
An Algebraic Prolog for Reasoning about Possible Worlds

Angelika Kimmig and Guy Van den Broeck and Luc De Raedt
Department of Computer Science, Katholieke Universiteit Leuven,

Celestijnenlaan 200A - bus 2402, 3001 Heverlee, Belgium
{angelika.kimmig, guy.vandenbroeck, luc.deraedt}@cs.kuleuven.be

Abstract

We introduce aProbLog, a generalization of the probabilis-
tic logic programming language ProbLog. An aProbLog pro-
gram consists of a set of definite clauses and a set of algebraic
facts; each such fact is labeled with an element of a semiring.
A wide variety of labels is possible, ranging from probabil-
ity values to reals (representing costs or utilities), polynomi-
als, Boolean functions or data structures. The semiring is then
used to calculate labels of possible worlds and of queries.
We formally define the semantics of aProbLog and study the
aProbLog inference problem, which is concerned with com-
puting the label of a query. Two conditions are introduced that
allow one to simplify the inference problem, resulting in four
different algorithms and settings. Representative basic prob-
lems for each of these four settings are: is there a possible
world where a query is true (SAT), how many such possible
worlds are there (#SAT), what is the probability of a query
being true (PROB), and what is the most likely world where
the query is true (MPE). We further illustrate these settings
with a number of tasks requiring more complex semirings.

1 Introduction
There is significant interest in probabilistic approaches to
logic programming and several probabilistic variants of
Prolog have been developed, such as ICL (Poole 2000),
Dyna (Eisner, Goldlust, and Smith 2005), PRISM (Sato and
Kameya 2001) and ProbLog (De Raedt, Kimmig, and Toivo-
nen 2007). Essentially, all these languages are based on
definite clause logic (pure Prolog) extended with facts la-
beled with probability values. The meaning of such pro-
grams is typically derived from Sato’s distribution seman-
tics (Sato 1995), which assigns a probability to every literal.
The probability of a Herbrand interpretation, also called pos-
sible world, is simply the product of the probabilities of the
literals occurring in this world. The key concept is the suc-
cess probability, which is the probability that a query suc-
ceeds in a randomly selected world. It is defined as the sum
of the probabilities of the possible worlds in which the query
is true. Several algorithms for inferring this probability and
for learning the parameters of such logics have been devel-
oped over the past 15 years.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

While the ability to reason about the probability of pos-
sible worlds and queries is central to artificial intelligence,
applications exist where probabilities alone do not suffice
and where one would like to associate other labels to pos-
sible worlds and queries, such as costs, weights, utilities,
counts, gradients and even functions or data structures. The
first types of labels could be used when making decisions,
the last are often useful for inference and learning.

Analyzing the probabilistic Prologs from an algebraic
point of view reveals that the probabilities associated to facts
and queries are essentially elements of R≥0 and the opera-
tions needed to compute the success probability of a query
are addition and multiplication, which means that one is op-
erating in the semiring (R≥0,+,×, 0, 1).

This raises the question as to 1) whether it is possible to
generalize these probabilistic Prologs to use labels from dif-
ferent semirings, and if so, 2) what AI problems can alge-
braic Prolog solve. This paper positively answers the first
question and also identifies a wide range of problems that
can be solved within such an algebraic Prolog.

To answer the first question we introduce a semantics for
the algebraic Prolog, called aProbLog, which generalizes the
probabilistic programming language ProbLog. An aProbLog
program consists of a set of definite clauses and a set of al-
gebraic facts. These are facts that are labeled with elements
of a commutative semiringR. The label of a possible world
or Herbrand interpretation is then simply the product (inR)
of the labels of the algebraic literals it contains. The label of
a query is the sum (inR) of the labels of the possible worlds
in which the query succeeds. We then study the inference
problem that is concerned with the computation of the query
labels and identify two properties (disjoint-sum and neutral-
sum) that allow one to simplify the problem.

Even though other works such as Dyna (Eisner, Gold-
lust, and Smith 2005) and semiring-based constraint logic
programming (Bistarelli and Rossi 2001) have labeled facts
with elements of a semiring, aProbLog is – to the best of the
authors’ knowledge – the first extension of Prolog that can
tackle the disjoint- and neutral-sum-problems; cf. Section 5
for a more detailed discussion.

To answer the second question, we show how aProbLog
can be used to tackle a wide variety of tasks, including ba-
sic inference tasks in probabilistic logic programming. Other
applications of aProbLog include shortest path problems,

sensitivity analysis, computing the gradient of aProbLog pa-
rameters, or computing a binary decision diagram represent-
ing all possible worlds where a query can be proven.

The paper is structured as follows. We formally introduce
our algebraic Prolog in Section 2 and discuss a variety of
tasks that can be modelled in Section 3. The key ideas and
challenges of inference and corresponding algorithms are in-
troduced in Section 4. Before concluding, we discuss related
work in Section 5. We shall assume some familiarity with
the Prolog programming language, see for instance (Flach
1994) for an introduction.

2 aProbLog
For a set J of ground facts, we define the set of literals L(J)
and the set of interpretations I(J) as follows:

L(J) = J ∪ {¬f | f ∈ J} (1)
I(J) = {S | S ⊆ L(J) ∧ ∀l ∈ J : l ∈ S ↔ ¬l /∈ S} (2)

An algebraic Prolog (aProbLog) program consists of
• a commutative semiring (A,⊕,⊗, e⊕, e⊗)1

• a finite set of ground algebraic facts F = {f1, . . . , fn}
• a finite set BK of background knowledge clauses
• a labeling function α : L(F)→ A
Background knowledge clauses are definite clauses, but their
bodies may contain negative literals for algebraic facts.
Their heads may not unify with any algebraic fact.

The idea of splitting a logic program in a set of facts
and a set of clauses goes back to Sato’s distribution seman-
tics (Sato 1995), where it is used to define a probability dis-
tribution over interpretations of the entire program in terms
of a distribution over the facts. This is possible because a
truth value assignment to the facts in F uniquely determines
the truth values of all other atoms defined in the background
knowledge. In the simplest case, as realized in ProbLog, this
basic distribution considers facts to be independent random
variables and thus multiplies their individual probabilities.
aProbLog uses the same basic idea, but generalizes from the
semiring of probabilities to general commutative semirings.
The distribution semantics is defined for countably infinite
sets of facts. However, this assumes that the basic distri-
bution can be constructed from a series of finite distribu-
tions, which does not always hold in the generalized set-
ting. We therefore require the set of ground algebraic facts
in aProbLog to be finite.2

In aProbLog, the label of a complete interpretation I ∈
I(F) is defined as the product of the labels of its literals

A(I) =
⊗
l∈I

α(l) (3)

1That is, addition ⊕ and multiplication ⊗ are associative and
commutative binary operations over the set A, ⊗ distributes over
⊕, e⊕ ∈ A is the neutral element with respect to ⊕, e⊗ ∈ A that
of ⊗, and for all a ∈ A, e⊕ ⊗ a = a⊗ e⊕ = e⊕.

2In principle it is possible to allow non-ground algebraic facts
to compactly represent a set of ground facts if one also associates
finite domains to the different arguments of predicates or if the pro-
gram does not contain functors.

and the label of a set of interpretations S ⊆ I(F) as the sum
of the interpretation labels

A(S) =
⊕
I∈S

⊗
l∈I

α(l) (4)

A query q is a finite set of algebraic literals and atoms from
the Herbrand base3, q ⊆ L(F) ∪ HB(F∪BK). We denote
the set of interpretations where the query is true by I(q),

I(q) = {I | I ∈ I(F) ∧ I ∪ BK |= q} (5)

The label of query q is defined as the label of I(q),

A(q) = A(I(q)) =
⊕

I∈I(q)

⊗
l∈I

α(l). (6)

As both operators are commutative and associative, the la-
bel is independent of the order of both literals and interpre-
tations. Calculating this label is the central inference task of
aProbLog. Clearly, considering all possible interpretations
to evaluate Equation (6) directly is infeasible for all but the
tiniest programs; we will discuss an alternative approach in
Section 4.

3 aProbLog Tasks
Given the semantics of aProbLog, the question is now which
AI problems can be represented and solved by aProbLog.
We will present a broad range of example tasks, with their
respective logic programs, semirings and labeling functions.

Example 1. Consider the following aProbLog program,
where we directly attach the positive label α(f) to a fact f
and define labels of negative literals as α(¬f) = 1− α(f).
calls(X) :- alarm, hears_alarm(X).
alarm :- burglary.
alarm :- earthquake.

0.7 :: hears_alarm(john).
0.7 :: hears_alarm(mary).
0.05 :: burglary.
0.01 :: earthquake.

This is a program where the labels are probabilities, and
thus a simple ProbLog example. It models a variation
of the famous alarm Bayesian network. In the abstract,
we posed a number of basic questions one could ask
about any query for this program. We now answer these
questions for the query calls(mary). The probability
that the query succeeds in a randomly sampled world is
0.95 ·0.01 ·0.7+0.05 ·0.99 ·0.7+0.05 ·0.01 ·0.7 = 0.04165.
The most likely world where the query succeeds is
{hears alarm(john), hears alarm(mary), burglary},
with probability 0.001995. There are six worlds where the
query succeeds, so the answer for SAT is yes as well.

The semiring structures used to answer these questions
are given in Table 1. While the probabilistic logic program-
ming system ProbLog focuses on the PROB problem, it is
neither able to solve the MPE nor the #SAT problems.

3the set of ground atoms that can be constructed from the pred-
icate, functor and constant symbols of the program

task A e⊕ e⊗ a⊕ b a⊗ b α(f) α(¬f)
PROB R≥0 0 1 a+ b a · b α(fi) ∈ [0, 1] 1− α(fi)
MPE R≥0 0 1 max(a, b) a · b α(fi) ∈ [0, 1] 1− α(fi)
MPE
State

R≥0×
2{J|J⊆I∈I(F)} (0, ∅) (1, {∅}) Eq. (8) Eq. (7) α(fi) = (pi, {{fi}})

with pi ∈ [0, 1] (1− pi, {{¬fi}})
SAT {true, false} false true a ∨ b a ∧ b α(fi) = true true

#SAT N 0 1 a+ b a · b α(fi) = 1 1
BDD BDD(V) bdd(0) bdd(1) a ∨bdd b a ∧bdd b α(fi) = bdd(bi) ¬bddbdd(bi)

sensitivity R[X] 0 1 a+ b a · b α(fi) = x or
α(fi) ∈ [0, 1] 1− α(fi)

gradient R≥0 × R (0, 0) (1, 0) Eq. (9) Eq. (10) Eq. (11) Eq. (12)

Table 1: Semiring definitions and labeling functions for the examples discussed in Section 3.

The MPE-State semiring in Table 1 extends the MPE
semiring to return the set of corresponding worlds as a sec-
ond argument. Its operators are defined as

(p, S)⊗ (q, T) = (p · q, {I ∪ J | I ∈ S, J ∈ T}) (7)

(p, S)⊕ (q,R) =

(p, S) if p > q

(q,R) if p < q

(p, S ∪R) if p = q

(8)

Note that multiplication is only well-defined if the resulting
interpretations are consistent, which is guaranteed here as
we only multiply labels of literals within possible worlds.

Further problems of interest for the alarm program in-
clude cases where the labels could be functions or even data
structures. The algebraic definitions for the following exam-
ples are again given in Table 1.

We can for instance ask for a compact description of all
worlds where the query is true. Boolean functions over a
set of variables V can be represented as binary decision dia-
grams (BDDs, cf. Section 4.2 for more details). For a fixed
variable order, there is a unique BDD for each such function.
We can thus use the BDD semiring to describe sets of pos-
sible worlds, where BDD(V) is the set of BDDs over V for
a fixed order, the function bdd(·) maps constants true and
false and variables to their BDD representation, and ∨bdd,
∧bdd, ¬bdd are the usual logical operators on BDDs.

Another task is sensitivity analysis, where probability la-
bels are modeled by polynomials to investigate how changes
in parameters influence the query probabilities.

Example 2. Replace the probability of burglary by x and
that of hears alarm(mary) by y. The probability of the
query calls(mary) then becomes 0.99 · x · y + 0.01 · y.

To the best of our knowledge, sensitivity analysis for com-
puting the success probabilities of queries is a novel task
within probabilistic logic programming.

As a final example, the gradient of the success probability,
as used for parameter learning in ProbLog (Gutmann et al.
2008), can directly be calculated in aProbLog as well, using
the gradient semiring (Eisner 2002). We discuss the partial
derivative with respect to the kth variable here, an extension
to compute all partial derivatives in parallel is straightfor-
ward. The elements of this semiring are tuples, where the
first element is the probability, the second its derivative. The

binary operators are defined as follows:

(a1, a2)⊕ (b1, b2) = (a1 + b1, a2 + b2) (9)
(a1, a2)⊗ (b1, b2) = (a1 · b1, a1 · b2 + a2 · b1) (10)

Multiplication uses the chain rule. The labeling functions are
defined as follows, where pi ∈ [0, 1] is the probability of fi:

α(fi) =
{

(pi, 1) if i = k
(pi, 0) if i 6= k

(11)

α(¬fi) =
{

(1− pi,−1) if i = k
(1− pi, 0) if i 6= k

(12)

While we have discussed tasks in probabilistic program-
ming so far, aProbLog is not restricted to this setting.
Example 3. The following program together with the semi-
ring (N,min,+,∞, 0) and α(¬f) = 0 for all algebraic facts
calculates shortest paths based on travel times:
travel(X,Y) :- train(X,Y).
travel(X,Y) :- train(X,Z), travel(Z,Y).

135 :: train(london,paris).
82 :: train(paris,brussels).
113 :: train(brussels,amsterdam).
187 :: train(paris,cologne).
159 :: train(cologne,amsterdam).
107 :: train(brussels,cologne).

Using query travel(london,amsterdam), the an-
swer is min(135 + 82 + 113 + 0 + 0 + 0, 135 + 0 + 0 +
187 + 159 + 0, . . .) = 330.

When interpreting the labels as the capacity of the trains,
we get the size of the biggest group that can travel to-
gether by using the semiring (N,max,min,−∞,∞) and
α(¬f) = ∞. The same query now returns the max-
imum of among others min(135, 82, 113,∞,∞,∞) and
min(135,∞,∞, 187, 159,∞), which is 135.

4 aProbLog Inference
The label A(q) of a query q is defined in terms of the set
of possible worlds in which the query is true, that is, the
worlds which allow for at least one derivation or proof of
the query. The key to inference in aProbLog lies in using a
compact description of this set when calculating labels. We
will base this description on partial interpretations of the set

of algebraic literals. The set of all possible (not necessary
minimal) explanations of query q is defined as

X (q) = {R | R ⊆ I ∈ I(F) ∧R ∪ BK |= q} (13)

A set S ⊆ X (q) is called a covering explanation set for
query q if ∀I ∈ I(q) ∃J ∈ S : J ⊆ I . The follow-
ing discussion applies to an arbitrary covering explanation
set E(q). In our algorithms, we construct E(q) based on
standard Prolog inference using SLD resolution. Each SLD
proof of query q results in an explanation containing all alge-
braic literals that are used in that proof, and E(q) is obtained
by considering all proofs of q. The resulting set is a covering
set of explanations, as each interpretation I ∈ I(q) allows
for at least one proof.
Example 4. For the alarm program of Example 1 and the
query calls(mary), SLD resolution finds two proofs.
This results in the explanation set {{b, h(m)}, {e, h(m)}},
where we abbreviate predicate and constant names using
first letters. These two explanations cover all six interpre-
tations in I(calls(mary)) and are therefore a covering ex-
planation set.

Given E(q), the explanation sum S(E(q)) is defined as

S(E(q)) =
⊕

E∈E(q)

⊗
l∈E

α(l) (14)

Note that for I(q), which is a covering explanation set, the
explanation sum coincides with A(q). In general, however,
we note two differences in the definitions of these functions.
First, the product in S(E(q)) ranges over subsets of alge-
braic facts only, thus covering multiple worlds, and second,
the sum ranges over sets of possible worlds, which might
overlap.

To address the first point, we define the label of an expla-
nation E ∈ X (q) in analogy to the label of a query as

A(E) = A(I(E)) =
⊕

I∈I(E)

⊗
l∈I

α(l) (15)

where I(E) is the set of interpretations where E is true:

I(E) = {I | I ∈ I(F) ∧ E ⊆ I} (16)

A(E) is called a neutral sum if

A(E) =
⊗
l∈E

α(l), (17)

that is, it can be calculated based on the literals in E only.
Example 5. Consider our earlier alarm example. The expla-
nation E = {b, e, h(m)} is true in two interpretations and its
label is calculated as

A(E) = A({b, e, h(m), h(j)})⊕A({b, e, h(m),¬h(j)})
= (α(b)⊗ α(e)⊗ α(h(m))⊗ α(h(j)))
⊕ (α(b)⊗ α(e)⊗ α(h(m))⊗ α(¬h(j)))
= (0.00035 · 0.7)⊕ (0.00035 · 0.3)

In the PROB semiring, α(h(j))⊕ α(¬h(j)) = 0.7 + 0.3 =
1, and thus A(E) = α(b) ⊗ α(e) ⊗ α(h(m)). This is not
true in the MPE semiring, where α(h(j)) ⊕ α(¬h(j)) =
max(0.7, 0.3) = 0.7 6= 1.

neutral sums NSP
disjoint sums SAT MPE

DSP PROB #SAT

Table 2: Classification of four example tasks: if sums are not
disjoint, the disjoint-sum-problem (DSP) occurs; if they are
not neutral, the neutral-sum-problem (NSP) occurs.

Property 1. If ∀f ∈ F : α(f) ⊕ α(¬f) = e⊗, then the
sum A(E) is neutral.

To address the second observation above, we now con-
sider the sum in (14). The sum

⊕
E∈E(q) A(E) is called a

disjoint sum if ⊕
E∈E(q)

A(E) =
⊕

I∈I(q)

A(I). (18)

Example 6. Consider again the alarm example, ignoring the
h(X) facts for the sake of brevity. The set of explanations for
query alarm is {{e}, {b}}, and the set of interpretations
where the query is true is {{e, b}, {e,¬b}, {¬e, b}}. We get
A({e}) + A({b}) = (0.05 · 0.01 + 0.05 · 0.99) + (0.01 ·
0.05+0.01·0.95) = 0.06, while the sum over interpretations
is 0.95·0.01+0.05·0.99+0.05·0.01 = 0.0595 only. The sum
is thus not disjoint. However, if we use the MPE semiring
instead, the sum is disjoint, as maximization is not affected
by repeatedly summing the label of the same interpretation.
Property 2. If ⊕ is idempotent4, then

⊕
E∈E(q) A(E) is a

disjoint sum.
Note that this is a sufficient condition only. Equation (18)

also holds in other cases, for instance, if explanations in E(q)
are mutually exclusive, that is, at most one of them exists in
any possible world.
Property 3. If A(E) is a neutral sum for all E ∈ E(q)
and

⊕
E∈E(q) A(E) is a disjoint sum, the explanation sum

equals the query label, that is, S(E(q)) = A(q).
In this case, inference can directly evaluate S(E(q)) based

on (14), which is straightforward. Otherwise, it will be
necessary to address the neutral-sum-problem and/or the
disjoint-sum-problem during inference. These are the key di-
mensions along which inference settings in aProbLog are
characterized. The four inference tasks of Example 1 are
characteristic for the resulting four settings, cf. Table 2. We
will now discuss the two problems and introduce algorithms
for all four inference settings.

4.1 Neutral-sum-problem
We denote the set of variables not occurring in an explana-
tion E by

free(E) = {f | f ∈ F∧f 6∈ E ∧ ¬f 6∈ E}. (19)

Using this set, we obtain

A(E) =
⊗
l∈E

α(l)⊗
⊗

l∈free(E)

(α(l)⊕ α(¬l)) (20)

4⊕ is idempotent if a⊕ a = a for all a ∈ A

as a direct consequence of the definition of A(E) and the
properties of commutative semirings.

The following property forms the basis of the algorithm
addressing the neutral-sum-problem.

Property 4. Let Vi = {f | f ∈ Ei ∨ ¬f ∈ Ei}, then

A(E0)⊕A(E1) = (P1(E0)⊕P0(E1))⊗⊗
f∈F \(V0 ∪V1)

(α(f)⊕ α(¬f))

where

Pj(Ei) =
⊗
l∈Ei

α(l)⊗
⊗

f∈Vj \Vi

(α(f)⊕ α(¬f)) .

That is, to solve the neutral-sum-problem while evaluat-
ing
⊕

E∈E(q)
⊗

l∈E α(l), it suffices to keep track of the set
of variables the intermediate results are based on, and to take
these into account before summing.5 Labels of variables that
do not occur in any E ∈ E(q) need only to be taken into ac-
count at the very end.

Example 7. Let us calculate the label of calls(mary) using
the MPE semiring. The set of explanations obtained from
resolution contains {b, h(m)} and {e, h(m)}, so S(E(q)) =
α(b) ⊗ α(h(m)) ⊕ α(e) ⊗ α(h(m)). We obtain interme-
diate results α(b) ⊗ α(h(m)) = 0.05 · 0.7 = 0.035
and α(e) ⊗ α(h(m)) = 0.01 · 0.7 = 0.007, which we
now want to sum. As they use different variables, we
correct to P({b, h(m)}) = 0.035 × max(0.01, 0.99) =
0.03465, taking into account e, and P({e, h(m)}) = 0.007 ·
max(0.05, 0.95) = 0.00665, taking into account b. The sum
of these two now is max(0.03465, 0.00665) = 0.03465,
corresponding to {b, h(m),¬e}. As these are the only ex-
planations, we finish by taking into account h(j), resulting
in 0.03465 · max(0.7, 0.3) = 0.001995 corresponding to
{b, h(m),¬e, h(j)}.

4.2 Disjoint-sum-problem
In situations that require solving the disjoint-sum-problem,
such as calculating success probabilities or gradients (bot-
tom of Table 2), we follow ProbLog’s approach of using Bi-
nary decision diagrams (BDDs) (Bryant 1986). A BDD is
an efficient graphical representation of a Boolean function
over a set of variables, and thus can be used to encode the
set E(q), which maps truth value assignments for algebraic
literals to the truth value of the query q. Given a fixed vari-
able ordering, a Boolean function ϕ can be represented as a
full Boolean decision tree where each node on the ith level
is labeled with the ith variable and has two children called
low and high. Each path from the root to some leaf stands for
one complete variable assignment. If variable x is assigned
0 (1), the branch to the low (high) child is taken. Each leaf is
labeled by the outcome of ϕ given the variable assignment
represented by the corresponding path. Starting from such a
tree, one obtains a BDD by merging isomorphic subgraphs

5This idea is closely related to the concept of a smooth NNF cir-
cuit used in knowledge compilation, where operands of a disjunc-
tion use the same set of variables (Darwiche and Marquis 2002).

h(m)
b

0

e

1

Figure 1: BDD for query calls(mary).

and deleting redundant nodes until no further reduction is
possible. A node is redundant iff the subgraphs rooted at its
children are isomorphic.
Example 8. The BDD in Figure 1 encodes
E(calls(mary)) = {{b, h(m)}, {e, h(m)}}. Dashed
edges indicate 0’s and lead to low children. Solid ones
indicate 1’s and lead to high children.

Given such a BDD, the query label can be calculated as
the label of the BDD’s root node according to the following
recursive definition, where h and l denote the high and low
child of node n, respectively:

label(1) = e⊗

label(0) = e⊕

label(n) = (α(n)⊗ label(h))⊕ (α(¬n)⊗ label(l))

Example 9. When calculating probabilities in Figure 1, we
get label(e) = 0.01 · 1 + 0.99 · 0 = 0.01, label(b) =
0.05 · 1 + 0.95 · 0.01 = 0.0595, and label(h(m)) = 0.7 ·
0.0595 + 0.3 · 0 = 0.04165.

If intermediate results are cached, the algorithm has a time
and space complexity linear in the size of the BDD. Calcu-
lating the label on the BDD exploits associativity and com-
mutativity of both semiring operations (as variables need to
be brought in the same order on all paths through the BDD,
and paths are sorted according to variable values) as well
as distributivity (to obtain a tree-shaped representation of
the formula). Merging isomorphic subtrees does not affect
the calculation, as all ingoing edges are maintained. If sums
are neutral, dropping redundant nodes does not affect the re-
sult, as in this case the omitted update (α(n)⊗ label(s))⊕
(α(¬n)⊗ label(s)) equals label(s). If these sums are not
neutral, we again use Property 4 to modify the inference al-
gorithm. This results in Algorithm 1, which addresses both
the neutral- and the disjoint-sum-problem (bottom right of
Table 2). The algorithm returns both the current label and
the underlying set of algebraic facts. Lines 9 and 10 perform
the updates for the labels of both subtrees based on Prop-
erty 4, restricted to those variables that appear in one of the
subtrees. The updates with respect to variables that do not
appear in the BDD are not included in the algorithm. They
have to be performed in a post-processing step.

Note that this general algorithm is correct in all four infer-
ence settings, but simpler versions as discussed before can
be used if sums are neutral or disjoint. If sums are neutral
but not disjoint, Algorithm 1 can be simplified by 1) restrict-
ing return values to their first argument and 2) using the la-
bels of the children directly in line 11, thus dropping lines 9

Algorithm 1 General aProbLog inference algorithm.
1: function LABEL(BDD node n)
2: if n is the 1-terminal then
3: return (e⊗, ∅)
4: if n is the 0-terminal then
5: return (e⊕, ∅)
6: let h and l be the high and low children of n
7: (H,Vh) := LABEL(h)
8: (L,Vl) := LABEL(l)
9: Pl(h) := H ⊗

⊗
x∈Vl \Vh

(α(x)⊕ α(¬x))
10: Ph(l) := L⊗

⊗
x∈Vh \Vl

(α(x)⊕ α(¬x))
11: label(n) := (α(n)⊗Pl(h))⊕ (α(¬n)⊗Ph(l))
12: return (label(n), {n} ∪Vh ∪Vl)

and 10. If the sum is disjoint, it is not necessary to build a
BDD, but one can instead iterate over the set E(q) directly
as discussed above, using Property 4 if sums are not neutral.

We have implemented all four algorithms based on the
publicly available implementation of ProbLog (Kimmig et
al. 2011) and have tested them with the semirings discussed
here.

5 Related Work
The weighted logic programming language Dyna (Eisner,
Goldlust, and Smith 2005), semiring-based constraint logic
programming (Bistarelli and Rossi 2001) and weighted Dat-
alog (Bistarelli, Martinelli, and Santini 2008) all extend (a
variation) of a logic programming language by associating
labels from a semiring to facts. However, aProbLog is the
first such extension of Prolog that addresses both the neutral-
and the disjoint-sum-problem. In contrast to these other sys-
tems, aProbLog bases query labels on interpretations, not
proofs. This allows us to directly cover the PROB and MPE
tasks that require to consider possible worlds. On the other
hand, problems such as shortest path can be expressed in
both semantics. Semiring-based constrained logic program-
ming and weighted Datalog require semiring addition to be
idempotent. Thus, the disjoint-sum-problem does not arise
(cf. Property 2). While Dyna does not impose such restric-
tions, it does not address the disjoint-sum-problem either.
This rules out for instance the semirings for PROB (if pos-
sible worlds can contain multiple proofs), #SAT, sensitiv-
ity analysis and gradient and thus even the ProbLog set-
ting. As the other systems do not consider full possible
worlds, they also avoid the neutral-sum-problem, which is
concerned with basic facts not occurring in a proof.

6 Conclusions
We have introduced aProbLog, an algebraic Prolog where
facts are labeled with elements of a semiring. Labels of pos-
sible worlds and labels of queries are then defined within
this semiring. We have identified two conditions that allow
for simplification of the inference task in aProbLog, that is,
the task of calculating query labels. This led to four different
settings, for which we have also introduced corresponding
algorithms. Furthermore, we have discussed a broad range of

tasks that can be modeled and solved in aProbLog, thereby
illustrating the potential of this new framework.

Acknowledgements. Angelika Kimmig and Guy Van den
Broeck are supported by the Research Foundation-Flanders
(FWO-Vlaanderen). This work is partially supported by the
GOA/08/008 Probabilistic Logic Learning and by the Euro-
pean Commission under the 7th Framework Program, con-
tract no. BISON-211898.

References
Bistarelli, S., and Rossi, F. 2001. Semiring-based constraint
logic programming: syntax and semantics. ACM Trans. Pro-
gram. Lang. Syst. 23:1–29.
Bistarelli, S.; Martinelli, F.; and Santini, F. 2008. Weighted
Datalog and levels of trust. In Int. Conference on Availabil-
ity, Reliability and Security, 1128 –1134.
Bryant, R. E. 1986. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on Computers
35(8):677–691.
Darwiche, A., and Marquis, P. 2002. A knowledge com-
pilation map. Journal of Artificial Intelligence Research
17(1):229–264.
De Raedt, L.; Kimmig, A.; and Toivonen, H. 2007. ProbLog:
A probabilistic Prolog and its application in link discovery.
In Veloso, M. M., ed., Proc. of the Int. Joint Conference on
Artificial Intelligence, 2462–2467.
Eisner, J.; Goldlust, E.; and Smith, N. 2005. Compiling
Comp Ling: Weighted dynamic programming and the Dyna
language. In Proc. of the Human Language Technology Con-
ference and Conference on Empirical Methods in Natural
Language Processing, 281–290. ACL.
Eisner, J. 2002. Parameter estimation for probabilistic finite-
state transducers. In Proc. of the 40th Annual Meeting of the
Association for Computational Linguistics (ACL), 1–8.
Flach, P. 1994. Simply logical - Intelligent Reasoning by
Example. John Wiley.
Gutmann, B.; Kimmig, A.; Kersting, K.; and De Raedt, L.
2008. Parameter learning in probabilistic databases: A least
squares approach. In Daelemans, W.; Goethals, B.; and
Morik, K., eds., Proc. of the European Conference on Ma-
chine Learning, volume 5211 of LNCS, 473–488. Springer.
Kimmig, A.; Demoen, B.; De Raedt, L.; Santos Costa, V.;
and Rocha, R. 2011. On the implementation of the proba-
bilistic logic programming language ProbLog. Theory and
Practice of Logic Programming (TPLP) 11:235–262.
Poole, D. 2000. Abducing through negation as failure: sta-
ble models within the independent choice logic. Journal of
Logic Programming 44(1-3):5–35.
Sato, T., and Kameya, Y. 2001. Parameter learning of logic
programs for symbolic-statistical modeling. Journal of Ar-
tificial Intelligence Research (JAIR) 15:391–454.
Sato, T. 1995. A statistical learning method for logic pro-
grams with distribution semantics. In Sterling, L., ed., Proc.
of the Int. Conference on Logic Programming, 715–729.
MIT Press.

