
of a distribution pm, which share with the classical MAR queries the same computational
effort–solving multi-dimensional definite integrals (or summations), a task at the core of
probabilistic inference. Lastly, it naturally follows that QEVI ⊂ QMAR.

Example 2 Consider the probability distribution pm defined over the RVs X as in the traffic
jam example. Then question q1 can be answered by the MAR query as defined in Equation 1.

Queries in QMAR represent the evaluation of a distribution projected over a subspace of
the domain. This kind of probabilistic queries arises naturally when one has to probabilis-
tically reason over sets of RVs that are not accessible at hand or can be flagged as “don’t
care”, e.g., when dealing with features over data with missing values.

Definition 3 (Conditional queries (CON)) Let p(X) be a joint distribution over RVs
X. The class of conditional queries QCON is the set of queries that compute probabilities
p(Q = q | E = e), where e ∈ val(E), q ∈ val(Q) are partial configurations for an arbitrary
partitioning of the RVs X, i.e., Q ∪E = X and Q ∩E = ∅.

Example 3 Consider the probability distribution pm defined over the RVs X as in the traffic
jam example. Then the question “What is the probability that there will be a traffic jam only
on 5th Avenue on Monday at 12 o’clock?” can be answered by the CON query:

pm(J5th = 1,
∧
j 6=5th

Jj = 0 | D = Mon,T = 12.0)

One can easily define the class QCON in terms of QEVI and QMAR by noting that any
conditional query can be rewritten as the ratio1:

p(Q = q | E = e) =
p(Q = q,E = e)

p(E = e)
.

1. Here we are making the commonly adopted assumption that the marginal normalization constant p(e)
is always positive.
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Instead of evaluating masses or densities of events, we might be interested in properties
of the distribution such as its mode. More generally, we might be interested in the mode of
a distribution after we condition on some specific event.

Definition 4 (Maximum a posteriori queries (MAP)) Let p(X) be a joint distribution
over RVs X. The class of maximum a posteriori queries QMAP is the set of queries that
compute:

arg max
q∈val(Q)

p(Q = q | E = e) = arg max
q∈val(Q)

p(Q = q,E = e) (5)

where e ∈ val(E), q ∈ val(Q) are partial configurations for an arbitrary partitioning of the
RVs X, i.e., Q ∪E = X and Q ∩E = ∅.

Note that the right-hand side of Equation 5 follows from the fact that maximization is
not affected by the normalization constant p(e).

Example 4 Consider the probability distribution pm defined over the RVs X as in the traffic
jam example. Then the question “Which combination of roads is most likely to be jammed
on Monday at 9:30am?” can be answered by the following MAP query:

arg max
j

pm(J = j,T = 9.5.)

Sometimes one might be interested not only in the mode value of the distribution but
also in its associated probability or density. To categorize these queries we can introduce
the class in why the arg max operation is replaced by a simple maximization.

In the Bayesian networks literature, MAP queries are often referred to as most probable
explanation (MPE ) queries (Darwiche, 2009) and MAP refers to marginal MAP queries (Koller
and Friedman, 2009), where one performs maximization on some subset of Q, marginalizing
over the remaining variables (Koller and Friedman, 2009).

Advanced query classes. More classes of queries can be defined by “combining” the
previous ones. This is the case for marginal MAP (MMAP) queries, involving marginaliza-
tion over one subset of RVs and maximization over another one. An example of a MMAP
query is shown at the beginning in the form of question q2 for the traffic jam example. More
generally, in order to support complex decision making in the real-world, more sophisticated
probabilistic inference routines than EVI, MAR, CON may be required. Examples of more
advanced queries include computing the probability of an event described as a complex
logical sentence (e.g., involving disjunctions) (Choi et al., 2015); computing expectations of
probabilistic predictive models (Khosravi et al., 2019) and information theoretic quantities
of a distribution such as its entropy or the Kullback-Leibler divergence between distribu-
tions (Liang and Van den Broeck, 2017).

Nevertheless, these “simple” classes already provide significant challenges to be answered
exactly by the current landscape of probabilistic models, as we will discuss next.
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1.2 Tractable Probabilistic Inference

When we say a probabilistic model is a tractable probabilistic model (TPM) we are implicitly
expecting this model to provide two types of guarantees. The first is that the model is able
to perform exact inference2. That is, its output given certain queries is faithful to the
distribution the model encodes, and no approximations are involved in obtaining it. The
second one is that the computation of such a query can be carried out efficiently. The next
definition better formalizes these two desiderata for classes of models and queries.

Definition 5 (Tractable probabilistic inference) A class of queries Q is tractable
on a family of probabilistic models M iff any query q ∈ Q on a model m ∈ M can be
computed in time O(poly(|m|)). We also say that M is a tractable representation for Q.

In Definition 5, the concept of efficiency translates to polytime complexity w.r.t. the
size of models in a class, |m|. One can express the model size of traditional probabilistic
graphical models like Bayesian networks (BNs) and Markov random fields (MRFs) in terms
of the size of their factors, and hence their treewidth (Darwiche, 2009; Koller and Friedman,
2009).

For models represented as computational graphs, such as in neural density estima-
tors (Papamakarios et al., 2019) and our probabilistic circuits, model size directly translates
to the number of edges in the graph. As it will be clear in later sections, for circuits it will
be possible to encode also classical high treewidth BN and MRF distributions in compact
graphs.

Moreover, from Definition 5 it follows that tractability is not an absolute property,
but can be defined for a family of models only w.r.t. a class of queries: Tractability is
a spectrum. Indeed, a tractable representation for a query class Q′ might not admit
polynomial time inference for another class Q′′. For a model class, we define its tractable
band as the set of query classes for which the model class is a tractable representation.

While looking for simple distributions guaranteeing large tractable bands, most univari-
ate and unimodal parametric distributions are good candidates for tractable EVI, MAR and
MAP by design. Indeed, it is generally the case that their parametric form lets you compute
pointwise masses or densities in constant-time; deliver a normalized distribution, hence its
partition function equals one; and specify a mode in closed form. These is true for well-
known distributions such as Bernoulli, Categorical, Gaussian, Poisson, etc., which can be
represented as exponential families.3 When extended to the multivariate case, some of these
distributions retain tractability. This is the case of the omnipresent multivariate Gaussian,
allowing now marginalization in time cubic in |X| and constant-time maximization by design
(their mean remains their mode).

Moving beyond these parametric forms and to general multivariate distributions, we
are going to look at two powerful ideas to compose simpler models: factorizations and

2. As such, we are ruling out the discourse on deep generative models like GANs (Goodfellow et al., 2014)
and RAEs (Ghosh et al., 2019), which do not have an explicit density model, and VAEs (Kingma and
Welling, 2013) which even by having a well-defined density, cannot compute it exactly.

3. When dealing with generalized MAR queries as in Definition 2 we will need to access the corresponding
CDF for these distributions. Sometimes this might not be computable in closed form, as for Gaussians.
.
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mixtures. Both act as “meta model” classes, i.e., induces a model class give a collection
of “base” model classes. Note that it is not required that the models used as the mixture
components belong to the same model class.

Definition 6 (Factorized models) Consider the probabilistic model m encoding a prob-
ability distribution over a collection of RVs X =

⋃k
i=1 Xi partitioned into disjoint sets

Xi ∩Xj = ∅ for any i 6= j in 1, . . . , k. m is said to be a factorized model if

pm(X) =
k∏
i=1

pmi(Xi) (6)

where each mi is a base probabilistic model over RVs Xi.

A classical example of factorized models are fully-factorized distributions.

Example 5 (Fully factorized distributions) Consider a multivariate Gaussian N (µ,Σ)
over RVs X1, X2, X3 with mean µ = (µ1, µ2, µ3) and diagonal covariance matrix Σ =
diag(σ1, σ2, σ3) as depicted on the left.

X1 X2 X3
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0.0
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1.5

2.0

2.5
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p(X1, X2, X3) = p(X1)p(X2)p(X3) =

= N (µ1, σ1)N (µ2, σ2)N (µ3, σ3)

Then its joint density p(X1, X2, X3) can be fully factorized as in the expression on the right.

A nice property of factorized models is that they preserve the tractable band of their
base models. Let MFM be the meta-class of factorized models over RVs X and comprising
some base model classes.

If all base model classes are tractable for QEVI, then MFM is also tractable for EVI
queries. This follows from evaluating Equation 6 in time linear to the number of base
models. Furthermore, if all base model classes are tractable for QMAR, then MFM is also
tractable for MAR queries as the larger multidimensional integral of Equation 4 would
factorize as∫

I1
. . .

∫
Ik
p(Z1, . . . ,Zk, e) dZ1 . . . dZd =

∫
I1
p(Z1, e1)dZ1 . . .

∫
Ik
p(Zk, , ek)dZk

where each partition of RVs Xi individuates a corresponding partition Zi, ei over the RVs to
be marginalized and those in the partial evidence, and each interval Ii is defined accordingly.
Analogously, if all base model classes are tractable for QMAP, then MFM is also tractable
for MAP queries as the joint maximization problem of Equation 5 can be decomposed in
smaller ones which can be solved independently:

max
q∈val(Q)

p(Q = q,E = e) = max
q1∈val(Q1)

p(Q1 = q1, e1)× . . .× max
qk∈val(Qk)

p(Qk = qk, ek)
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where again the factors over RVs {Xi}ki=1 induce a corresponding partitioning {Qi, ei}ki=1

over query RVs Q and evidence e.
Models inMFM are able to preserve large tractable bands because they assume statistical

independence among all RVs. In turn, independence allows to “break” larger problems into
smaller ones and which can be solved in parallel. Clearly, modeling sets of RVs to be
independent might be a too restrictive assumption for real-world scenarios, since we might
discard important dependencies among those RVs. That is, MFM is not expressive enough
to represent all possible probability distributions. Nevertheless, factorization suggests us a
powerful divide et impera modeling principle which will be one of the powerful and pivotal
ideas in the framework of probabilistic circuits in the next section.

What fully factorized models lack, expressiveness, can be increased by gradually intro-
ducing back dependencies among the RVs. One way to do that in the framework of classical
probabilistic graphical models is to add edges in the graph. While we do so, however, we
might reduce the tractable band for these new, more expressive classes of PGMs, as we
increase their treewidth. It is very well known, for instance, that the complexity of comput-
ing MAR queries in discrete PGMs is exponential in their treewidth Cooper (1990); Roth
(1996); Koller and Friedman (2009).

An alternative way to enhance the expressiveness of a model class is to add dependencies
via mixture models. Analogous to factorization, mixture models act as meta-models and,
again, it is not required that the models used as the mixture components belong to the
same model class. However, to deal with a well-defined joint distribution we would require
all the mixture components to be distributions over the same set of RVs.

Definition 7 (Mixture models) Let {pmi}ki=1 a finite collection of probabilistic models,
each defined over the same collection of RVs X. A mixture model is the probabilistic model
defined as the convex combination

pm(X) =
k∑
i=1

wipmi
(X) (7)

for a set of positive weights (called the mixture parameters) wi > 0, i = 1, . . . , k and∑k
i=1wi = 1.

Mixtures increase the expressiveness of the base model classes while still preserving
tractable inference for some query classes. If the component model classes are tractable
representations for QEVI, then the induced mixture model class is also tractable for QEVI

since the complexity of computing EVI queries scales linearly in k according to Equation 7.
Furthermore, if the components model classes are tractable representations for QMAR,

the mixture model class is also tractable for MAR queries, as one can “push” the outer
integration in Equation 4 to the mixture component models as the following:∫
I1
· · ·
∫
Ik

k∑
i=1

wipmi
(Z1, . . . ,Zk, e) dZ1 · · · dZd =

k∑
i=1

wi

∫
I1
· · ·
∫
Ik
pmi

(Z1, . . . ,Zk, e) dZ1 · · · dZd.

However, even if the components model classes are tractable representations for QMAP,
the induced mixture class is not tractable for QMAP. One can interpret a mixture model
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by associating a categorical latent variable (LV) Z with k possible states that acts as a
switch in selecting the mixture components. This allows us to see why QMAP is hard for
mixture models over RVs X: maximization over X requires to first marginalize Z and hence
corresponds to performing MMAP inference (de Campos, 2011).

Example 6 (Gaussian mixture models) Consider the mixture model (orange) of two
univariate Gaussians N (µ1, σ1) and N (µ2, σ2) (blue, dotted) as depicted on the left.

−10 −5 0 5 10

X1

0.00

0.05

0.10
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0.25

p(
X

1)

p(X1) = w1p1(X1) + w2p2(X1) =

= w1N (µ1, σ1) + w2N (µ2, σ2)

Then its joint density p(X1) can be expressed as the weighted sum on the right for the two
positive real weights w1 = 0.8 and w2 = 0.2.

Mixtures, along with factorization, will be a powerful modeling principle for probabilistic
circuits. As factorization helps reduce the complexity of inference by decomposing it into
simpler problems, mixtures will serve the purpose of making the resulting model class
expressive. For continuous RVs it is very well known that a sufficiently large mixture of
(multivariate) Gaussians can approximate any (multivariate) continuous density arbitrarily
well. Analogously, such is the case for discrete distributions when using factorized univariate
distributions instead of Gaussians. However, these properties are valid asymptotically and
therefore require a potentially exponential number of mixture components. We overcome
this issue by stacking mixtures in multiple layers, as in deep (also known as hierarchical)
mixture models.

2. Probabilistic Circuits: Representation

We now introduce probabilistic circuits as a general and unified computational framework
for tractable probabilistic modeling. This serves two major purposes.

The first one is to unify the disparate formalisms proposed so far in the literature for
tractable models. Probabilistic circuits reconcile and abstract from the different graph-
ical and syntactic representations of recently introduced formalisms such as arithmetic
circuits (Darwiche, 2003), sum-product networks (Poon and Domingos, 2011), cutset net-
works (Rahman et al., 2014) and probabilistic sentential decision diagrams (Kisa et al.,
2014). Additionally, more classical tractable models such as treewidth-bounded proba-
bilistic graphical models can be naturally cast in the probabilistic circuits framework by
leveraging knowledge compilation (Darwiche, 2009).

The second purpose of the probabilistic circuit framework is to enable reasoning over
the tractable band of a model class, represented as a circuit, in terms of some well-defined
structural properties only. In turn, this allows for a deeper theoretical understanding of
tractable probabilistic representations at large.
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2.1 Computational graphs as tractable models

Probabilistic circuits define joint probability distributions in a recursive way, by means of a
graph formalism. Even if they are probabilistic models expressed via a graphical formalism,
probabilistic circuits are not probabilistic graphical models (PGMs) (Koller and Friedman,
2009). In fact, differently from PGMs, circuits have a clear operational semantics. That is,
nodes in their graph structure directly represent how to evaluate the probability distribu-
tions they encode, i.e., how to answer probabilistic queries. In essence, probabilistic circuits
are computational graphs. As such, they can also be interpreted as peculiar neural networks
whose computational units abide some special constraints.

To begin, consider the smallest computational graph of this kind, consisting of a single
node. This single node can represent a whole probability distribution over some RVs. The
computation it performs, i.e., the output it emits given some input, would be determined
by the query class considered and parametric form of the distribution it encodes.

Example 7 (Tractable densities as computational units) Consider a unit encoding
a Gaussian density p(X) = N (X;µ, σ) as represented on the left as a circle and labeled by
its RV.

x

X

pX(x) .74

X

.33

Then to answer some EVI query, when it is fed some observed configuration X = .74 as
evidence (orange), it will output the corresponding pdf N (x = .74;µ, σ) = .33 (blue).

Since a computational node defined in this way effectively acts as a black-box encap-
sulating a distribution function, this formalism is quite versatile. First, we do not need to
switch node type to answer queries from different classes. It would suffice to evaluate the
encoded distribution accordingly: e.g., evaluating a pointwise density for EVI as in Exam-
ple 7, marginalizing it over some interval for MAR, or returning its mode to answer MAP
queries. Second, we can plug any out-of-the-box probability distribution as long as it is a
tractable representation for the query class at hand. Moreover, note that we are not lim-
ited to normalized distributions, we just need the function encoded into a input unit to be
non-negative and assume it to be tractable for MAR to readily obtain its partition function.

Clearly, if we were able to model all tractable distributions by a single node, we would
not need a whole framework to represent them! We can however assume to always be
able to encode simple distribution functions into these computational units. This idea
will constitute the base case of our recursion. Building on this, it is natural to look for
computational graphs that represent ways to compose other distributions. In the following,
we look at the meta-model classes we introduced in the previous section– factorization and
mixtures–to build our recursion rule.

We can represent factorization by introducing computational units that perform prod-
ucts. As the name suggests, they output the product of their inputs.

Example 8 (Factorizations as product units) Consider the factorized multivariate Gaus-
sian shown in Example 5. The computational graph below (left), comprising three input units
feeding a product node, represents the factorized density of Example 5.
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X1 X2 X3

.36

0.8

X1

0.5

X2

0.9

X3

To evaluate a probabilistic query, the output of the product node will the the product
of the output of the input units. E.g., for an EVI query, if the input units will output the
density values in blue on the right, the circuit output will be the one in orange.

Distributions from mixture models can also be easily represented as computational
graphs. In order to do so we introduce sum nodes as computational units that compute
weighted averages of the input they are fed. As a graphical convention, we represent the
weights appearing in this computation as attached to the edges connecting the sum to its
inputs.

Example 9 (Mixtures as sum units) Consider the mixture of two Gaussians from Ex-
ample 6. The computational graph below (left), comprising an input unit for each mixture
component connected to the output sum node via an edge weighted by the mixture weight,
represents the mixture density of Example 6, right.

X1 X1

w1 w2

.44

0.2

X1

0.5

X1

0.2 0.8

To evaluate the circuit for a query, the output of the sum node will the the sum of the
output of the input units weighted by their respective edge parameters. E.g., for an EVI
query, if two input units output the density values in blue on the right, the circuit output is
their convex combination in orange.

We have now introduced the main ingredients of the probabilistic circuit framework:
computational units encoding tractable distributions, product units for factorizations and
sums for mixtures. Devising rules to compose them will yield the framework of probabilistic
circuits.

2.2 Probabilistic circuits: structure, parameters

We now provide more rigorous definition of the syntax of probabilistic circuits as a whole.
We start in a top-down fashion, by defining what is a structure and what are the parameters
of a probabilistic circuit.

Definition 8 (Probabilistic circuits (PCs)) A probabilistic circuit (PC) C over RVs X,
characterizing a (possibly unnormalized) joint probability distribution p(X), is a pair (G,θ),

11



where G is a computational graph, also called the circuit structure that is parameterized
by θ, also called the circuit parameters, as defined next.

Definition 9 (Probabilistic circuits: structure) Let C = (G,θ) be a PC over RVs X.
G is a computational graph in the form of rooted DAG equipped with a scope function φ
which associates to each unit, also called node, n ∈ G a subset of X, i.e., φ(n) ⊆ X. If there
is an edge n → c from node n ∈ G to node c ∈ G, we call n the parent of c and c its child
or, equivalently, c the input of n4. Let ch(n) denote the set of a child nodes of node n in
C. G comprises three kinds of units: input nodes, product nodes and sum nodes as defined
next.

Definition 10 (Probabilistic circuits: computational semantics) Let C = (G,θ) be
a PC over RVs X. Each node n ∈ G encodes a non-negative function Cn over its scope:
Cn : val(φ(n)) → R+. An input node n in C, also called leaf node, encodes a non-negative
function that has a support supp(Cn) and is parameterized by θn.5 A product node n defines
the factorization Cn(X) =

∏
c∈ch(n) Cc(X). A sum node n defines the weighted sum Cn(X) =∑

c∈ch(n) θn,cCc(X) parameterized by weights θn,c ≥ 06.

Definition 11 (Probabilistic circuits: parameters) The set of parameters of a PC C
is θ = θS ∪ θL where θS is the set comprising all sum node weights θn,c and θL is the set of
parameters of all input nodes in C.

By above definitions, the recursive semantics of probabilistic circuits emerges. Let Cn be
the sub-circuit rooted at node n. According to above definitions, Cn is also a PC, i.e., a
computational graph over φ(n), parameterized by θn.

In the rest of the paper, we will make the following simplifying assumptions. Moreover
we will assume input units to model unique functions. The uniqueness of these function
will come handy later. Note that we can safely assume that since if that were not the case,
we could always replace all inputs encoding the same exact function by a single node and
redirect its output to the union of the outputs of the removed input nodes. Lastly, when
not specified otherwise, we will consider PCs to have input units modeling univariate input
distributions for the sake of simplicity.

Recall from Section 2.1 that simple probability distributions can be easily represented
as computational units serving as input nodes in PCs. Among these, exponential families,
such as Poisson, Gaussians, and Bernoulli, are common choices guaranteeing large tractable

4. We adopt the classical PGM convention for edge directionality when traversing the DAG: from parent
to child. Note, however that tf we interpret the DAG as a computational graph, edges directions shall
go the other way around: from inputs to outputs. Note that when plotting computational graphs, e.g.,
Example 8, we do not graphically show the direction of the arrows connecting inputs to the product to
avoid clutter and overcome this ambiguity. This is a graphical simplification we will adopt in all graphics
in this paper.

5. Here we assume that supp(Cn) is the inherent support for a leaf node n, i.e., it does not change for
arbitrary choices of parameters θn.

6. The assumption of having normalized weights, i.e.,
∑

c θn,c = 1, delivers the classical intuition on mixture
models defining normalized distributions. However, it is not needed because in mixture models support-
ing MAR and in circuits we can always normalize the encoded distribution by locally re-normalizing
weights (Peharz et al., 2015).
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bands. When we consider Boolean RVs, it might come handy to represent input nodes as
indicator functions. For instance, to model an input unit whose scope is RV Xi ∈ X we
can have either the indicator JXi = 0K or JXi = 1K. Note that a classical Bernoulli RV with
parameters θ can be represented by a small PC consisting of the two indicator nodes defined
as above and feeding a sum node whose parameters are θ and 1− θ.

Using Examples 8 and 9 in Section 2.1, we provided a flavor of how the evaluation of a
PC corresponds to the feedforward (bottom-up) evaluation of its underlying computational
graph, when targeting PCs encoding simple distributions. We now provide a more rigorous
and general definition applicable to all EVI queries, that is when all input units in a PC are
provided an input value.

Definition 12 (EVI query computations) Given a complete configuration x for RVs X,
the output of any sub-circuit rooted at node n over the RVs Z = φ(n), denoted Cn(x) =
Cn(z), where z is the restriction of x to the RVs in Z, is obtained by evaluating the sub-
circuit in a feed-forward manner (also called bottom-up), i.e., children before parents.

Before moving to inference with PCs for other query classes, we introduce the interpre-
tation of a PC as a polynomial function whose unknowns are the input functions. We will
leverage the notion of an induced sub-circuit to traverse the DAG G of a PC.

Definition 13 (Induced sub-circuit) Let C = (G,θ) be a PC over RVs X. An induced
sub-circuit T built from G is a tree built as follows in a recursive top-down manner. The
root n of C is in T . If n is a product node, then for every child c, the sub-circuit rooted at
c and the edge n → c are in T . If n is a sum node, then for one child c, the sub-circuit
rooted at c and the weighted edge n→ c are in T .

Note that each leaf node in a sub-circuit T of a graph G is also a leaf node in G.
Furthermore, the DAG G can be represented as the collection {Ti}i of all the sub-circuit
one can enumerate by taking different children at every sum node in G. Given this “unrolled”
representation of G, we can now define the polynomial representation of a PC C.

Definition 14 (Circuit polynomial) Let C = (G,θ) be a PC over RVs X. For a com-
plete configuration x ∈ val(X), C computes the following polynomial

C(x) =
∑
Ti∈G

 ∏
θj∈θTi

θj

∏
c∈Ti

Cdcc (x) =
∑
Ti

θTi
∏
c∈Ti

Cdcc (x) (8)

where Ti ∈ G is a sub-circuit tree in the computational graph as previously defined, θTi is
the collection of weights attached to weighted edges in Ti, c ∈ Ti denotes one of its input
unit and dc denotes how many times an input unit is reachable in Ti.

This polynomial representation becomes a multilinear polynomial when dc becomes 1 for
all possible input units. In that case the induced sub-circuit is a tree (and sometimes called
only induced tree (Zhao et al., 2015)). Furthermore, if a C models only binary RVs, the
circuit polynomial as defined above for dc = 1 goes under the name of network polynomial
in the Bayesian network and AC literature (Darwiche, 2003, 2009).
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3. Tractable Circuits for Marginals

In this section, we will provide a precise characterization of the circuit structures that allow
tractable computation of MAR queries. We first define what it means for a probabilistic
circuit to compute marginals.

Definition 15 A probabilistic circuit C over variables X computes marginals if the par-
tial evidence computation CI(y) is equal to the marginal

∫
I C(yz) dz for all subset Y ⊆ X

and Z = X \Y, instantiations y, and intervals I.

Note that a probabilistic circuit that does not compute marginals is not necessarily
intractable for certain marginal queries – there may be other polytime algorithms than
partial evidence computation. Instead, circuits that compute marginals can intuitively be
understood as encoding the marginal distributions for every subset of variables.

We next introduce the structural properties that are known to be sufficient for marginals.

Definition 16 A product node n is decomposable if the scopes of its children do not
share variables: φ(ci) ∩ φ(cj) = ∅, ∀ ci, cj ∈ ch(n), i 6= j. A circuit is decomposable if all of
its product nodes are decomposable.

Definition 17 A sum node n is smooth if its children depend on the same variables:
φ(c) = φ(n), ∀ c ∈ ch(n). A circuit is smooth if all of its sum nodes are smooth.

Decomposable and smooth circuits were used for marginal inference for Boolean indica-
tor leaf nodes in the context of arithmetic circuits (Darwiche, 2003) which are decomposable,
smooth, and deterministic (to be introduced in the next section), and also by Poon and
Domingos (2011) using sum product networks. It was later shown by Peharz et al. (2015)
that decomposability and smoothness are in fact sufficient for a circuit with arbitrary leaf
nodes to compute marginals. Next, we will show that both structural properties are in fact
necessary for a probabilistic circuit to compute marginals.

Theorem 18 Suppose G is a circuit structure such that for any parameterization θ, the
probabilistic circuit C = (G,θ) computes marginals. Then, G must be decomposable and
smooth.

Every probabilistic circuit using sum and product nodes computes a polynomial in terms
of the leaf functions:

C(x) =
∑
i

θi
∏
j

L
dij
ij (x).

Let us call each i a term and θi its coefficient. Here, each Lij(x) is a leaf function, and

the product
∏
j L

dij
ij makes up the term i; θi is then a product of some parameters in the

circuit. Note that given a partial evidence y and a set of intervals I on Z = X \Y, the
circuit then evaluates to:

CI(y) =
∑
i

θi
∏
j

(∫
I
Lij(yz)dz

)dij
.
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First, suppose G is not decomposable, and let X be the variable that is shared between
children of an non-decomposable node. Given an instantiation y to Y = X \ {X} and

interval I on X, the circuit evaluates to CI(y) =
∑

i θi
∏
j

(∫
I Lij(xy)dx

)dij ; whereas, the

marginal is
∫
I C(xy)dx =

∑
i θi
∫
I
∏
j L

dij
ij (xy)dx. Since G is not decomposable, there must

be a term i where either dij > 1 for some leaf function Lij or more than one leaf functions
depend on X. In either of the cases, CI(y) is not in general equal to the marginal. In other
words, decomposability is necessary for computing marginals.

Next, suppose G is decomposable but not smooth. Then the+re must exist a variable
X ∈ X such that there is a term i for which no leaf function depends on X. Let I be the
set of all terms where this happens, which must be nonempty because G is not smooth.
Also, w.l.o.g. let j = 1 be the leaf function that depends on X for each i 6∈ I. As G is
decomposable, dij = 1 for all i, j and no two leaf functions for a term share variables.
Therefore, for any instantiation y to Y = X \ {X}, the marginal is:∫

I
C(xy)dx =

∑
i

θi

∫
I

∏
j

Lij(xy)

 dx

=
∑
i∈I

θi

(∫
I
dx

)∏
j

Lij(y) +
∑
i 6∈I

θi

(∫
I
Li1(xy)dx

)∏
j 6=1

Lij(y)

=
∑
i∈I

θi |I|
∏
j

Lij(y) +
∑
i 6∈I

θi

(∫
I
Li1(xy)dx

)∏
j 6=1

Lij(y). (9)

Now suppose we evaluate the circuit on above partial evidence y. Then,

CI(y) =
∑
i∈I

θi
∏
j

Lij(y) +
∑
i 6∈I

θi

(∫
I
Li1(xy)dx

)∏
j 6=1

Lij(y). (10)

Hence, the partial evidence evaluation is not necessarily equal to the marginal. In particular,
if X is a discrete variable,

∫
dx in Equation 9 refers to

∑
x 1 which is the number of potential

values for X. Thus, CI(y) lower bounds the marginal.
Therefore, decomposability and smoothness precisely describe all circuit structures that

allow for marginals under any parameterization.
We have now seen our first family of tractable probabilistic circuits, namely those that

are decomposable and smooth. As tractability is defined in terms of the size of the model,
naturally we ask how these structural constraints affect the expressive efficiency of circuits.
Darwiche and Marquis (2002) showed that there are functions with a compact circuit repre-
sentation, but no polynomial-sized decomposable circuit.7 Thus, the family decomposable
and smooth circuits are not as expressive efficient as the family of all probabilistic circuits.
Indeed, this is not surprising as marginal inference is #P-hard.

4. Tractable Circuits for MAP

We next study the circuit structures that enable tractable MAP inference. Again, we first
define when a circuit computes the MAP, using the notion of maximizer circuits.

7. This was shown for logical circuits, but the proof can easily be extended to probabilistic circuits.
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Definition 19 (Distribution maximizer) Let CL be an input function of a PC, charac-
terizing some distribution, then its associated function maximizer, denoted as Cmax

L com-
putes maxy∈val(Y) CL(y) where Y = φ(n).

Definition 20 (Circuit maximizer) For a given circuit C = (G,θ) over RVs X, let
Cmax = (Gmax,θ) be its maximizer circuit where Gmax is obtained by replacing every sum
node n in G with a max node, i.e., computing the function Cn(X) = maxc∈ch(n) θn,cCc(X),
and every input distribution with its distribution maximizer.

Definition 21 Given a probabilistic circuit C and its maximizer circuit Cmax, we say Cmax

computes the MAP of C if Cmax(y) = maxz C(yz) for all subset Y ⊆ X and Z = X \Y
and its instantiation y.

Let us now introduce a structural property that enables tractable MAP computations.

Definition 22 (Deterministic circuits) A sum node n is deterministic if, for any
fully-instantiated input, the output of at most one of its children is nonzero. A circuit
is deterministic if all of its sum nodes are deterministic.

Determinism is our first structural property that constrains the output of a node, instead
of its scope. Note that it is still a restriction on the circuit structure and not its param-
eters, as the inherent support of leaf nodes given by the structure cannot be altered by
the parameters. Chan and Darwiche (2006) showed that maximizer circuits of smooth,
decomposable, and deterministic circuits compute the MAP. That is, these properties are
sufficient conditions for MAP computations using maximizer circuits.

We now turn our focus to identifying the necessary conditions. First, we observe that
decomposability is not in fact necessary, and that a strictly weaker restriction, namely con-
sistency, is enough. We adopt the notion of consistency introduced by Poon and Domingos
(2011) for Boolean variables, and generalize it to arbitrary (continuous or discrete) random
variables as the following:

Definition 23 A product node is consistent if each variable that is shared between multiple
children nodes only appears in a single leaf node, in the subcircuit rooted at the product node.
A circuit is consistent if all of its product nodes are consistent.

Clearly, any decomposable product node is also consistent by definition.

Theorem 24 Suppose G is a circuit structure such that for any parameterization θ, the
maximizer circuit Cmax = (Gmax,θ) computes the MAP of C = (G,θ). Then, G must be
consistent and deterministic.

We will prove above theorem by first showing necessity of consistency then determinism.
Maximizer circuit Cmax computes the MAP iff any product node n with children {ni}i sat-
isfies maxx n(x) =

∏
i maxx ni(x). Suppose there exists an inconsistent node n. Let n1 and

n2 denote its children nodes where a variable X appears in leaf nodes L1 and L2, respec-
tively. We can assume w.l.o.g that n1 and n2 are consistent, and thus arg maxx n1(x) (resp.
arg maxx n2(x)) must agree with arg maxx L1(x) (resp. arg maxx L2(x)) on the value of X.
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However, we can parameterize the leaf functions at L1 and L2 such that their respective
MAP assignments do not agree on the value of X. In other words, the maximizer circuit
can return a value that does not correspond to a consistent assignment of the variables.
Therefore, any circuit that computes the MAP must be consistent.

Next, we show that such circuit must also deterministic, by adapting the proof from
Choi and Darwiche (2017) that any smooth, decomposable circuit computing the MAP
must also be deterministic. Suppose G is not deterministic, and let n be a non-deterministic
sum node. Hence, there exists one or more complete inputs (denote X ) such that more than
one children of node n evaluate to non-zero values.

Since G must be consistent, at least one of those inputs must make the circuit at the
root output non-zero. To show this, suppose all inputs in X lead to a circuit output of zero.
Then there must exist an ancestor of n (or n itself) that is always multiplied with a node
that outputs 0 for all inputs in X . Note that the variables not in the scope of n can be
assigned freely, and thus the output of zero must be caused by assignments to variables in
the scope of n. This is only possible if the circuit is inconsistent.

We can parameterize the circuit such that an input in X is a MAP state. Then with-
out performing additions at sum nodes, one cannot retrieve the value of C(x) and cannot
correctly compute the MAP.

We have now shown the necessary and sufficient conditions for two classes of queries:
MAR and MAP. Next, we study the succinctness of circuits when asserting these conditions.

Theorem 25 There exists a function with a circuit of linear size that can compute the
MAP but no poly-size circuit that computes its marginals. (Assuming that the polynomial
hierarchy does not collapse)

Consider a circuit C of the following form over Boolean variables X = {X1, . . . , Xn},Y =
{Y1, . . . , Yr}:

r∏
i

(Yi · Zi1 + (¬Yi) · Zi2), (11)

where each Zij ∈ X. Note that above circuit is consistent and deterministic, and thus allows
for computation of MAP using its maximizer circuit. Next, we will show that computing
the marginal of above function is a #P-hard problem. The proof is by reduction from SAT′

which was shown to be #P-complete by Valiant (1979).

• SAT′: Given a monotone 2CNF
∧r
i (Zi1 ∨ Zi2) where Zij ∈ X, output

|{(x, t) : t ∈ {1, 2}r,x makes Zi,ti true ∀ i}|.
Note that for a given x, the number of (x, t) that is counted by SAT′ is 0 if x does

not satisfy the 2CNF formula, and otherwise 2m where m is the number of clauses i such
that both literals Zi1 and Zi2 are set to true. Given a monotone 2CNF, let us construct a
consistent and deterministic circuit by changing the logical AND into a product node, OR
into a sum node, and adding auxiliary variables Yi for each clause as in Equation 11. Then
for any given x, the marginal C(x) (with Y unobserved) computes

∏
(Zi1 +Zi2) which is 0

if x does not satisfy the formula and 2m otherwise; the marginal C(.) is then the solution to
the original SAT′ problem. Hence, there cannot exist a poly-sized circuit for this function
that allows marginals, unless the polynomial hierarchy collapses.
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Theorem 26 (Choi and Darwiche (2017)) There exists a function with linear-size cir-
cuit that can compute marginals but no poly-size circuit that computes its MAP. (Assuming
that the polynomial hierarchy does not collapse)

Any naive Bayes network can be represented as a linear-size smooth and decomposable
probabilistic circuit. The marginal feature distribution can be represented by forgetting
the class variable from such circuit (i.e. set all leafs for the class variable to 1 then simplify
the circuit). A poly-size circuit that computes the MAP of this marginal distribution then
computes the marginal MAP of naive Bayes in polytime. However, marginal MAP is known
to be NP-hard for naive Bayes (de Campos, 2011).

Therefore, even though marginal inference is computationally harder than MAP infer-
ence, there still exist functions with probabilistic circuits for tractable marginals but not
tractable MAP.
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