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Abstract

Weighted model counting (WMC) is a well-known inference task on
knowledge bases, used for probabilistic inference in graphical models. We
introduce algebraic model counting (AMC), a generalization of WMC to
a semiring structure. We show that AMC generalizes many well-known
tasks in a variety of domains such as probabilistic inference, soft con-
straints and network and database analysis. Furthermore, we investigate
AMC from a knowledge compilation perspective and show that all AMC
tasks can be evaluated using sd-DNNF circuits. We identify further char-
acteristics of AMC instances that allow for the use of even more succinct
circuits.

1 Introduction

Today, some of the most efficient techniques for probabilistic inference employ
reductions to weighted model counting (WMC) both for propositional and for
relational probabilistic models (Park, 2002; Sang et al., 2005; Darwiche, 2009;
Fierens et al., 2011). On the other hand, it is well-known that probabilistic
inference as well as many other tasks can be generalized to a sum of products
computation over models with suitable operators from a semiring structure.
This has led to common inference algorithms for a variety of different inference
problems in a variety of different fields, see for instance Goodman (1999), Eisner
et al. (2005), Meseguer et al. (2006), Green et al. (2007), Bacchus et al. (2009),
Larrosa et al. (2010), Baras and Theodorakopoulos (2010) and Kimmig et al.
(2011). The work presented here builds on these two lines of work.

As our first contribution, we introduce the task of algebraic model counting
(AMC). AMC generalizes weighted model counting to the semiring setting and
supports various types of labels, including numerical ones as used in WMC,
but also sets, polynomials, Boolean formulae, and many more. It thereby also
generalizes many different tasks from a variety of different fields. As our sec-
ond contribution, we investigate how to solve AMC problems using knowledge
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compilation. As AMC is defined in terms of the set of models of a proposi-
tional logic theory, we can exploit the succinctness results of the knowledge
compilation map of Darwiche and Marquis (2002). We show that AMC can in
general be evaluated using sd-DNNF circuits, which are more succinct than a
direct representation of the set of models. Furthermore, we identify a number
of characteristics of AMC tasks that allow for using even more succinct types of
circuits. Our results generalize well-known results for satisfiability and model
counting in circuits to broad classes of AMC tasks and extend the task classifica-
tion in algebraic Prolog (Kimmig et al., 2011) to more succinct types of circuits.
As our third contribution, we provide conditions under which AMC generalizes
semiring sums of products defined over derivations, that is, sequences of possibly
repeated variables, instead of over models.

This paper is organized as follows. We introduce algebraic model counting in
Section 2. Section 3 provides task characteristics that allow for sound evaluation
on specific classes of circuits and shows how these generalize previous results.
We discuss future work and conclude in Section 4.

2 Algebraic Model Counting

We first define the task of algebraic model counting, provide some example
instances, and briefly discuss its relationships to existing frameworks. The un-
derlying mathematical structure is that of a commutative semiring.

Definition 1 ((Commutative) Semiring). A semiring is a structure
(A,⊕,⊗, e⊕, e⊗), where addition ⊕ and multiplication ⊗ are associative binary
operations over the set A, ⊕ is commutative, ⊗ distributes over ⊕, e⊕ ∈ A is the
neutral element of ⊕, e⊗ ∈ A that of ⊗, and for all a ∈ A, e⊕⊗a = a⊗e⊕ = e⊕.
In a commutative semiring, ⊗ is commutative as well.

Algebraic model counting is now defined as follows:

Definition 2 (AMC Problem). Given

• a propositional logic theory T over a set of variables V,

• a commutative semiring (A,⊕,⊗, e⊕, e⊗), and

• a labeling function α : L → A, mapping literals L of the variables in V to
elements of the semiring set A,

compute

A(T ) =
⊕

I∈M(T )

⊗
l∈I

α(l), (1)

where M(T ) denotes the set of models of T .
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Theorem 1. AMC generalizes satisfiability (SAT), model counting (#SAT),
weighted model counting (WMC), probabilistic inference (PROB), sensitivity
analysis (SENS), gradient (GRAD), probability of most likely states (MPE),
shortest (S-PATH) and widest (W-PATH) paths, fuzzy (FUZZY) and k-
weighted (kWEIGHT) constraints, and OBDD< construction.

Proof. By verification of the definitions in Table 1.

SAT, #SAT, WMC and PROB are well-known tasks that appear in many
fields. SENS and GRAD allow one to investigate the effect of parameter
changes and to learn parameters in a probabilistic setting, respectively. In
GRAD, labels are tuples (pi, gi) with pi ∈ [0, 1] the probability of vi and gi the
gradient with respect to the kth variable:

α(vi) =

{
(pi, 1) if i = k
(pi, 0) if i 6= k

(2)

α(¬vi) =

{
(1− pi,−1) if i = k
(1− pi, 0) if i 6= k

(3)

(a1, a2)⊕ (b1, b2) = (a1 + b1, a2 + b2) (4)

(a1, a2)⊗ (b1, b2) = (a1 · b1, a1 · b2 + a2 · b1) (5)

If the second element of the label denotes a cost, the GRAD semiring calculates
expected costs. MPE, S-PATH, W-PATH, FUZZY and kWEIGHT (with
bounded addition +k) are examples of optimization tasks. Finally, AMC can
also be used to construct a canonical representation of the set of models in the
form of an OBDD< circuit, a popular data structure in many fields of computer
science. The last two tasks in the table originate from probabilistic databases
under the positive relational algebra RA+ and are not easily extended to nega-
tive literals. Why-provenance (WHY) collects the set of identifiers of all tuples
an answer depends on, whereas RA+-provenance constructs polynomials that
also take into account the number of times the tuples are used. While all tasks
listed in Table 1 are representative examples from the literature, cf. the refer-
ences given in the table, this is by no means an exhaustive list of semirings and
labeling functions that can be used for AMC.

As these examples illustrate, the AMC task shares its basic structure with a
number of other tasks. The class of sum-of-products problems generalizes factor
graphs to the algebraic setting, but uses discrete valued variables or factors as
basic building blocks (Bacchus et al., 2009). In this context, affine algebraic
decision diagrams (Sanner and McAllester, 2005) and AND/OR multi-valued
decision diagrams (Mateescu et al., 2008) have been used for inference with
real-valued semirings. The restriction to two-valued variables allows us to di-
rectly compile AMC tasks to propositional circuits without adding constraints
on legal variable assignments to the theory. In soft constraint programming,
additional constraints are imposed on the semiring, which ensure that addition
optimizes the degree of constraint satisfaction (Meseguer et al., 2006). Wil-
son (2005) provides an algorithm that compiles semiring-based systems into
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semiring-labelled decision diagrams, which are closely related to unordered bi-
nary decision diagrams, to compute valuations. Semiring-induced propositional
logic labels clauses with semiring elements with a weight associated to their falsi-
fication and is restricted to semirings whose induced pre-order is partial (Larrosa
et al., 2010). In algebraic Prolog (aProbLog), a semiring-labeled logic program
is reduced to AMC for inference (Kimmig et al., 2011).

While AMC sums over models, other tasks sum over sequences of pos-
sibly repeated variables. Examples include algebraic path problems (Baras
and Theodorakopoulos, 2010), semiring parsing (Goodman, 1999), provenance
semirings for positive relational algebra queries in databases (Green et al., 2007),
and semiring-weighted dynamic programs (Eisner et al., 2005). We will discuss
the difference between such derivation-based settings and AMC in more detail
in Section 3.5.

3 AMC using Knowledge Compilation

In their knowledge compilation map, Darwiche and Marquis (2002) provide an
overview of succinctness relationships between various types of propositional
circuits. Furthermore, they show which reasoning tasks in propositional logic,
such as (weighted) model counting (#SAT/WMC) or satisfiability checking
(SAT), are evaluated on which circuits in time polynomial in the size of the
circuit. Propositional circuits are often used as a representation language in
weighted model counting and similar tasks, including for instance probability
calculation and sensitivity analysis in probabilistic databases (Jha and Suciu,
2011; Kanagal et al., 2011) and inference in algebraic Prolog (Kimmig et al.,
2011). In the following, we extend this approach to AMC. We first repeat
the relevant knowledge compilation concepts, closely following Darwiche and
Marquis (2002).

Definition 3 (NNF). A sentence in negation normal form (NNF) over a set of
propositional variables V is a rooted, directed acyclic graph where each leaf
node is labeled with true (>), false (⊥), or a literal of a variable in V, and each
internal node with disjunction (∨) or conjunction (∧).

Definition 4 (Decomposability). An NNF is decomposable if for each conjunc-
tion node

∧n
i=1 φi, no two children φi and φj share any variable.

Definition 5 (Determinism). An NNF is deterministic if for each disjunction
node

∨n
i=1 φi, each pair of different children φi and φj is logically inconsistent.

Definition 6 (Smoothness). An NNF is smooth if for each disjunction node∨n
i=1 φi, each child φi mentions the same set of variables.

DNNF, d-NNF, s-NNF, sd-NNF, d-DNNF, s-DNNF, and sd-DNNF are the sub-
sets of NNF satisfying (combinations of) these properties, where D stands for
decomposable, d for deterministic, and s for smooth. For instance, the circuit
in Figure 1a is in sd-DNNF, while the one in Figure 1b has none of the three
properties.
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∧

∨

¬a b a ¬b

∧

(a) sd-DNNF

∨

∧

¬a ¬b a b

∨

(b) NNF

Figure 1: Example of an sd-DNNF and NNF circuit.

idempotent and
general ⊗ consistency-pres. (⊗, α)

neutral non-neutral neutral non-neutral
(⊕, α) (⊕, α) (⊕, α) (⊕, α)

idempotent ⊕ DNNF s-DNNF NNF s-NNF

(Th. 5) (Th. 3) (Th. 7) (Th. 7)
non-idempotent ⊕ d-DNNF sd-DNNF d-NNF sd-NNF

(Th. 4) (Th. 2) (Th. 7) (Th. 6)

Table 2: Semiring characteristics and corresponding circuits that allow for sound
AMC evaluation.

The algebraic model count A(T ) is defined as a summation over the set
of models M(T ) of a propositional theory T , which corresponds to the MODS

language in the knowledge compilation map. However, as this MODS language is
exponentially less succinct than any other representation of T included in the
map, converting to MODS in order to evaluate Equation (1) directly is undesirable.
In the following, we therefore establish a connection between characteristics of
AMC tasks and properties of the NNF circuits they can be evaluated on, resulting
in the classification scheme summarized in Table 2.

The key idea underlying NNF evaluation is to perform a bottom-up pass
over the circuit, labeling each node with the value of the subcircuit rooted at
that node. For disjunction nodes, the values of all their children are combined
using ⊕, for conjunction nodes using ⊗.

Definition 7 (NNF Evaluation). The function Eval specified in Algorithm 1
evaluates an NNF circuit for a commutative semiring (A,⊕,⊗, e⊕, e⊗) and label-
ing function α.

Consider for example #SAT for the two circuits in Figure 1, which both
represent an exclusive OR of two variables. Evaluation of the sd-DNNF in Fig-
ure 1a, which in fact is a MODS representation, assigns label 1 to each leaf, 1·1 = 1
to each conjunction node, and 1 + 1 = 2 to the disjunction node at the root
and thus the entire circuit, which is correct. On the other hand, evaluation on

6



Algorithm 1 Evaluating an NNF circuit N for a commutative semiring
(A,⊕,⊗, e⊕, e⊗) and labeling function α.

1: function Eval(N,⊕,⊗, e⊕, e⊗, α)
2: if N is a true node > then return e⊗

3: if N is a false node ⊥ then return e⊕

4: if N is a literal node l then return α(l)
5: if N is a disjunction

∨m
i=1Ni then

6: return
⊕m

i=1 Eval(Ni,⊕,⊗, e⊕, e⊗, α)
7: if N is a conjunction

∧m
i=1Ni then

8: return
⊗m

i=1 Eval(Ni,⊕,⊗, e⊕, e⊗, α)

the general NNF in Figure 1b assigns 1 + 1 = 2 to each disjunction node and
2 ·2 = 4 to the conjunction node at the root. This overestimation is due to mod-
els shared by the children of the same disjunction node and variables shared by
the children of the conjunction node, as we will see in more detail in Section 3.2
and 3.3.

Definition 8 (Soundness). Evaluating an NNF representation NT of a propo-
sitional theory T for a semiring (A,⊕,⊗, e⊕, e⊗) and labeling function α is a
sound AMC computation iff Eval(NT ,⊕,⊗, e⊕, e⊗, α) = A(T ).

In the following, we establish a general soundness result for AMC evaluation
on sd-DNNF circuits as well as properties of AMC tasks that guarantee soundness
for various other subclasses of NNF. Given soundness, we inherit the polynomial
complexity results of the knowledge compilation map (Darwiche and Marquis,
2002) for semiring operators with unit cost. Note however that there are semir-
ings with more expensive operators. For instance, labels in OBDD< may grow
exponentially in the circuit size.

3.1 sd-DNNF Evaluation

We show that AMC evaluation is sound on sd-DNNF circuits. As these are
strictly more succinct than MODS representations, they allow for more efficient
inference.

Theorem 2 (sd-DNNF Evaluation). Evaluating an sd-DNNF representation of
the propositional theory T is a sound AMC computation.

Proof. We show that Eval(NT ,⊕,⊗, e⊕, e⊗, α) for an sd-DNNF representation
NT of the theory T computes A(T ) with respect to all variables in NT :

1. Line 2: A(>) =
⊕

I∈{∅}
⊗

l∈I α(l) = e⊗

2. Line 3: A(⊥) =
⊕

I∈{}
⊗

l∈I α(l) = e⊕

3. Line 4: A(l) =
⊕

I∈{{l}}
⊗

k∈I α(k) = α(l)

7



Due to associativity and commutativity of the semiring operators, operands of
each summation and each multiplication can be evaluated in arbitrary order.
We therefore restrict ourselves to binary disjunction and conjunction nodes here.
Given sound evaluation for subcircuits φi with variables Vi and modelsMi with
respect to these variables, we obtain:

4. Lines 5-6: Disjunction node φ1 ∨φ2: As V = V1 ∪V2 = Vi due to smooth-
ness, we obtain M(φ1 ∨ φ2) = M1 ∪M2, which is a disjoint union due
to determinism. Therefore, A(φ1) ⊕ A(φ2) =

⊕
i=1,2

⊕
Mi

⊗
l∈I α(l) =⊕

M1∪M2

⊗
l∈I α(l) = A(φ1 ∨ φ2).

5. Lines 7-8: Conjunction node φ1 ∧ φ2: As V1 ∩ V2 = ∅ due to decompos-
ability, the set M(φ1 ∧ φ2) of models of the conjunction is simply the
set of all unions of models of its parts. Together with distributivity, we
get A(φ1) ⊗A(φ2) =

⊗
i=1,2

⊕
Mi

⊗
l∈I α(l) =

⊕
M(φ1∧φ2)

⊗
l∈I α(l) =

A(φ1 ∧ φ2).

Clearly, the soundness of AMC evaluation on sd-DNNF depends on all three
properties of this subclass of NNF. On the other hand, circuits without these
properties may be exponentially smaller and thus allow for more efficient infer-
ence. In the following, we therefore analyze evaluation in the absence of these
properties, which allows us to identify characteristics of the semiring and la-
beling function that ensure sound evaluation on the corresponding classes of
circuits.

3.2 Evaluation on other Decomposable Circuits

If a circuit is not deterministic, children of a disjunction node may have common
models, in which case evaluation sums over such shared models multiple times.
For instance, consider the circuit in Figure 1b with PROB, α(a) = 0.6 and
α(b) = 0.3. Evaluation on this circuit results in 0.6 + 0.3 = 0.9 for the right
disjunction node, while A(a ∨ b) = 0.6 · 0.3 + 0.4 · 0.3 + 0.6 · 0.7 = 0.72.

Definition 9 (Idempotent Operator). A binary operator � over a set A is
idempotent iff ∀a ∈ A : a� a = a.

Theorem 3 (s-DNNF Evaluation). Evaluating an s-DNNF representation of the
propositional theory T for a semiring with idempotent ⊕ is a sound AMC com-
putation.

Proof. Reconsider point (4) of the proof of Theorem 2. With smoothness,
but without determinism, M1(φ1) ∪ M2(φ2) is no longer a union of disjoint
sets, and A(φ1) ⊕ A(φ2) =

⊕
i=1,2

⊕
Mi

⊗
l∈I α(l) sums over the models in

M1(φ1)∩M2(φ2) twice. Due to associativity and commutativity, this is sound
for idempotent ⊕.

8



If a circuit is not smooth, the children of a disjunction node may use different
sets of variables. Each model of a child node corresponds to a set of models
for the full set of variables, but evaluation on a non-smooth circuit ignores the
labels of unmentioned variables. For instance, consider the circuit in Figure 1b
with MPE, α(a) = 0.6 and α(b) = 0.3. Evaluating the right disjunction node
of this circuit results in max(0.6, 0.3) = 0.6, while A(a∨ b) = max(0.6 · 0.3, 0.4 ·
0.3, 0.6 · 0.7) = 0.42.

Definition 10 (Neutral (⊕, α)). A semiring addition and labeling function
pair (⊕, α) is neutral iff ∀v ∈ V : α(v)⊕ α(¬v) = e⊗.

Theorem 4 (d-DNNF Evaluation). Evaluating a d-DNNF representation of the
propositional theory T for a semiring and labeling function with neutral (⊕, α)
is a sound AMC computation.

Proof. For lines 5-6 (point (4) of the proof of Theorem 2) to be sound, the sum
of the AMCs computed by the children over their sets of variables Vi has to be
equal to the AMC of the entire disjunction over the full set of variables V1 ∪V2.
Given the child AMC AVi

(φi), adding a variable v to Vi replaces each model I
of φi by two models I+ = I ∪ {v} and I− = I ∪ {¬v}. Due to distributivity,
commutativity and the neutral sum property, the algebraic sum of these two
models equals the AMC of the original model:

AVi∪{v}(I) = AVi∪{v}(I
+)⊕AVi∪{v}(I

−)

= (α(v)⊕ α(¬v))⊗
⊗
l∈I

α(l)

=
⊗
l∈I

α(l) = AVi
(I)

Evaluation therefore computes AV1(φ1)⊕AV2(φ2) = AV1∪V2(φ1)⊕AV1∪V2(φ2),
which due to determinism is equal to AV1∪V2

(φ1 ∨ φ2).

Note that from a practical point of view, non-neutral (⊕, α) does not in-
fluence the tractability of inference, as any NNF can be smoothed in polytime
preserving determinism and decomposability (Darwiche and Marquis, 2002).

The previous two results can directly be combined for DNNF circuits that are
neither smooth nor deterministic.

Theorem 5 (DNNF Evaluation). Evaluating a DNNF representation of the propo-
sitional theory T for a semiring and labeling function with idempotent and neu-
tral (⊕, α) is a sound AMC computation.

Proof. Reconsider point (4) of the proof of Theorem 2. Due to neutral (⊕, α),
values for all children of a disjunction node are correct with respect to the full
set of variables (Theorem 4). Due to idempotent ⊕, multiple occurrences of the
same model do not influence the result (Theorem 3).

This completes the left part of Table 2, where no conditions are imposed on
semiring multiplication.
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3.3 Evaluation on Non-Decomposable Circuits

If a circuit is not decomposable, the children of a conjunction node may share
variables. In this case, simply combining all pairs of their models may produce
sets of literals that are not models, because they either contain contradicting
literals, or several copies of the same literal, which results in erroneous extra
multiplications. For instance, in Figure 1b, {¬a, b} is a model of both disjunction
nodes, and {a, b} of the right one only. The conjunction node sums among others
the products α(¬a)⊗α(b)⊗α(a)⊗α(b), which does not correspond to a model,
and α(¬a) ⊗ α(b) ⊗ α(¬a) ⊗ α(b), where labels of both literals are multiplied
twice.

Definition 11 (Consistency-Preserving (⊗, α)). A semiring multiplication and
labeling function pair (⊗, α) is consistency-preserving iff ∀v ∈ V : α(v)⊗α(¬v) =
e⊕.

Theorem 6 (sd-NNF Evaluation). Evaluating an sd-NNF representation of the
propositional theory T for a semiring and labeling function with idempotent and
consistency-preserving (⊗, α) is a sound AMC computation.

Proof. Reconsider point (5) of the proof of Theorem 2. The set of models
of φ1 ∧ φ2 contains exactly all pairwise combinations of models of its parts
that agree on all shared variables. The circuit evaluates the AMC of φ1 ∧ φ2
as A(φ1) ⊗ A(φ2), which due to distributivity is the sum over all pairwise
combinations of models. Without decomposability, each such combination I
contains two literals for each v ∈ V1 ∩ V2. As ⊗ is associative, commutative
and idempotent, repeated occurrences of a literal l in ⊗i∈Iα(i) do not affect the
result. If {l,¬l} ⊆ I, ⊗i∈Iα(i) includes a multiplication by α(l) ⊗ α(¬l) = e⊕,
which in a semiring means ⊗i∈Iα(i) = e⊕. Such inconsistent I thus do not
contribute to the semiring sum.

Theorem 6 affects only conjunction nodes, whereas Theorems 3, 4 and 5
only affect disjunction nodes. Their combination thus extends our results to
non-decomposable circuits that do not satisfy (one of) the other two properties
either:

Theorem 7 (s-NNF, d-NNF, and NNF Evaluations). For a semiring and label-
ing function with idempotent and consistency preserving (⊗, α), evaluating the
following representation of the propositional theory T is a sound AMC compu-
tation:

• s-NNF if ⊕ is idempotent

• d-NNF if (⊕, α) is neutral

• NNF if (⊕, α) is idempotent and neutral

This completes the right part of Table 2, where using non-decomposable
circuits is possible as a consequence of restrictions on semiring multiplication.
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Given a new AMC instance, this table allows one to immediately choose the
appropriate type of circuit for efficient evaluation. For the examples discussed
here, cf. Table 1, these are: NNF for OBDD<, DNNF for SAT, S-PATH, W-PATH
and FUZZY, d-DNNF for PROB, SENS and GRAD, s-DNNF for MPE and
kWEIGHT, and sd-DNNF for #SAT and WMC.

3.4 Discussion

The results summarized in Table 2 generalize the complexity results for SAT
and #SAT, provide more succinct types of circuits for inference in algebraic
Prolog, and show that all circuits that are practically relevant for AMC are
well-studied in the knowledge compilation map. We now address these points
in more detail.

First, Darwiche and Marquis (2002) show that SAT can be evaluated in
polynomial time on DNNF, while #SAT can be evaluated in polynomial time on
d-DNNF, as smoothing is possible in polynomial time. Our Theorem 5 general-
izes soundness of DNNF evaluation to all semirings and labeling functions with
idempotent and neutral (⊕, α), which includes SAT, while our Theorem 2 gen-
eralizes soundness of sd-DNNF evaluation to all semirings and labeling functions,
including those with non-idempotent, non-neutral (⊕, α), such as #SAT. As
discussed above, the complexity of evaluation is polynomial if each semiring
operation has unit cost.

Second, Kimmig et al. (2011) reduce inference in algebraic Prolog (aProbLog)
to AMC evaluation on disjunctive normal form (DNF). For non-idempotent ad-
dition, the DNF is compiled into an ordered binary decision diagram (OBDD) if
its conjunctions are not mutually exclusive. For non-neutral (⊕, α), circuits are
smoothed before evaluation. This results in the following settings:

neutral (⊕, α) non-neutral (⊕, α)
idempotent ⊕ DNF s-DNF

non-idempotent ⊕ d-DNF sd-DNF

OBDD s-OBDD

Table 2 uses the same characteristics of semiring operators and labeling func-
tion, but does not assume a DNF as starting point and thus also does not rely
on properties of such a DNF. Its left half generalizes the aProbLog scheme to
more succinct superclasses, namely (s-)DNNF instead of (s-)DNF, and (s)d-DNNF
instead of (s)d-DNF or (s-)OBDD.

Third, we observe that while there are interesting inference tasks that allow
for sound evaluation on the more succinct class of DNNF instead of the general
sd-DNNF evaluation, the conditions for sound evaluation on non-decomposable
circuits are too strict in most practical cases. This is in line with the knowledge
compilation map, which excludes non-decomposable circuits (with the exception
of the most general class NNF) as they do not support any of the studied tasks
in polytime (Darwiche and Marquis, 2002).
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Figure 2: NNF circuits for an algebraic path problem and a semiring grammar.
See Section 3.5 for details.

3.5 AMC and Algebraic Derivation Counting

While AMC is a sum over models, many other semiring-based tasks require
a sum over derivations, that is, sequences of possibly repeated variables. Ex-
amples include algebraic path problems (Baras and Theodorakopoulos, 2010),
semiring parsing (Goodman, 1999), provenance semirings for positive relational
algebra queries in databases (Green et al., 2007), and semiring-weighted dy-
namic programs (Eisner et al., 2005). We refer to this type of task as algebraic
derivation counting (ADC). While AMC and ADC appear very similar, they
cannot easily be exchanged, as we illustrate next. We restrict the discussion to
finite ADC.

Where AMC is based on a MODS representation, that is, a smooth, determin-
istic DNF, ADC is based on a type of NNF that is not included in the knowledge
compilation map: a disjunction of conjunctions of possibly repeated variables.
Because of the repeated variables, this is not a DNF in general. Figure 2 shows
two examples of such circuits. The NNF in Figure 2a encodes the two paths
between nodes s and t in a graph with three edges (s, t), (s, r) and (r, t).
It is decomposable, as the conjunction does not repeat variables, but neither
smooth nor deterministic and thus a DNNF. The NNF in Figure 2b encodes the
two derivations of aa in a context-free grammar with rules S → aS | AA | ε and
A→ AA | a. Variable xi denotes an application of the ith production rule for a
non-terminal X, that is, the right conjunction in the circuit encodes the deriva-
tion S → AA→ aA→ aa. The circuit is neither decomposable nor smooth, and
also not deterministic, even though the derivations in the underlying grammar
setting are mutually exclusive (cf. below).

In order to represent an ADC task as an AMC task, the labeling function α
needs to be extended to negative literals. Together with the semiring, such an
extension determines one of the settings of Table 2. If the ADC’s NNF belongs
to the class of circuits corresponding to this setting, the ADC and AMC tasks
coincide. Clearly, this is always the case for commutative semirings and label-
ing functions with idempotent, consistency-preserving (⊗, α) and idempotent,
neutral (⊕, α) such as for instance OBDD<. However, as noted above, such tasks
are rare.
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For an ADC instance with idempotent addition defined on a DNNF, that is,
without repeated variables in conjunctions, an equivalent AMC instance can
be constructed if α can be extended such that (⊕, α) is neutral. For instance,
consider the circuit in Figure 2a in a shortest path setting. By setting α(¬v) = 0
for all variables v, the S-PATH semiring in Table 1 provides an equivalent AMC
task.

As the NNF circuits of ADC do not contain negation, they are not deter-
ministic. However, the underlying tasks often impose additional constraints on
their variables. For instance, in the grammar example in Figure 2b, the leftmost
children s1 and s2 of the two conjunction nodes are in fact mutually exclusive,
as only one of the right hand sides for S can be chosen as first step in a deriva-
tion. Such an n-ary variable can be encoded using n binary variables by adding
corresponding constraints to the theory that restrict legal value assignments.
For some semirings, for instance PROB, it is sufficient to adapt the labels of
these variables without adding constraints. It is an open question under which
general conditions such label transformations are possible.

Conversely, every AMC task can be trivially represented as an ADC task by
introducing a derivation for each model. However, this is clearly not desirable
from a complexity point of view. Baras and Theodorakopoulos (2010) provide
an ADC encoding of network reliability under probabilistic edge failure, that
is, the PROB AMC task for a positive propositional formula. They essen-
tially modify multiplication to filter repeated literals, and addition to subtract
shared models of its operands, which drastically increases complexity of these
operations. Again, it is an open question under which general conditions such
transformations are possible.

4 Conclusions and Future Work

We have introduced the task of algebraic model counting, which generalizes
weighted model counting to a semiring setting and thus to various types of la-
bels, including numerical ones as used in WMC, but also sets, polynomials, or
Boolean formulae. We have shown that evaluating AMC is sound on sd-DNNF

circuits, which are known to be more succinct than the MODS language used in
its definition. Furthermore, we have provided characteristics of AMC tasks that
guarantee sound evaluation on more succinct classes of circuits. This classifica-
tion not only provides a means of directly choosing a circuit type that allows
for efficient inference given a new AMC task, but also generalizes a number of
known results and provides a framework to map restricted types of algebraic
derivation counts onto AMC tasks.

Given the results presented here, it is worth investigating which other al-
gebraic representations can be reduced to algebraic model counting. Another
line of future work concerns the introduction of additional operators that would
make it possible to express additional tasks, for instance, partial MAP, which
requires a maximization operator in addition to summation and multiplication.
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