
What to Expect of Classifiers?
Reasoning about Logistic Regression with Missing Features

Pasha Khosravi , Yitao Liang , YooJung Choi and Guy Van den Broeck
Computer Science Department

University of California, Los Angeles
{pashak, yliang, yjchoi, guyvdb}@cs.ucla.edu

Abstract

While discriminative classifiers often yield strong
predictive performance, missing feature values at
prediction time can still be a challenge. Classifiers
may not behave as expected under certain ways of
substituting the missing values, since they inher-
ently make assumptions about the data distribution
they were trained on. In this paper, we propose
a novel framework that classifies examples with
missing features by computing the expected predic-
tion with respect to a feature distribution. More-
over, we use geometric programming to learn a
naive Bayes distribution that embeds a given logis-
tic regression classifier and can efficiently take its
expected predictions. Empirical evaluations show
that our model achieves the same performance as
the logistic regression with all features observed,
and outperforms standard imputation techniques
when features go missing during prediction time.
Furthermore, we demonstrate that our method can
be used to generate “sufficient explanations” of lo-
gistic regression classifications, by removing fea-
tures that do not affect the classification.

1 Introduction
Missing values are pervasive in real-world machine learning
applications. Learned classifiers usually assume all input fea-
tures are known, but when a classifier is deployed, some fea-
tures may not be available, or too difficult to acquire. This
can be due to the noisy nature of our environment, unreliable
or costly sensors, and numerous other challenges in gathering
and managing data [Dekel and Shamir, 2008; Graham, 2012].
Consider autonomous driving for example, where blocked
sensors may leave observations incomplete.

Moreover, it can be difficult to anticipate the many ways in
which a learned classifier will be deployed. For example, the
same classifier could be used by different doctors who choose
to run different medical tests on their patients, and this infor-
mation is not known at learning time. Nevertheless, even a
small portion of missing data can severely affect the perfor-
mance of well-trained models, leading to predictions that are
very different from the ones made when all data is observed.

Certain machine learning models, such as probabilistic
graphical models, provide a natural solution to missing fea-
tures at prediction time, by formulating the problem as a
probabilistic inference task [Koller and Friedman, 2009; Dar-
wiche, 2009]. Unfortunately, with the increasing emphasis
on predictive performance, the general consensus is that such
generative models are not competitive as classifiers given
fully-observed feature vectors, and that discriminatively-
trained models are to be preferred [Ng and Jordan, 2002].

To alleviate the impact of missing data on discriminative
classifiers, it is common practice to substitute the missing
values with plausible ones [Schafer, 1999; Little and Rubin,
2014]. As we will argue later, a drawback for such imputation
techniques is that they can make overly strong assumptions
about the feature distribution. Furthermore, to be compatible
with many types of classifiers, they tend to overlook how the
multitude of possible imputed values would interact with the
classifier at hand, and risk yielding biased predictions.

To better address this issue, we propose a principled frame-
work of handling missing features by reasoning about the
classifier’s expected output given the feature distribution.
One obvious advantage is that it can be tailored to the given
family of classifiers and feature distributions. In contrast, the
popular mean imputation approach only coincides with the
expected prediction for simple models (e.g. linear functions)
under very strong independence assumptions about the fea-
ture distribution. We later show that calculating the expected
predictions with respect to arbitrary feature distributions is
computationally highly intractable. In order to make our
framework more feasible in practice, we leverage generative-
discriminative counterpart relationships to learn a joint dis-
tribution that can take expectations of its corresponding dis-
criminative classifier. We call this problem conformant learn-
ing. Then, we develop an algorithm, based on geometric pro-
gramming, for a well-known example of such relationship:
naive Bayes and logistic regression. We call this specific al-
gorithm naive conformant learning (NaCL).

Through an extensive empirical evaluation over five char-
acteristically distinct datasets, we show that NaCL consis-
tently achieves better estimates of the conditional probabil-
ity, as measured by average cross entropy and classification
accuracy, compared to commonly used imputation methods.
Lastly, we conduct a short case study on how our framework
can be applied to explain classifications.



2 The Expected Prediction Task
In this section, we describe our intuitive approach to mak-
ing a prediction when features are missing and discuss how
it relates to existing imputation methods. Then we study the
computational hardness of our expected prediction task.

We use uppercase letters to denote features/variables and
lowercase letters for their assignment. Sets of variables X
and their joint assignments x are written in bold. For an as-
signment x to a binary variable X , we let x̄ denote its nega-
tion. Concatenation XY denotes the union of disjoint sets.
The set of all possible assignments to X is denoted X .

Suppose we have a model trained with features X but are
now faced with the challenge of making a prediction with-
out knowing all values x. In this situation, a common so-
lution is to impute certain substitute values for the missing
data (for example their mean) [Little and Rubin, 2014]. How-
ever, the features that were observed provide information not
only about the class but also about the missing features, yet
this information is typically not taken into account by popular
methods such as mean imputation.

We propose a very natural alternative: to utilize the feature
distribution to probabilistically reason about what a predictor
is expected to return if it could observe the missing features.

Definition 1. Let F : X → R be a predictor and P be a
distribution over features X. Given a partitioning of features
X = YM and an assignment y to some of the features Y,
the expected prediction task is to compute

EF,P (y) = E
m∼P (M|y)

[F(ym)] .

The expected prediction task and (mean) imputation are
related, but only under very restrictive assumptions.

Example 1. Let F : X → R be a linear function. That
is, F(x) =

∑
x∈x wXx for some weights w. Suppose P

is a distribution over X that assumes independence between
features: P (X) =

∏
X∈X P (X). Then, using linearity of

expectation, the following holds for any partial observation y:

EF,P (y) = E
m∼P (M|y)

[∑
y∈y

wY y +
∑
m∈m

wMm

]
=
∑
y∈y

wY y +
∑
M∈M

wM E
m∼P (M)

[m].

Hence, substituting the missing features with their means ef-
fectively computes the expected predictions of linear mod-
els if the independence assumption holds. Furthermore, if F
is the true conditional probability of the labels and features
are generated by a fully-factorized P (X), then classifying by
comparing the expected predictionEF,P to 0.5 is Bayes opti-
mal on the observed features. That is, an expected prediction
higher than 0.5 means that the positive class is the most likely
one given the observation, and thus minimizes expected loss,
according to the distribution defined by F and P .

Example 2. Consider a logistic regression model G(x) =
sigmoid(F(x)) where F is a linear function. Now, mean
imputation no longer computes the expected prediction, even
when the independence assumption in the previous example

holds. In particular, if y is a partial observation such that
G(ym) is positive for all m, then the mean-imputed predic-
tion is an over-approximation of the expected prediction:

G(yE[m]) = sigmoid (E[F(ym)])

> E[sigmoid(F(ym))] = EG,P (y).

This is due to Jensen’s inequality and concavity of the sig-
moid function in the positive portion; conversely, it is an
under-approximation in the negative cases.

Example 1 showed how to efficiently take the expectation
of a linear function w.r.t. a fully factorized distribution. Un-
fortunately, the expected prediction task is in general compu-
tationally hard, even on simple classifiers and distributions.
Proposition 1. Taking expectation of a nontrivial classifier
w.r.t. a uniform distribution is #P-hard.

Proof. Suppose our classifier tests whether a logical con-
straint holds between the input features. Then asking whether
there exists a positive example is equivalent to SAT which is
NP-hard. The expected classification on a uniform distribu-
tion is solving an even harder task, of counting solutions to
the constraint, which is #P-hard [Roth, 1996].

Next, consider the converse in which the classifier is trivial
but the distribution is more general.
Proposition 2. The expectation of a classifier that returns the
value of a single feature w.r.t. a distribution represented by a
probabilistic graphical model is #P-hard.

Proof. Computing expectations of such classifier is as hard
as computing marginals in the feature distribution, which is
#P-hard for graphical models [Roth, 1996].

Previous propositions showed that the expected prediction
task stays intractable, even when we allow either the distribu-
tion or the classifier to be trivial.

Our next theorem states that the task is hard even for a
relatively simple classifier and a tractable distribution.1

Theorem 1. Computing the expectation of a logistic regres-
sion classifier over a naive Bayes distribution is NP-hard.

That is, the expected prediction task is hard even though
logistic regression classification and probabilistic reasoning
on naive Bayes models can both be done in linear time.

In summary, while the expected prediction task appears
natural for dealing with missing data, its vast intractability
poses a serious challenge, especially compared to efficient al-
ternatives such as imputation. Next, we investigate specific
ways of practically overcoming this challenge.

3 Joint Distributions as Classifiers
As shown previously, taking expectations is intractable for
arbitrary pairs of classifiers and distributions. In this sec-
tion, we propose conformant learning which aims to learn
a joint distribution that encodes a given classifier as well as
a feature distribution. On such distribution, the expected pre-
diction task is well-defined as probabilistic inference, and is

1All proofs can be found in Appendix A.



tractable for a large class of probabilistic models, including
naive Bayes [Darwiche, 2009; Dechter, 2013].

We first describe how a joint distribution can be used as a
classifier that inherently support missing features during pre-
diction time. Given a distribution P (X, C) over the features
X and class variable C, we can classify a partial observation
y simply by computing the conditional probability P (c |y)
where c denotes the positive class.2 In some sense, a joint dis-
tribution embeds a classifier P (C |Y) for each subset of ob-
served features Y. In fact, computing P (c |y) is equivalent
to computing the expected prediction of classifier F that out-
puts P (c |x) for every x, with respect to distribution P (X):

P (c |y) =
∑
m

P (c,m |y) =
∑
m

P (c |my)P (m |y)

= E
m∼P (M|y)

[P (c |ym)] = EF,P (y). (1)

Nevertheless, the prevailing consensus is that in practice dis-
criminatively training a classifier P (C |X) should be pre-
ferred to generatively learning P (X, C), because it tends to
achieve higher classification accuracy [Bouchard and Triggs,
2004; Ulusoy and Bishop, 2005].

There are many generative-discriminative pairs obtained
from fitting the same family of probabilistic models to op-
timize either the joint or conditional likelihood [Jaakkola
and Haussler, 1999; Sutton and McCallum, 2012; Liang and
Van den Broeck, 2019], including naive Bayes and logistic
regression [Ng and Jordan, 2002]. We formally describe such
relationship as follows:
Definition 2. We sayP (X, C) conforms withF : X → [0, 1]
if their classifications agree: P (c |x) = F(x) for all x.

Next, let us study naive Bayes models in detail as they
support efficient inference and thus are a good target distri-
bution to leverage for the expected prediction task. Naive
Bayes models assume that features are mutually independent
given the class; that is, its joint distribution is P (X, C) =
P (C)

∏
X∈X P (X |C). Under such assumption, marginal

inference takes linear time, and so does computing expecta-
tions under missing features as in Equation 1.

Logistic regression is the discriminative counterpart to
naive Bayes. It has parameters w and posits that 3

F(x) =
1

1 + e−wT ·x .

Any naive Bayes classifier can be translated to an equivalent
logistic regression classifier on fully observed features.
Lemma 1. Given a naive Bayes distribution P , there is a
unique logistic regression model F that it conforms with.
Such logistic regression model has the following weights:

w0 = log
P (c)

P (c̄)
+

n∑
i=1

log
P (x̄i | c)
P (x̄i | c̄)

wi = log
P (xi | c)
P (xi | c̄)

·
P (x̄i | c̄)
P (x̄i | c)

, i = 1, . . . , n

2We assume binary class for conciseness, but our approach easily
generalizes to multiclass. Details can be found in Appendix B.

3Here, x also includes a dummy feature that is always 1 to cor-
respond with the bias parameter w0.

w =

−1.162.23
−0.20

 X1 X2 F(x1, x2)

1 1 0.70
1 0 0.74
0 1 0.20
0 0 0.24

(a) Logistic regression weights and resulting predictions.

C

X1 X2

P1(c)

0.5

C P1(x1|C)

1 0.8
0 0.3

C P1(x2|C)

1 0.45
0 0.5

P2(c)

0.36

C P2(x1|C)

1 0.6
0 0.14

C P2(x2|C)

1 0.9
0 0.92

(b) Two naive Bayes distributions with same structure.

Figure 1: Logistic regressionF(x) = sigmoid(wTx) and two con-
formant naive Bayes models.

Here, x, x̄ denote X=1, X=0 respectively.

The lemma above can be drawn from Roos et al. [2005];
Ng and Jordan [2002]. Complete proofs of all lemmas can be
found in Appendix A.

Consider for example the naive Bayes (NB) distribution P1

in Figure 1b. For all possible feature observations, the NB
classification P1(c |x) is equal to that of logistic regression
(LR) F in Figure 1a, whose weights are as given by above
lemma (i.e., P1 conforms with F). Furthermore, distribution
P2 also translates into the same logistic regression. In fact,
there can be infinitely many such naive Bayes distributions.

Lemma 2. Given a logistic regression F and θ ∈ (0, 1)n,
there exists a unique naive Bayes model P such that

P (c |x) = F(x), ∀ x
P (xi | c) = θi, i = 1, . . . , n.

That is, given a logistic regression there are infinitely many
naive Bayes models that conform with it. Moreover, after
fixing values for n parameters of the NB model, there is a
uniquely corresponding naive Bayes model.

We can expect this phenomenon to generalize to other
generative-discriminative pairs; given a conditional distribu-
tion P (C |X) there are many possible feature distributions
P (X) to define a joint distribution P (X, C). For instance,
distributions P1 and P2 in Figure 1b assign different proba-
bilities to feature observations; P1(x̄1, x̄2) = 0.23 whereas
P2(x̄1, x̄2) = 0.06. Hence, we wish to define which one of
these models is the “best”. Naturally, we choose the one that
best explains a given dataset of feature observations.4

Definition 3. Let F : X → [0, 1] be a discriminative classi-
fier andD be a dataset where each example d is a joint assign-
ment to X. Given a family of distributions over C and X, let
P denote the subset of them that conforms withF . Then con-
formant learning onD is to solve the following optimization:

4Here we assume i.i.d. sampled data. If a true distribution is
known, we can equivalently minimize the KL-divergence to it.



arg max
P∈P

∏
d∈D

P (d) = arg max
P∈P

∏
d=(x)∈D

∑
c

P (x, c). (2)

The learned model thus conforms with F and defines a
feature distribution; therefore, we can take the expectation
of F via probabilistic inference. In other words, it attains
the desired classification performance of the given discrim-
inative model while also returning sophisticated predictions
under missing features. Specifically, conformant naive Bayes
models can be used to efficiently take expectations of logistic
regression classifiers. Note that this does not contradict The-
orem 1 which considers arbitrary pairs of LR and NB models.

4 Naive Conformant Learning
In this section, we study a special case of conformant learning
– naive conformant learning (NaCL), and show how it can be
solved as a geometric program.

A naive Bayes distribution is defined by a parameter set θ
that consists of θc, θc̄, and θx|c, θx|c̄ for all x. Naive confor-
mant learning outputs the naive Bayes distribution Pθ that
maximizes the (marginal) likelihood given the dataset and
conforms with a given logistic regression model F .

We will next show that above problem can be formulated
as a geometric program, an optimization problem of the form:

min f0(x)

s.t fi(x) ≤ 1, i = 1 . . .m

gi(x) = 1, i = 1 . . . p

where each fi is a posynomial and gi monomial. A mono-
mial is a function of the form bxa11 · · ·xann defined over pos-
itive real variables x1, . . . , xn where b > 0 and ai ∈ R. A
posynomial is a sum of monomials. Every geometric pro-
gram can be transformed into an equivalent convex program
through change of variables, and thus its global optimum can
be found efficiently [Boyd et al., 2007].

To maximize the likelihood, we instead minimize its in-
verse. Let n(x) denote the number of times an assignment x
appears in dataset D. Then the objective function is:

∏
d∈D

Pθ(d)−1 =
∏
x

Pθ(x)−n(x) =
∏
x

(∑
c

∏
x∈x

θx|cθc

)−n(x)

.

Above formula, directly expanded, is not a posynomial. In
order to express it as a posynomial we consider an auxiliary
datasetD′ constructed fromD as follows: for each data point
dj = (x) ∈ D, there are d′j,c = (x, c) ∈ D′ with weight αj,c
for all values of c. If the weights are such that αj,c ≥ 0 and∑
c αj,c = 1 for all j, then the inverse of the expected joint

likelihood given the new dataset D′ is∏
d′j,c=(x,c)∈D′

Pθ(x, c)
−αj,c

=
∏

dj=(x)∈D

∏
c

Pθ(x)−αj,cPθ(c |x)−αj,c

=
∏
d∈D

Pθ(d)−1 ·
∏

dj=(x)∈D,c

Pθ(c |x)−αj,c . (3)

DATASETS SIZE # CLASSES: DIST. # FEATURES FEATURE TYPES

MNIST 60K 10: BALANCED 784 INT. PIXEL VALUE

FASHION 60K 10: BALANCED 784 INT. PIXEL VALUE

COVTYPE 581K 7: UNBALANCED 54 CONT. & CATEGORICAL

ADULT 49K 2: UNBALANCED 14 INT. & CATEGORICAL

SPLICE 3K 3: UNBALANCED 61 CATEGORICAL

Table 2: Summary of our testbed.

For any Pθ ∈ P , the conditional distribution Pθ(C |X) is
fixed by the logistic regression model; in other words, the
last product term in Equation 3 is a constant. Therefore,
maximizing the expected (joint) likelihood on a completed
dataset must also maximize the marginal likelihood, which is
our original objective. Intuitively, maximizing the joint likeli-
hood on any dataset is equivalent to maximizing the marginal
likelihood P (X) if the conditional distribution P (C |X) is
fixed. Now our objective function can be written as a mono-
mial in terms of the parameters:

∏
d′j,c∈D′

Pθ(d
′
j,c)
−αj,c =

∏
d′j,c=(x,c)∈D′

(
θc
∏
x∈x

θx|c

)−αj,c

. (4)

Next, we express the set of conformant naive Bayes distri-
butions P as geometric program constraints in terms of θ. An
NB model Pθ conforms with an LR F if and only if its corre-
sponding logistic regression weights, according to Lemma 1,
match those of F . Hence, Pθ ∈ P precisely when

ew0 θ−1
c θc̄

n∏
i=1

θ−1
x̄i|c θx̄i|c̄ = 1 (5)

ewi θ−1
xi|c θxi|c̄ θx̄i|c θ

−1
x̄i|c̄ = 1, ∀ i (6)

We also need to ensure that the parameters define a valid
probability distribution (e.g., θc + θc̄ = 1). Because such
posynomial equalities are not valid geometric program con-
straints, we instead relax them to posynomial inequalities:5

θc + θc̄ ≤ 1, θxi|c + θx̄i|c ≤ 1, θxi|c̄ + θx̄i|c̄ ≤ 1, ∀ i (7)

Putting everything together, naive conformant learning can
be solved as a geometric program whose objective function is
given by Equation 4 and constraints by Equations 5 – 7. We
used the GPkit library [Burnell and Hoburg, 2018] to solve
our geometric programs.

5 Empirical Evaluation
In this section, we empirically evaluate the performance of
naive conformant learning (NaCL) and provide a detailed dis-
cussion of our method’s advantages over existing imputation
approaches in practice.6 More specifically, we want to answer
the following questions:

5The learned parameters may not sum to 1. They can still be
interpreted as a multi-valued NB with same likelihood that conforms
with F . These constraints were always active in our experiments.

6Our implementation of the algorithm and experiments are avail-
able at https://github.com/UCLA-StarAI/NaCL.

https://github.com/UCLA-StarAI/NaCL
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Figure 3: Standard image classification datasets: comparison of average cross entropy to the original predictions and classification accuracies
between naive conformant learning (NaCL) and commonly used imputation methods. The conditional probabilities from NaCL are consis-
tently closest to the full-data predictions, and NaCL consistently outperforms other methods with different percentages missing features.

CROSS ENTROPY COVTYPE ADULT SPLICE

UNDER % MISSING 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80%

MIN IMPUTATION 12.8 15.5 20.7 29.4 41.0 49.2 55.4 59.6 71.3 81.8 97.2 117.2
MAX IMPUTATION 52.6 89.1 133.5 187.7 84.2 114.6 125.3 114.5 70.5 78.3 89.3 103.2
MEAN IMPUTATION 12.8 15.6 21.2 30.5 34.1 38.7 44.8 52.6 69.2 74.7 82.4 92.3
MEDIAN IMPUTATION 12.8 15.7 21.4 30.8 35.3 41.2 48.6 57.8 70.0 75.7 83.0 92.0

NAIVE CONFORMANT LEARNING 12.6 14.8 18.9 25.8 33.6 37.0 41.2 46.6 69.1 74.7 82.8 94.0

Table 4: Three unbalanced UCI datasets with categorical features: comparison of average cross entropy to the original predictions between
naive conformant learning (NaCL) and commonly used imputation methods. The closest are denoted in bold.

WEIGHTED F1 COVTYPE ADULT SPLICE

UNDER % MISSING 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80%

MIN IMPUTATION 64.0 58.1 52.2 46.1 81.7 79.3 77.5 76.0 86.9 69.8 49.2 38.8
MAX IMPUTATION 49.8 44.4 41.6 37.3 81.7 79.3 77.4 76.0 86.9 69.8 49.1 38.8
MEAN IMPUTATION 64.0 58.0 52.2 46.3 82.9 79.8 75.3 70.7 91.8 82.3 66.2 45.7
MEDIAN IMPUTATION 64.0 58.1 52.2 46.1 82.7 79.2 74.8 70.5 89.4 77.6 59.5 42.5

NAIVE CONFORMANT LEARNING 66.1 61.7 56.9 51.7 83.4 81.2 77.9 73.5 93.3 87.2 76.6 59.1

Table 5: Three unbalanced UCI datasets with categorical features: comparison of weighted F1 scores between naive conformant learning
(NaCL) and commonly used imputation. The highest are denoted in bold.

Q1 Does NaCL reliably estimate the probabilities of the
original logistic regression with full data? How do these
estimates compare to those from imputation techniques,
including ones that also model a feature distribution?

Q2 Do higher-quality expectations of a logistic regression
classifier result in higher accuracy on test data?

Q3 Does NaCL retain logistic regression’s higher predictive
accuracy over unconstrained naive Bayes?

Experimental Setup To demonstrate the generality of our
method, we construct a 5-dataset testbed suite that covers as-
sorted configurations [Yann et al., 2009; Xiao et al., 2017;
Blackard and Dean, 1999; Dua and Karra Taniskidou, 2017;
Noordewier et al., 1991]; see Table 2. The suite ranges from
image classification to DNA sequence recognition; from fully
balanced labels to > 75% of samples belonging to a single
class; from continuous to categorical features with up to 40
different values. For datasets with no predefined test set, we
construct one by a 80:20 split. As our method assumes binary
inputs, we transform categorical features through one-hot en-
codings and binarize continuous ones based on whether they
are 0.05 standard deviation above their respective mean.

Our algorithm takes as input a logistic regression model
which we trained using fully observed training data. During
prediction time, we make the features go missing uniformly
at random based on a set missingness percentage, which cor-
responds to a missing completely at random (MCAR) mecha-
nism [Little and Rubin, 2014]. We repeat all experiments for
10 (resp. 100) runs on MNIST, Fashion, and CovType (resp.
Adult and Splice) and report the average.

5.1 Fidelity to the Original Predictions
The optimal method to deal with missing values would be
one that enables the original classifier to act as if no features
were missing. In other words, we want the predictions to
be affected as little as possible by the missingness. As such,
we evaluate the similarity between predictions made with and
without missingness, measured by the average cross entropy.
The results are reported in Figure 3a7 and Table 4; the error
bars were too small be visibly noticeable and were omitted in
the plots. In general, our method outperforms all the baselines

7Max imputation results are dismissed as they are orders of mag-
nitude worse than the rest.



by a significant margin, demonstrating the superiority of the
expected predictions produced by our method.

We also compare NaCL with two imputation methods that
consider the feature distribution, namely EM [Dempster et
al., 1977] and MICE [Buuren and Groothuis-Oudshoorn,
2010]. EM imputation reports the second-to-worst average
cross entropies and MICE’s results are very similar to those of
mean imputation when 1% of features are missing. Due to the
fact that both EM and MICE are excessively time-consuming
to run and their imputed values are no better quality than more
lightweight alternatives, we do not compare with them in the
rest of the experiments. We would like to especially em-
phasize this comparison; it demonstrates that directly lever-
aging feature distributions without also considering how the
imputed values impact the classifier may lead to unsatisfac-
tory predictions, further justifying the need for solving the
expected prediction task and conformant learning. This also
concludes our answer to Q1.

5.2 Classification Accuracy
Encouraged by the fact that NaCL produces more reliable es-
timates of the conditional probability of the original logistic
regression, we further investigate how much it helps achieve
better classification accuracy under different percentages of
missing features (i.e., Q2). As suggested by Figure 3b and
Table 5,8 NaCL consistently outperforms all other methods
except on the Adult dataset with 80% of the features missing.

Lastly, to answer Q3 we compare NaCL to a maximum-
likelihood naive Bayes model.9 In all datasets except Splice,
logistic regression achieves higher classification accuracy
than naive Bayes with fully observed features. NaCL main-
tains this advantage until 40% of the features go missing, fur-
ther demonstrating the effectiveness of our method. Note that
these four datasets have a large number of samples, which is
consistent with the prevailing consensus that discriminative
learners are better classifiers given a sufficiently large num-
ber of samples [Ng and Jordan, 2002].

6 Case Study: Sufficient Explanations
In this section we briefly discuss utilizing conformant learn-
ing to explain classifications and show some empirical exam-
ples as a proof of concept.

On a high level, the task of explaining a particular clas-
sification can be thought of as quantifying the “importance”
of each feature and choosing a small subset of the most im-
portant features as the explanation. Linear models are widely
considered easy to interpret, and thus many explanation meth-
ods learn a linear model that is closely faithful to the origi-
nal one, and then use the learned model to assign importance
to features [Ribeiro et al., 2016; Lundberg and Lee, 2017;
Shrikumar et al., 2017]. These methods often assume a black-
box setting, and to generate explanations they internally eval-
uate the predictor on multiple perturbations of the given in-

8We report weighted F1 scores as the datasets are unbalanced.
9We do not report the full set of results in the table because

maximum-likelihood learning of naive Bayes optimizes for a dif-
ferent loss and effectively solves a different task than NaCL and the
imputation methods.

(a) Correctly classified examples

(b) Misclassified examples

Figure 6: Explanations for MNIST classifications. Grey features
were not chosen as explanations; white/black are the true color of
chosen features. From left to right: 1) all features; 2) support fea-
tures; 3) top-k support features; 4) sufficient explanation of size k.

stance. A caveat is that the perturbed values may have a very
low probability on the distribution the classifier was trained
on. This can lead to unexpected results as machine learning
models typically only guarantee generalization if both train
and test data are drawn from the same distribution.

Instead we propose to leverage the feature distribution in
producing explanations. To explain a given binary classifier,
we consider a small subset of feature observations that is suf-
ficient to get the same classification, in expectation w.r.t. a
feature distribution. Next, we formally define our method:
Definition 4. (Support and Opposing Features) Given F , P ,
and x, we partition the given feature observations into two
sets. The first set consists of the support features that con-
tribute towards the classification of F(x):

x+ =

{
{x ∈ x : EF,P (x \ x) ≤ F(x)} if F(x) ≥ 0.5,
{x ∈ x : EF,P (x \ x) > F(x)} otherwise.

The rest are the opposing features that provide evidence
against the current classification: x− = x \ x+.
Definition 5. Sufficient explanation of F(x) with respect to
P is defined as the following:

arg min
e⊆x+

|e|

s.t. sgn(EF,P (ex−)− 0.5) = sgn(F(x)− 0.5)

Intuitively, this is the smallest set of support features that,
in expectation, result in the same classification despite all the
evidence to the contrary. In other words, we explain a classi-
fication using the strongest evidence towards it.

For a qualitative evaluation, we generate sufficient expla-
nations on instances of a binary logistic regression task for
MNIST digits 5 and 3; see the last column of Figure 6. Take
the first example in Figure 6a: the white pixels selected as suf-
ficient explanation show that the digit should be a 5. Also no-
tice the black pixels in the explanation: they express how the



absence of white pixels significantly contributes to the classi-
fication, especially in parts of the image where they would be
expected for the opposing class. Similarly, the black pixels in
the first example in Figure 6b look like a 3, and the white pix-
els in the explanation look like a 5, explaining why this 3 was
misclassified as a 5. We further compare our approach to an
alternative one that selects a subset of support features based
on their logistic regression weights; see the third column of
Figure 6. It selects features that will cause a large difference
in prediction if the value was flipped, as opposed to missing,
which is what sufficient explanation considers.

7 Related Work
There have been many approaches developed to classify with
missing values, which can broadly be grouped into two differ-
ent types. The first one focuses on increasing classifiers’ in-
herent robustness to feature corruption, which includes miss-
ingness. A common way to achieve such robustness is to
spread the importance weights more evenly among features
[Globerson and Roweis, 2006; Dekel and Shamir, 2008; Xia
et al., 2017]. One downside of this approach is that the trained
classifier may not achieve its best possible performance if no
features go missing.

The second one investigates how to impute the missing
values. In essence, imputation is a form of reasoning about
missing values from observed ones [Sharpe and Solly, 1995;
Batista et al., 2002; McKnight et al., 2007]. An iterative pro-
cess is commonly used during this reasoning process [Bu-
uren and Groothuis-Oudshoorn, 2010]. Some recent works
also adapt auto-encoders and GANs for the task [Costa et al.,
2018; Mattei and Frellsen, 2019]. Some of these works can
be incorporated into a framework called multiple imputations
to reflect and better bound one’s uncertainty [Schafer, 1999;
Azur et al., 2011; Gondara and Wang, 2018]. These exist-
ing methods focus on substituting missing values with those
closer to the ground truth, but do not model how the imputed
values interact with the trained classifier. On the other hand,
our proposed method explicitly reasons about what the clas-
sifier is expected to return.

We are among the first to incorporate feature distributions
to generate explanations. Notable recent work along this line
includes Chen et al. [2018], which proposes to maximize the
mutual information between selected features and the class.
To more explicitly leverage a feature distribution, Chang et al.
[2019] proposes to explain a classification by a subset of fea-
tures that maximally affect the classifier output, when its val-
ues are substituted by in-fills sampled from the feature distri-
bution conditioned on the rest of the features. This contrasts
with our method which studies the affect of certain features
on a classifier by marginalizing, rather than sampling.

8 Conclusion & Future Work
In this paper we introduced the expected prediction task, a
principled approach to predicting with missing features. It
leverages a feature distribution to reason about what a clas-
sifier is expected to return if it could observe all features.
We then proposed conformant learning to learn joint distribu-
tions that conform with and can take expectations of discrim-

inative classifiers. A special instance of it–naive conformant
learning–was shown empirically to outperform many existing
imputation methods. For future work, we would like to ex-
plore conformant learning for other generative-discriminative
pairs of models, and extend NaCL to real-valued features.
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A Proofs
A.1 Proof of Theorem 1
The proof is by reduction from computing the same-decision
probability, whose decision problem D-SDP was shown to be
NP-hard. [Chen et al., 2013]

Given a naive Bayes distribution P (.) over variables C and
X, a threshold T , and a probability p, D-SDP asks: is the
same-decision probability

∑
x I(P (c |x) > T )P (x) greater

than p? Here, I(.) denotes an indicator function which returns
1 if the enclosed expression is true, and 0 otherwise.

Using Lemma 1 we can efficiently translate a naive Bayes
model P to a logistic regression with a weight function w(.)
such that

P (c |x) =
1

1 + e−w(x)
.

Note that P (c |x) > T iff w(x) > − log( 1
T − 1). Then we

construct another logistic regression with weight function

w′(x) = n ·
(
w(x) + log

(
1

T
− 1

))
,

for some positive constant n. As w is a linear model, w′ is
also linear, and w′(x) > 0 iff P (c |x)>T . As n grows, w′(.)
approaches ∞ and −∞ for positive and negative examples,
respectively. Hence, this logistic regression model outputs 1
if P (c |x)>T and 0 otherwise, effectively being an indicator
function. Therefore, the expectation of such classifier over
P (X) is equal to the same-decision probability of X.

A.2 Proof of Lemma 1
We want to prove there is a unique F such that F(x) =
P (c | x) for all x given naive Bayes distribution P . Using
Bayes’ rule and algebraic manipulation, we get:

P (c | x) =
P (x | c) P (c)

P (x | c) P (c) + P (x | c̄) P (c̄)

=
1

1 +
P (x | c̄) P (c̄)

P (x | c) P (c)

=
1

1 + exp

[
− log

P (x | c) P (c)

P (x | c̄) P (c̄)

]
For any input x, we want above quantity to be equal to
F(x) = 1/(1 + exp[−

∑
i wixi]). In other words, we need:

log
P (x | c) P (c)

P (x | c̄) P (c̄)
=
∑
i

wi xi



Using naive Bayes assumption, we arrive at:

n∑
i=0

wixi = log
P (c)

P (c̄)
+

n∑
i=1

log
P (xi | c)
P (xi | c̄)

(1)

Now we want the RHS of Equation 1 to be a linear func-
tion of xi’s, so we do the following substitution for i > 0
assuming binary features:

log
P (xi | c)
P (xi | c̄)

= (xi) · log
P (xi = 1 | c)
P (xi = 1 | c̄)

(2)

+ (1− xi) · log
P (xi = 0 | c)
P (xi = 0 | c̄)

By combining Equations 1 and 2 we get the weights in
Lemma 1 by simple algebraic manipulations. To solve for the
bias termw0 we plug in xi=0 for all i>0. To computewi for
a non-zero i we take the coefficient of xi in Equation 2.

A.3 Proof of Lemma 2
Through the same algebraic manipulation as before, we get
the same equations as in Lemma 1 with the only difference
being that we are now solving the parameters of a naive Bayes
model rather than weights of the logistic regression model.
Intuitively, because the NB model has 2n+ 1 free parameters
but the LR model only has n+ 1 parameters, we expect some
degree of freedom. To get rid of the freedom and get a unique
solution, we fix the values for n parameters as follows:

P (xi = 1 | c) = θi (3)

Without loss of generality we have fixed the parameter values
for positive features. One can equally set the values in other
ways as long as one parameter value per feature is fixed.

Now there is a unique naive Bayes model that matches the
logistic regression classifier and also agrees with Equation 3.
That is, the remaining n + 1 parameter values are given by
the LR parameters, resulting in the following parameters for
such naive Bayes model:

P (xi | c) = θi, P (x̄i | c) = 1− P (xi | c),

P (xi | c̄) =
1

1 + ewi 1−θi
θi

, P (x̄i | c̄) = 1− P (xi | c̄),

P (c) = sigmoid

(
w0 −

n∑
i=1

log
P (x̄i | c)
P (x̄i | c̄)

)
.

B Beyond Binary Classification: Multiclass
In the paper, we studied logistic regression and conformant
naive Bayes models assuming binary classification. We now
show that our method can easily be extended to multiclass.
We first modify our notation of logistic regression and naive
Bayes models to allow for an arbitrary number of classes.

Definition 6. (Multiclass Classifiers) Suppose we have a
classifier withK classes, each denoted by ck (k ∈ [0,K−1]).

ThenFk denotes the conditional probability for class ck in lo-
gistic regression, and P a naive Bayes distribution defined as:

Fk(x) =
eWk·x∑
j e
Wj ·x

P (ck | x) =
P (ck)

∏n
i=1 P (xi | ck)∑

j P (cj)
∏n
i=1 P (xi | cj)

We say P conforms with F if their predictions agree for all
classes: P (ck |x) = Fk(x) for all k and x.

Next, we describe naive conformant learning for multi-
class. Instead of directly matching the predictions of P and
F for all classes, we match their ratios in order to simplify
equations going forward. Moreover, to get the same classi-
fiers it suffices to divide by the probability of only one class,
so without loss of generality we set the following be true.

Fk(x)

F0(x)
=
P (ck | x)

P (c0 | x)
, ∀ k ∈ [1,K − 1]

Using Definition 6, this leads to

e−Wk·x

e−W0·x
=
P (ck)

∏n
i=1 P (xi | ck)

P (c0)
∏n
i=1 P (xi | c0)

, ∀ k ∈ [1,K − 1].

The parameters of a multiclass naive Bayes are: θck =
P (ck), θxi|ck =P (xi = 1 | ck), and θx̄i|ck =P (xi = 0 | ck).
Then, we get the following constraints for NaCL through sim-
ilar algebraic manipulations as in the binary case:∑

k
θck = 1 (4)

θxi|ck + θx̄i|ck = 1, ∀ i, k>0 (5)

ewk,i−w0,i θ−1
xi|ck θx̄i|ck θxi|c0 θ−1

x̄i|c0 = 1, ∀ i, k>0

ewk,0−w0,0 θ−1
ck

θc0

n∏
i=1

θ−1
x̄i|ck θx̄i|c0 = 1, ∀ k>0

Again, we relax Equations 4 and 5 to inequalities to obtain
valid geometric program constraints. The rest of the method
stays the same: we maximize the marginal likelihood with
above constraints by minimizing the inverse of the joint like-
lihood on a completed datset, as described in Section 4.
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