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Abstract

Detecting outliers is an important task in machine
learning, since if left unchecked they could hinder
performance of our models. We focus on finding
the reason an instance is an outlier, i.e. by find-
ing the subset of features that if ignored the rest
of the input is not an outlier anymore. We formu-
late the problem as a constrained monotonic sub-
modular optimization task thanks to key properties
of marginal distributions. Additionally, we lever-
age probabilistic circuits, which enable tractable
marginal queries for arbitrary subsets, to further
speed up the subset selection algorithm. We show-
case the ability of finding the outlier features in a
variety of different corruption scenarios, and show
that finding and fixing the outlier features can help
in downstream tasks such as classification.

1 INTRODUCTION

In classical machine learning (ML) tasks we rely on the
assumption a model is going to be evaluated at test time on
data points drawn from the same distribution that generated
the data it has been trained on, also called the indepen-
dently and identically distributed (i.i.d.) assumption [Mur-
phy, 2022]. Therefore outlier and anomalous points, that
is samples that are assumed not to follow the same data
distributions [Chandola et al., 2009], can have a consider-
able impact on performance of ML models at deployment
time [Hodge and Austin, 2004]. It becomes clear that detect-
ing these data points, being natural or adversarially gener-
ated [Yuan et al., 2019, Ilyas et al., 2019], early and dealing
with them, e.g., by cleaning them [Chu et al., 2016, Liu
et al., 2004, Song et al., 2017], is an important task that can
positively influence the performances of many ML models:
from supervised classifiers [Acuña and Rodriguez, 2004] to
unsupervised generative models [Nalisnick et al., 2018].

Classically, these approaches assume that a data point is ei-
ther an outlier or not (i.e., it is an inlier) and that all features
contribute to this dichotomy. As such, when trying to clean
it, some methods try to change all its features at once, e.g.,
for an image data point, all pixels are reset to the most likely
frequency values [Song et al., 2017], or more simply they
discard the data as a whole. Clearly, this “whole-or-nothing”
approach to outlier cleaning can be wasteful as precious
data points can be lost.

Furthermore, in many real-world scenarios a data point is an
outlier because only a subset of its features have values that
are unlikely according to their marginal distributions. Con-
sider for example tabular data collecting personal data of
patients such as their city and country of birth and their date
of birth. One common way to create an outlier patient record
is by accidentally entering an invalid combination of city
and country (e.g. London, Canada instead of London, Eng-
land) or mistyping the date format (e.g. “day/month/year”
vs “month/day/year”) [van den Burg et al., 2019]. Instead
of discarding the whole patient record, if one were able to
precisely detect these “outlier features”, they could clean
them to restore the record.

In this paper, we specifically focus on the task of locating
the subset of the features that make an outlier an outlier.
Specifically, we cast this feature selection problem in a
principled probabilistic framework in which a generative
model is iteratively queried for the marginal probability
of feature subsets. We propose two formulations for this
optimization problem that exploit the supermodularity and
monotonicity of probabilitity measures and distill efficient
greedy algorithms as constrained submodular maximization.
One variant tries to find the feature subset that maximises
the probability of inlier features while the other retrieves the
subset of outlier features that minimize the probability.

Next, we investigate which probabilistic model class can effi-
ciently support our requirement of querying a joint probabil-
ity distribution multiple times for computing the marginals
of different feature subsets. We find this class in framework
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of probabilistic circuits (PCs) [Vergari et al., 2020, Choi
et al., 2020b], tractable computational graphs that encode
expressive joint distributions [Peharz et al., 2020a, Liu et al.,
2022]. PCs are well-suited for our purposes because, by
imposing certain structural constraints over their graphs,
we can guarantee to exactly compute the marginal distri-
bution of any feature subset in time linear in the size of
the PC [Choi et al., 2020b, Darwiche and Marquis, 2002].
Our proposed methodology can be successfully applied to
detect different patterns of outlier features when applied to
image data (Section 5). Additionally, we show that finding
the outlier features and replacing them with more reasonable
values could help in downstream tasks such as increasing
accuracy of a neural network classifier on corrupted test
data. In some cases, the accuracy gains on cleaned data w.r.t.
that on corrupted were as high as 30 percent.

2 OUTLIER FEATURE DETECTION

Notation. We use uppercase letters X for random vari-
ables (features) and lowercase letters x for their value as-
signments. Similarly, we denote sets of features in bold
uppercase X and their assignments in bold lowercase x. In
certain cases, we also use uppercase letters, for example S,
to denote sets. We use subscripts to denote subset of features
(and their assignment), for example xin (xout) corresponds
to subset of inlier (outlier) features for assignment x.

Problem statement. In most ML scenarios we make the
assumption that our data points x are i.i.d. drawn from a
distribution p(X). With this interpretation, an outlier x′ is
intuitively an instance that is not drawn from p(X). This
means that in expectation x′ has zero or very low prob-
ability under p(X). This is why one popular solution to
mark outliers is to select all those instances x′ whose prob-
ability, according to a parameterized probabilistic model
pθ(X) ≈ p(X), falls under a certain threshold t [Bishop,
1994], i.e., pθ(x′) ≤ t. While other criteria to deem an in-
stance an outlier exist Thudumu et al. [2020], Wang et al.
[2019], Boukerche et al. [2020], classically all of them as-
sume that the whole x′ is either an outlier or inliner (e.g.,
pθ(x

′) > t), and they do not care about the reason why.

In this paper, we go one step further and want to find an
explaination why x′ is an outlier. We assume that a hidden
corruption process altered a subset of the features of x,
denoted as xout and turned them into outlier features, that
is features with low-probability under pθ. Furthermore we
assume that the rest of the features xin = x \ xout are inlier
features, that is the marginal xin has high probability under
pθ. From our assumptions it follows that if we are able to
precisely detect xin or equivalently xout we can either try
to “fix” an outlier instance by replacing xout with some
high-probability values for the corresponding features, or
simply marginalize them out if the ML model that operates

on the downstream task is able to deal with missing values.
For example, if the classifier can marginalize unobserved
values or it is possible to compute its expectation w.r.t. the
distribution pθ(xout | xin) [Khosravi et al., 2019, 2020]).

Ideally, given a data point x that is likely an outlier, we
would like to find a minimal subset of outlier features xout,
without which, xin is an inlier. We relax the constraint of
finding a minimal subset into the problem of finding a subset
of features with bounded cardinality k.

Definition 1 (Minimizing the probability of outlier features).
Let x be an outlier according to model pθ and k be the
maximum number of outlier features xout that turn x into an
outlier. Then xout can be found by optimizing the following
cardinality constraint optimization problem:

xout = argmax
|S|≤k

1− pθ(xS). (1)

The intuition behind Eq. (1) is that in order to minimize
the probability of an outlier, we want to maximise the com-
plement of its probability, a quantity sometimes called the
probabilistic margin [Krishnakumar, 2007]. However, Def-
inition 1 does not tell us if and under which conditions
Eq. (1) can be solved efficiently. The next section answers
affirmatively, showing that the cardinality constrained prob-
lem in Eq. (1) can be efficiently approximated in O(kn)
time, where k is the subset cardinality, n is the maximum
number of features. This can be achieved by noting that the
probability measure pθ is a supermodular function when
defined over discrete features X.

The above computational result, however, assumes that we
can efficiently and exactly compute the marginals pθ(xS)
for all possible feature subsets S ⊆ {1, . . . , n}. In Section 4,
we discuss a class of efficient and expressive tractable com-
putational graphs, called smooth and decomposable proba-
bilistic circuits [Vergari et al., 2020, Choi et al., 2020b], that
enable us to compute arbitrary marginals exactly in time
linear in their size.

3 SUBMODULAR OPTIMIZATION FOR
EFFICIENT OUTLIER FEATURE
DETECTION

Submodular and supermodular functions naturally occur in
many real world applications and hence their properties are
a well studied topic, specially under the light that they enjoy
efficient approximation algorithms with guarantees under
different optimization settings Liu et al. [2020], Krause and
Golovin [2014]. In this section, we give a quick background
of submodular optimization relevant to our task.

Given a set of elements Ω, the set function f : 2Ω → R
assigns a value to each subset of Ω. Intuitively, a function is
submodular if the marginal benefit of adding an specific ele-
ment to the current set decreases as the set grows. Similarly,
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a set function is supermodular if its negation is submod-
ular. Additionally, a submodular function is monotone if
adding new elements always increases the value. The next
definitions ground these concepts in a more formal way.

Definition 2 (Submodularity). Let Ω be a set, then the
function f : 2Ω → R is submodular iff for all A,B such
that A ⊂ B ⊆ Ω, for all i ∈ Ω \B, we have

f(A ∪ {i})− f(A) ≥ f(B ∪ {i})− f(B).

Definition 3 (Supermodularity). A set function f : 2Ω → R
is supermodular iff −f is submodular.

Definition 4 (Monotonicity). A set function f : 2Ω → R
is monotone iff for all A,B such that A ⊆ B ⊆ Ω then
f(A) ≤ f(B).

Given a monotone submodular set function f , minimizing
and maximizing f(S) is trivial if there are no constraints,
since f(Ω) is the maximum and the minimum is f({i}) for
some i ∈ Ω. In the presence of cardinality constraints, such
as our case in Eq. (1), greedily maximizing a monotone
submodular function gives us a 1− 1

e approximation factor
to the following optimization task Williamson [2019]:

argmax
S

f(S) s.t. |S| ≤ k. (2)

We refer to appendix A.1 for more details about the greedy
algorithm. In summary, the greedy algorithm needs O(|Ω| ·
k) evaluations of f(S).

To show that Eq. (1) enjoys these approximation guarantees,
we need to show that 1− pθ(xS) is a monotone submodular
function, or alternatively that pθ(xS) is a monotone super-
modular function. We do this in the next section, where
we will use the fact that the complement of a submodular
function is still submodular

Lemma 1 (Complement). If f : 2Ω → R is a submodular
set function, then the complement function g(A) = f(Ω\A)
is also submodular.

3.1 SUPERMODULARITY AND MONOTONICITY
OF MARGINAL PROBABILITIES

In this section, we review the background for two desired
properties of marginals of probability distributions: super-
modularity and monotonicity. These properties help us for-
mulate our subset selection problem as a monotone sub-
modular optimization task which enjoys fast greedy algo-
rithms with approximation guarantees.

Given a joint distribution p(x) on all features, we can
marginalize a subset of features by summing them out. For
example, if we partition the features into two subsets S, S′

then we can marginalize S′ as follows 1:

p(xS) =

∫
val(XS′ )

p(xS ,xS′) dXS′ .

1In case of discrete features, the integrals turn into summations.

Where val(XS′) is set of potential values for XS′ . Now
given an instance x, we can treat the marginal probability
function as a set function by defining f(S) = p(xS). If p
is a probability measure, then we can show that f will be
supermodular:

Lemma 2 (Supermodularity of probability measures).
Given an assignment x and a probability measure p, the
marginal probability function f : 2X → R such that
f(S) = p(xS) is supermodular.

Lemma 3 (Monotonicity of probability measures). Let
A,B be two events such that A ⊆ B, and p be a prob-
ability measure, then p(A) ≤ p(B).

3.2 OTHER GREEDY APPROXIMATIONS
(WITHOUT GUARANTEES)

In the following, we explore an alternative formulation of
our outlier feature selection problem. We start from the
intuition that a subset of features is an outlier given the
specific values of the remaining features.

Definition 5 (Minimizing marginal conditional probability
of outlier features). Let x be an outlier according to model
pθ and k be the maximum number of outlier features xout

that turn x into an outlier given the features xin = x \ xout.
They can be found by minimizing the following cardinality
constraint optimization problem:

xout = argmin
|S|≤k

pθ(xS | x \ xS). (3)

Interestingly, solving the minimization problem of Eq. (3)
can be done by finding the set of features that maximises the
probability of a data point of being an inliner.

Proposition 1. Let x be an outlier according to model pθ
and k be the maximum number of outlier features xout that
turn x into an outlier. Solving the cardinality constraint
minimization problem of Eq. (3) is equivalent to solving the
following maximization problem:

xout = argmax
|S|≤k

p(x \ xS) (4)

The proof is in appendix B. Unfortunately, this problem
does not enjoy the 1− 1/ϵ greedy approximation as Eq. (1),
because p(x \ xS) is supermodular and not submodular.
Nevertheless, we still use the greedy algorithm and as we
see in Section 5 it produces reasonable results in practice.

4 PROBABILISTIC MODELS FOR
TRACTABLE MARGINALS OF
ARBITRARY SUBSETS

Our algorithms are model-agnostic: one can model pθ with
any family of generative models that can provide fast and ac-
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Figure 1: Effective outlier feature detection with inlier maximization with a fixed budget. Each row corresponds to (top
to bottom): original images, corrupted images, outliers found with budget k = 60 (denoted with red pixels), and images
that have been cleaned by the generative model. Each column corresponds to a different corruption process (left to right):
Square(3x3), Square(5x5), Square(7x7), Square(9x9), Smiley, Column(14), Row(14), Random(120), Random(200).

curate approximation of marginal probabilities for arbitrary
subset of features. For example, one can use sampling to
approximate marginals of Variational Auto Encoder (VAEs),
and some variants of VAEs such as HiVAE even provide a
fast approximate marginals with one feed-forward evalua-
tion Nazabal et al. [2018]. However, the quality of the solu-
tions of the greedy approximation algorithms can quickly
degrade if the internal routine to compute marginals delivers
unreliable approximations. In the following we focus on a
class of deep generative models that can be as expressive as
VAEs [Liu et al., 2022] but at the same time guarantee the
exact computation of any marginals in linear time. These
are probabilistic circuits (PCs).

More background on PCs is in appendix A.2. In summary,
we can compute any marginals exactly in time linear to the
size of the PC. In addition, the computation of marginals
is highly parallizable and can be accelerated by GPUs. For
example, for our experiments, and k = 60, finding the
outlier subset takes about 0.5 - 0.75 seconds per image.

5 EXPERIMENTS

In this section, we showcase a few experiments to answer the
questions: i) Is the method decent at finding outlier features
in different corruption scenarios? ii) Can finding and fixing
a subset of outlier features help in downstream tasks such
as classification?

For a fair comparison, we do not want to tell our method
exactly how many outliers they are, so we choose a fixed
budget for k. Unless otherwise noted, we choose k = 60
throughout our experiments. For more experiment details
such as datasets, preprocessing steps, corruption scenarios,
and how to fix the outliers we refer to appendix C.

Tables 2 and 3 (in appendix) summarize the results for find-
ing the outlier features in each scenario and optimization
method. For each dataset, the first column (%) shows the
percentage of corrupted found successfully, and the second
column (“Found”) shows the average number of corrupted
features found by the algorithm. As we see, given our fixed

budget of k = 60, both methods successfully find high per-
centage of outliers when there is less than 60 outliers. In
general, the maximizing inliers method does better at find-
ing the outliers specially in bigger patch shapes, almost all
of the budget is correctly used on finding corrupted features.
Figure 1 provides few a image examples of our process by
showing the clean images randomly samples from the test
data, their corruption (one column for each corruption type),
outliers found by our method, and the corresponding fixed
image. More image examples can be found in the appendix.

We record the accuracy before and after fixing the images,
results are summarized in Tables 4 and 5 (in appendix). In
except a few cases, our method of finding and fixing outliers
gives a decent boost to classification accuracy of the classi-
fier on the corrupted test data. In some cases, we see perfor-
mance boosts as high as 30% better accuracy. However, our
methods do not always increase the classification accuracy,
noticeably for bigger 9x9 square patches of MNIST dataset
we even see a noticeable decrease in accuracy after replacing
the outlier features. One reason could be due to having more
corruptions (81) than our budget. Upon closer inspection of
the fixed images for that scenario we noticed that the outlier
detection does a decent job at finding the outlier features,
however during imputation the outlier feature we did not
find mess up the imputations. One might solve this issue by
using more complex methods for fixing the outliers such as
in-painting methods.

6 CONCLUSION

We introduced two novel algorithms for the challenging
problem of finding the subset of outlier features by taking
advantage of supermodularity and monotonicity of marginal
probability distributions to formulate the problem as an opti-
mization task that can be greedily optimized. We empirically
show that the proposed methods are promising at finding
and explaining outliers, and can help increase accuracy of
classifiers on corrupted data. We hope this paper will mo-
tivate more explorations on taking advantage of marginal
likelihoods in finding outlier features.
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A BACKGROUND

A.1 SUBMODULAR OPTIMIZATION

Greedy algorithm In the presence of cardinality con-
straints, such as our case in Eq. (1), greedily maximizing a
monotone submodular function gives us a 1− 1

e approxima-
tion factor to the following optimization task Williamson
[2019]:

argmax
S

f(S) s.t. |S| ≤ k. (5)

The algorithm starts with an empty sets S = ∅, and at each
step chooses the “best” element to add to S until |S| = k,
hence we need O(|Ω| · k) evaluations of f(S). There are
many other variants of the greedy algorithm such as lazy
greedy Leskovec et al. [2007], or even lazier Mirzasoleiman
et al. [2014] that provide similar approximate guarantees in
expectation but with much less evaluations of f(S). How-
ever, as we see in Section 4, the lazier approaches might
not be easily adaptable to our use case to provide better
runtime performance than the basic greedy algorithm. We
leave adaption of lazier approaches for future work.

A.2 PROBABILISTIC CIRCUITS

Probabilistic Circuits (PCs) Choi et al. [2020a] are a family
of models that unify representation of many families of
tractable probabilistic models such as arithmetic circuits
Darwiche [2003], probabilistic sentential decision diagrams
Kisa et al. [2014], and sum product networks Poon and
Domingos [2011].

Definition 6 (Probabilistic circuits). A probabilistic cir-
cuit pθ over variables X is a parameterized computational
graph that defines a joint probability distribution over X.
Its structure consists of three types of units: sum, product
and distribution units. Each unit n defines a joint probability

distribution over its scope, i.e., the set of variables it is de-
fined on and recursively defined as: ϕ(n) =

⋃
c∈ch(n) ϕ(c),

where ch(n) denote the set of children, or inputs, of an inner
unit n. The output of unit n in the circuit on input x is:

pn(x) =


gn(x) if n is a distribution unit∏

c∈ ch(n) pc(x) if n is a product unit∑
c∈ ch(n) θn,c · pc(x) if n is a sum unit

where θn,c > 0, is the parameter associated to the edge
(n, c). For an input distribution unit n, gn(x) is usually
a simple distribution defined on one of the features, for
example Categorical or Gaussian. Finally, the likelihood
p(x) defined by the circuit is the output of its root unit.

The remarkable property of PCs is the ability to compute
many complex functions of p in polytime if their computa-
tional graphs satisfy certain structural properties. As we are
interested in efficient and exact marginals, we will require
only two structural properties: smoothness and decompos-
ability.

Definition 7 (Smoothness & Decomposability). A circuit
is smooth if for every sum unit n, its inputs depend on
the same variables: ∀ c1, c2 ∈ ch(n), ϕ(c1) = ϕ(c2). It is
decomposable if the inputs of every product unit n depend
on disjoint sets of variables: ch(n) = {c1, c2}, ϕ(c1) ∩
ϕ(c2) = ∅.

Proposition 2 (Tractable marginalization, [Choi et al.,
2020b]). Let p be a smooth and decomposable circuit over
X with input distributions that can be tractably marginal-
ized. Then for any variables Y ⊆ X and their assignment y,
the marginal

∫
z∈val(Z)

p(y, z)dZ can be computed exactly
in Θ(|p|) time, where Z denotes X \Y.

Smooth and decomposable PCs are both expressive and
efficient: they can encode distributions with hundred mil-
lions of parameters and be effectively learned by gradient
ascent [Peharz et al., 2020b]. The structure of their com-
putational graph can be either specified manually [Poon
and Domingos, 2011, Peharz et al., 2020b,a] or acquired
automatically from data [Vergari et al., 2015, Rahman et al.,
2014, Dang et al., 2022], e.g., by first learning a latent tree
model and then compiling the latter into a circuit [Liu and
Van den Broeck, 2021b]. These circuits are competitive with
intractable models such as variational autoencoders and nor-
malizing flows scores on several benchmarks [Liu et al.,
2022].

Furthermore, one advantage PCs provide is that at each
round of the greedy search we do O(n) independent calls to
marginals, so we can batch the queries together and compute
in parallel using GPUs. The size of the circuit is constant and
controllable by us, hence the main bottleneck is the number
of outlier k. However, this limitation might not be a big issue
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in practice since we assumed k is relatively small compared
to n, and the computation cost only grows linearly w.r.t.
k. For example, for our MNIST experiments, and k = 60,
finding the outlier subset takes about 0.5 - 0.75 seconds per
image (depending on the dataset) which seems reasonable.
One potential avenue for getting an algorithm with runtime
independent of k is exploring continuous relaxation of our
submodular optimization tasks.

A.3 RELATED WORK

The idea of using generative models for fixing adversarial
perturbations of images to improve accuracy of classifiers
has been widely explored, for example PixelDefend Song
et al. [2018] uses PixelCNN models to fix outlier images
by bringing closer to the original distribution, more recently
DiffPure Nie et al. [2022] uses diffusion models to purify
adversarial perturbations. In many of these approaches, the
assumption is that the perturbations do not change pixel
values by too much, however they generally allow all fea-
tures to be changed slightly. In contrast, we allow arbitrary
changes to pixel values but limit the number of corrupted
pixels.

Taking advantage of Submodularity of information theoretic
measures such as entropy and mutual information in ma-
chine learning has been explored before Iyer et al. [2021].
To the best of out knowledge, we are the first to find applica-
tions for submodularity of marginal probability distributions
in machine learning scenarios.

Both defences and attacks on fixed shape patches (such
as squares) with arbitrary perturbations of pixels has been
widely explored Levine and Feizi [2020], Chiang* et al.
[2020], Brown et al. [2017].

B PROOFS

Proof of Proposition 1

Proof. First we can use Bayes rule to rewrite the conditional
probability p(xS | x \ xS), thus obtaining

xout = argmin
|S|≤k

p(xS ,x \ xS)/p(x \ xS)

= argmin
|S|≤k

p(x)/p(x \ xS).

Then we can invert the fraction and turn the minimization
into a maximization problem. Finally, by noting that p(x) is

constant in our setting, we retrieve Eq. (4):

xout = argmin
|S|≤k

p(x)/p(x \ xS)

= argmax
|S|≤k

p(x \ xS)/p(x)

= argmax
|S|≤k

p(x \ xS).

C EXPERIMENT DETAILS

Table 1: Datasets

Name # Features # Train # Test

MNIST 784 60000 10000
FASHION 784 60000 10000
EMNIST Letters 784 124800 20800

Setup In all the experiments, we only utilize one CPU core
and one GPU (NVIDIA A5000). We choose three datasets
MNIST Lecun et al. [1998], EMNIST Letters Cohen et al.
[2017], and FASHION Xiao et al. [2017] to test generality
of our method. For each dataset we use the default train and
test splits provided. Table 1 provides more info about each
dataset.

Preprocessing Steps For each dataset we assume there
was no corruptions in the training data. We learn a probabilis-
tic circuit using hidden Chow-Liu Tree (HCLT) algorithm
Liu and Van den Broeck [2021a]. Additionally, we train a
classifier for each dataset using Convolutional Neural Net-
work architecture LeCun et al. [1998]. Training the circuits
are a one time cost for each dataset taking about 5-10 minute
each.

Corruption Scenarios We try a wide variety of corruption
patterns to showcase generality of our methods. Square(ixi)
refers to a square corruption patch of size i by i relatively
close to middle of the image. Row(i) or Column(j) refers to
corrupting i’th row or j’th column respectively. Random(i)
refers to choosing random pixels to corrupt repeated for i
times. Smiley refers to corruption consisting of 2 squares
for the eyes and one wide rectangle for the mouth.

Fixing Outlier Features In certain downstream tasks such
as classification, in addition to finding the outlier features,
we might need to also fix the outlier features. The first step
is to find the outliers using either methods from Section 2.
Since the main focus of the paper is finding the outlier sub-
set, we use a fairly simple multiple imputation method to fix
the the outlier features. We reuse the probabilistic circuit we
learned from the data to generate the multiple imputations,
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since PCs also allow for fast conditional sampling of the
form p(Xout | xin). We do 100 conditional samples for each
corrupted image and replace the outlier features with the
sampled features from the circuit, then we input all the 100
samples into our classifier and use the average logits to per-
form the classification. We record the accuracy before and
after fixing the images, results are summarized in Tables 4
and 5.
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Figure 2: (Similar to figure 1 but with larger images and more datasets) Effective outlier feature detection with inlier
maximization with a fixed budget. Each row corresponds to (top to bottom): original images, corrupted images, outliers
found with budget k = 60 (denoted with red pixels), and images that have been cleaned by the generative model. Each
column corresponds to a different corruption process (left to right): Square(3x3), Square(5x5), Square(7x7), Square(9x9),
Smiley, Column(14), Row(14), Random(120), Random(200).
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Table 2: Percentage and Avg Outliers found for Maximizing Marginals of Inliers (k = 60)

MNIST FASHION EMNIST LETTERS

CORRUPTION OUTLIERS % FOUND % FOUND % FOUND

SQUARE(3X3) 9 97 8.7 70 6.3 99 8.9
SQUARE(5X5) 25 86 21.5 56 13.9 87 21.7
SQUARE(7X7) 49 69 33.7 51 24.9 76 37.2
SQUARE(9X9) 81 54 44.1 38 30.5 63 51.0
SMILEY 89 52 46.0 44 38.7 59 52.8
COLUMN(14) 28 88 24.7 62 17.3 93 25.9
ROW(14) 28 91 25.4 81 22.8 97 27.0
RANDOM(120) 110 55 59.0 52 57.0 54 59.9
RANDOM(200) 180 33 59.9 33 58.1 32 60.0

Table 3: Percentage and Avg Outliers found for Minimizing Marginals of Outliers (k = 60)

MNIST FASHION EMNIST LETTERS

CORRUPTION OUTLIERS % FOUND % FOUND % FOUND

SQUARE(3X3) 9 83 7.5 73 6.5 81 7.3
SQUARE(5X5) 25 80 20.0 57 14.2 77 19.4
SQUARE(7X7) 49 71 35.0 43 20.9 67 32.8
SQUARE(9X9) 81 53 42.8 35 28.0 56 45.3
SMILEY 89 46 40.9 33 29.6 48 42.5
COLUMN(14) 28 72 20.2 41 11.5 87 24.4
ROW(14) 28 70 19.6 48 13.5 74 20.7
RANDOM(120) 110 40 43.6 31 35.1 41 44.8
RANDOM(200) 180 29 52.3 22 39.2 27 48.5

Table 4: Accuracy Gains for Maximizing Marginals of Inliers (k = 60)

MNIST FASHION EMNIST LETTERS

CORRUPTION CORRUPT FIXED DIFF CORRUPT FIXED DIFF CORRUPT FIXED DIFF

SQUARE(3X3) 98.6 97.2 -1.4 83.5 86.1 +2.6 89.1 90.5 +1.3
SQUARE(5X5) 97.3 96.8 -0.5 79.1 82.1 +3.0 84.5 90.1 +5.6
SQUARE(7X7) 90.0 90.3 +0.3 79.8 79.4 -0.4 79.5 85.5 +6.0
SQUARE(9X9) 72.3 65.8 -6.6 76.0 75.9 -0.1 70.1 77.5 +7.4
SMILEY 84.2 83.9 -0.3 74.1 76.8 +2.7 60.4 74.7 +14.3
COLUMN(14) 97.7 97.6 -0.1 83.3 87.7 +4.4 86.2 90.3 +4.1
ROW(14) 96.2 98.1 +1.9 86.5 87.5 +1.0 83.4 91.0 +7.6
RANDOM(120) 87.7 97.3 +9.6 76.6 87.5 +10.9 54.7 86.6 +31.8
RANDOM(200) 72.6 81.9 +9.3 50.2 80.3 +30.1 25.9 46.2 +20.4

Table 5: Accuracy Gains for Minimizing Marginals of Outliers (k = 60)

MNIST FASHION EMNIST LETTERS

CORRUPTION CORRUPT FIXED DIFF CORRUPT FIXED DIFF CORRUPT FIXED DIFF

SQUARE(3X3) 96.7 97.7 +1.0 86.5 88.3 +1.8 88.5 90.8 +2.3
SQUARE(5X5) 95.9 95.5 -0.4 83.0 84.5 +1.5 86.0 88.0 +2.0
SQUARE(7X7) 86.0 87.3 +1.2 75.4 76.9 +1.5 82.0 83.9 +1.9
SQUARE(9X9) 72.4 69.2 -3.2 74.1 74.3 +0.2 68.6 67.6 -1.0
SMILEY 79.4 80.4 +1.1 73.6 73.9 +0.4 57.9 59.2 +1.3
COLUMN(14) 97.2 97.4 +0.2 84.3 86.3 +2.0 87.5 91.3 +3.8
ROW(14) 93.7 97.7 +4.0 87.6 87.4 -0.2 79.8 89.5 +9.7
RANDOM(120) 94.8 96.8 +2.0 69.6 78.4 +8.8 54.7 70.1 +15.4
RANDOM(200) 85.5 87.8 +2.3 47.9 52.7 +4.8 20.3 25.1 +4.8
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