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Probabilistic programming languages (PPLs) are an expressive means of representing and reasoning about

probabilistic models. The computational challenge of probabilistic inference remains the primary roadblock for

applying PPLs in practice. Inference is fundamentally hard, so there is no one-size-fits all solution. In this

work, we target scalable inference for an important class of probabilistic programs: those whose probability

distributions are discrete. Discrete distributions are common in many fields, including text analysis, network

verification, artificial intelligence, and graph analysis, but they prove to be challenging for existing PPLs.

We develop a domain-specific probabilistic programming language called Dice that features a new approach

to exact discrete probabilistic program inference. Dice exploits program structure in order to factorize inference,

enabling us to perform exact inference on probabilistic programs with hundreds of thousands of random

variables. Our key technical contribution is a new reduction from discrete probabilistic programs to weighted

model counting (WMC). This reduction separates the structure of the distribution from its parameters, enabling

logical reasoning tools to exploit that structure for probabilistic inference. We (1) show how to compositionally

reduce Dice inference to WMC, (2) prove this compilation correct with respect to a denotational semantics,

(3) empirically demonstrate the performance benefits over prior approaches, and (4) analyze the types of

structure that allow Dice to scale to large probabilistic programs.
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1 INTRODUCTION

The primary analysis task in probabilistic programming languages is probabilistic inference, com-
puting the probability that an event occurs according to the distribution defined by the program.
Probabilistic inference generalizes many well-known program analysis tasks, such as reachability,
and hence inference for a sufficiently expressive language is an extremely hard program analysis
task. The key to scaling inference is to strategically make assumptions about the structure of
programs and place restrictions on which programs can be written, while retaining a useful and
expressive language.

In this paper, we focus on scaling inference for an important class of probabilistic programs: those
whose probability distributions are discrete. Most PPLs today focus on handling continuous random
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variables. In the continuous setting one usually desires approximate inference techniques, such as
forms of sampling [Bingham et al. 2019; Carpenter et al. 2016; Chaganty et al. 2013; Dillon et al.
2017; Jordan et al. 1999; Kucukelbir et al. 2015; Nori et al. 2014; Wingate and Weber 2013]. However,
handling continuous variables typically requires making strong assumptions about the structure of
the program: many of these inference techniques have strict differentiability requirements that
preclude their application to programs with discrete random variables. For instance, momentum-
based sampling algorithms like HMC and NUTS [Hoffman and Gelman 2014] and many variational
approximations [Kucukelbir et al. 2017] are restricted to continuous latent random variables and
almost-everywhere differentiability of the posterior distribution. Yet many application domains
are naturally discrete: for example mixture models, networks and graphs, ranking and voting, and
text. This key deficiency in some of the most popular PPLs has led to a recent rise in interest in
handling discreteness in probabilistic programs [Gorinova et al. 2020; Obermeyer et al. 2019; Zhou
et al. 2020].
In this work we focus entirely on the challenge of designing a fast and efficient discrete proba-

bilistic program inference engine. We describe Dice, a domain-specific language for representing
discrete probabilistic programs, along with a new algorithm for exact inference for such programs.
Dice extends a simple first-order, non-recursive functional language with support for making
discrete probabilistic choices. It also provides first-class observations, which enables Dice to support
Bayesian reasoning in the presence of evidence.
Discrete programs are not a new challenge, and there are existing PPLs that support exact

inference for discrete probabilistic programs [Albarghouthi et al. 2017; Bingham et al. 2019; Claret
et al. 2013; Gehr et al. 2016; Geldenhuys et al. 2012; Goodman and Stuhlmüller 2014; Narayanan et al.
2016; Pfeffer 2007b; Sankaranarayanan et al. 2013; Wang et al. 2018]. However, we identify several
compelling example programs from text analysis, network verification, and discrete graphical
models on which existing methods fail. The reason that they fail is that the existing methods do
not find and automatically exploit the necessary factorizations and structure. Dice’s inference
algorithm is inspired by techniques for exact inference on discrete graphical models, which leverage
the graphical structure to factorize the inference computation. For example, a common property
is conditional independence: if a variable z is conditionally independent of x given y, then y acts
as a kind of interface between x and z that allows inference to be split into two separate analyses.
This kind of structure abounds in typical probabilistic programs. For example, a function call is
conditionally independent of the calling context given the actual argument value. Dice’s inference
algorithm automatically identifies and exploits these independences in order to factorize inference.
This enables Dice to scale to extremely large discrete probabilistic programs: our experiments
in Section 5 show Dice performing exact inference on a real-world probabilistic program that is
1.9MB large.

At its core, Dice builds on the knowledge compilation approach to probabilistic inference [Chavira
and Darwiche 2005, 2008; Chavira et al. 2006; Darwiche 2009; Fierens et al. 2015]. We show how
to compile Dice programs to weighted Boolean formulas (WBF) and then perform exact inference
via weighted model counting (WMC) on those formulas. We use binary decision diagrams (BDDs)
to represent these formulas. We show that during compilation, these BDDs naturally identify
and exploit conditional independence and other forms of structure, thereby avoiding exponential
explosion for many classes of interesting programs. Further, BDDs support efficient WMC, linear
in the size of the BDD.

Employing knowledge compilation for probabilistic inference in Dice requires us to generalize
the prior approaches in several ways. First, in order to support logical compilation of traditional
programming constructs such as conditionals, local variables, and arbitrarily nested tuples, we
develop novel compilation rules that compositionally associate Dice programs with weighted
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Boolean formulas. A key challenge here is supporting arbitrary observations. To do this, a Dice
program, as well as each Dice function, is compiled to two BDDs. Intuitively, one BDD represents
all possible executions of the program, ignoring observations, and the other BDD represents all
executions that satisfy the program’s observations. We show how to use WMC on these formulas
to perform exact Bayesian inference, with arbitrary observations throughout the program. Second,
Dice compiles functions modularly: each function is compiled to a BDD once, and we exploit
efficient BDD composition operations to reuse this BDD at each call site. This technique produces
the same final BDD that would otherwise be produced, but it allows us to amortize the costly
BDD construction phase across all callers, which we demonstrate can provide orders-of-magnitude
speedups.
In sum, this paper presents the following technical contributions:

• We describe the Dice language and illustrate its utility through three motivating examples
(Section 2).

• We formalize Dice’s semantics (Section 3) and its compilation to weighted Boolean formulas
(Section 4). We prove that the compilation rules are correct with respect to the denotational
semantics: the probability distribution represented by a compiled Dice program is equivalent to
that of the original program.

• We empirically compare Dice’s performance to that of prior PPLs with exact inference (Section 5).
We describe new and challenging benchmark probabilistic programs from cryptography, network
analysis, and discrete Bayesian networks, and show that Dice scales to orders-of-magnitude
larger programs than existing probabilistic programming languages, and is competitive with
specialized Bayesian network inference engines on certain tasks.

• We analyze some of the benefits of Dice’s compilation strategy in Section 6. First we note that
Dice inference is PSPACE-hard. Then we characterize cases where Dice scales efficiently, and
which types of structure it exploits in the distribution. We illustrate where to find that structure in
the program code as well as the compiled BDD form. We use these results to provide a technical
comparison with prior exact inference algorithms.

Dice is available at https://github.com/SHoltzen/dice. The full version of this paper is available on
arXiv as Holtzen et al. [2020], which contains full proofs.

2 AN OVERVIEW OF DICE

This section overviews the Dice language and its inference algorithm. First we use a simple
example program to show how Dice exploits program structure to perform inference in a factorized
manner. Then we use an example from network verification to show how Dice exploits the modular
structure of functions. Finally we use a cryptanalysis example to illustrate how inference in Dice is
augmented to support Bayesian inference in the presence of evidence.

2.1 Factorizing Inference

Probabilistic programming languages (PPLs) endow traditional programming languages with
probabilistic operations that enable the construction of probability distributions [Albarghouthi et al.
2017; Borgström et al. 2011; Claret et al. 2013; Huang andMorrisett 2016; Kozen 1979], and Dice is no
exception. Specifically, Dice extends a first-order functional language that supports non-recursive
functions and a form of bounded iteration. Despite its simplicity, this language can express a wide
variety of statistical models, and exact probabilistic inference in Dice is fundamentally hard. In
addition to its standalone usage, we anticipate Dice being used as a core language for discrete
inference inside other probabilistic programming systems.
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1 let x = flip1 0.1 in

2 let y = if x then flip2 0.2 else

3 flip3 0.3 in

4 let z = if y then flip4 0.4 else

5 flip5 0.5 in z

(a) Example Dice program.

𝑓1.471

𝑓2.48 𝑓3 .47

𝑓4.4 𝑓5 .5

T1 F 0

(b) Compiled BDD with weighted model counts.

Fig. 1. Illustration of compiling a Dice program that exploits factorization.

We begin with a simple motivating example that highlights the challenge of performing inference
efficiently and how Dice meets this challenge. Consider the example Dice program in Figure 1a.
The syntax is standard except for the introduction of a probabilistic expression flip 𝜃 , which flips
a coin that returns true with probability 𝜃 and false with probability 1 − 𝜃 . The subscript on each
flip is not part of the syntax but rather used to refer to them uniquely in our discussion.

The goal of probabilistic inference is to produce a program’s output probability distribution, so
in Figure 1a we desire the probability that z is true and the probability that z is false. Consider
computing the probability that z is true, which we denote Pr(z = T). The most straightforward
way to compute this quantity is via path enumeration: we can consider all possible assignments
to all flips and sum the probability of all assignments under which z = T. A number of existing
PPLs directly implement path enumeration to perform inference [Albarghouthi et al. 2017; Filieri
et al. 2013; Geldenhuys et al. 2012; Sankaranarayanan et al. 2013]. Concretely this would involve
computing the following sum of products:

0.1︸︷︷︸
x=T

· 0.2︸︷︷︸
y=T

· 0.4︸︷︷︸
z=T

+ 0.1︸︷︷︸
x=T

· 0.8︸︷︷︸
y=F

· 0.5︸︷︷︸
z=T

+ 0.9︸︷︷︸
x=F

· 0.3︸︷︷︸
y=T

· 0.4︸︷︷︸
z=T

+ 0.9︸︷︷︸
x=F

· 0.7︸︷︷︸
y=F

· 0.5︸︷︷︸
z=T

(1)

In this work we focus on the problem of scaling inference, so we ask: how does exhaustive
enumeration scale as this program grows in size? In this case we grow the program by adding one
additional layer to the chain of flips that depends on the previous. With this growing pattern,
the number of terms that a path enumeration must explore grows exponentially in the number
of layers, so clearly exhaustive enumeration does not scale on this simple example. Despite its
apparent simplicity, many existing inference algorithms cannot scale to large instances of this
example; see Figure 10d in Section 5.
However, the sum in Equation 1 has redundant computation, and thus can be factorized as

0.1︸︷︷︸
x=T

·
(

0.2︸︷︷︸
y=T

· 0.4︸︷︷︸
z=T

+ 0.8︸︷︷︸
y=F

· 0.5︸︷︷︸
z=T

)
+ 0.9︸︷︷︸

x=F

·
(

0.3︸︷︷︸
y=T

· 0.4︸︷︷︸
z=T

+ 0.7︸︷︷︸
y=F

· 0.5︸︷︷︸
z=T

)
. (2)

Such factorizations are abundant in this example, and in many others. Dice exploits these factor-
izations to scale, and in Section 5 we show that Dice scales to orders of magnitude larger programs
than existing methods in part by exploiting these forms of factorization. Such factorizations are
extremely common in probabilistic models, and finding and exploiting them is an essential strategy
for scaling exact inference algorithms, for example for graphical models [Boutilier et al. 1996;
Chavira and Darwiche 2008; Darwiche 2009; Koller and Friedman 2009; Pearl 1988].

Factorized inference in Dice. Inference in Dice is designed to find and exploit factorizations like
the one shown above. The key insight is to separate the logical representation of the state space
of the program from the probabilities, which allows Dice to identify factorizations implied by
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the structure of the program that are otherwise difficult to detect. This separation is achieved by
compiling each program to a weighted Boolean formula:

Definition 2.1. Let 𝜑 be a Boolean formula over variables 𝑋 , let 𝐿 be the set of all literals (assign-
ments to variables) over 𝑋 , and𝑤 : 𝐿 → R be a weight function that associates a real-valued weight
with each literal 𝐿. The pair (𝜑,𝑤) is a weighted Boolean formula (WBF).

To compile the program in Figure 1a into a WBF, we introduce one Boolean variable 𝑓𝑖 for
each expression flip𝑖 𝜃 in the program. Our goal is for the resulting boolean formula over these
variables to represent all possible flip valuations that cause z to be true, so one choice of WBF
is 𝜑𝑒𝑥 = 𝑓1 𝑓2 𝑓4 ∨ 𝑓1 𝑓2 𝑓5 ∨ 𝑓1 𝑓3 𝑓4 ∨ 𝑓1 𝑓3 𝑓5. Separately, the weight function represents the specific
probabilities for each expression flip𝑖 𝜃 from the program: the weight of 𝑓𝑖 is 𝜃 if 𝑓𝑖 is true and
1 − 𝜃 otherwise.

Once the program is associated with aWBF, we can perform probabilistic inference via aweighted
model count (WMC). Formally, for a formula 𝜑 over variables 𝑋 , a sentence 𝜔 is a model of 𝜑 if it is
a conjunction of literals, contains every variable in 𝑋 , and 𝜔 |= 𝜑 . We denote the set of all models
of 𝜑 as Mods(𝜑). The weight of a model, denoted𝑤 (𝜔), is the product of the weights of each literal
𝑤 (𝜔) ≜

∏
𝑙 ∈𝜔 𝑤 (𝑙). Then, the following defines the WMC task:

Definition 2.2. Let (𝜑,𝑤) be a weighted Boolean formula. The weighted model count (WMC) of
(𝜑,𝑤) is the sum of the weights of each model, WMC(𝜑,𝑤) ≜

∑
𝜔 ∈Mods(𝜑) 𝑤 (𝜔).

What has been achieved? So far, not much! The WMC task is known to be #P-hard for arbitrary
Boolean formulas. Indeed, our formula 𝜑𝑒𝑥 above is isomorphic to the structure of Equation 1,
so the WMC calculation over it will be essentially equivalent. However, it has been observed
in the AI literature that certain representations of Boolean formulas Ð such as binary decision
diagrams (BDDs) Ð both exploit the structure of a formula to minimize its representation and
support linear time weighted model counting, and as such are useful compilation targets [Bryant
1986; Chavira and Darwiche 2008; Darwiche and Marquis 2002]. The field of compiling Boolean
formulas to representations that support tractable weighted model counting is broadly known as
knowledge compilation, and inference via knowledge compilation is currently the state-of-the-art
inference algorithm for certain kinds of discrete Bayesian networks [Chavira and Darwiche 2008]
and probabilistic logic programs [Fierens et al. 2015].
Dice utilizes the insights of knowledge compilation to perform factorized inference. First, the

generated formula𝜑 in a compiledWBF is represented as a BDD; Figure 1b shows the compiled BDD
for the program in Figure 1a. A solid edge denotes the case where the parent variable is true and a
dotted edge denotes the case where the parent variable is false. This BDD is logically equivalent
to 𝜑𝑒𝑥 but the BDD’s construction process exploits the program’s conditional independence to
efficiently produce a compact canonical representation. Specifically, there is a single subtree for
𝑓4, which is shared by both the path coming from 𝑓2 and the path coming from 𝑓3, and similarly
for 𝑓5. These shared sub-trees are induced by conditional independence: fixing y to the value true
Ð and hence guaranteeing that a path to 𝑓4 is taken in the BDD Ð screens off the effect of x on
z, and hence reduces both the size of the final BDD and the cost of constructing it. The BDD
automatically finds and exploits such factorization opportunities by caching and reusing repetitious
logical sub-functions.
Dice performs inference on the original probabilistic program via WMC once the program is

compiled to a BDD. Crucially, it does so without exhaustively enumerating all paths or models. By
virtue of the shared sub-functions, the BDD in Figure 1b directly describes how to compute the
WMC in the factorized manner. Observe that each node is annotated with the weighted model count,
which is computed in linear time in a single bottom-up pass of the BDD. For instance, the WMC at
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𝑆1

𝑆2

𝑆3

𝑆4

(a) Network diagram.

1 fun diamond(𝑠1:Bool):Bool {

2 let route = flip1 0.5 in

3 let 𝑠2 = if route then 𝑠1 else F in

4 let 𝑠3 = if route then F else 𝑠1 in

5 let drop = flip2 0.0001 in

6 𝑠2 ∨ (𝑠3 ∧ ¬drop)

7 }

8 let net1 = diamond(T) in

9 let net2 = diamond(net1) in

10 diamond(net2)

(b) Dice program.

𝑠1

𝑓1

𝑓2

T F

(c) diamond

function.

𝑓 1
1

𝑓 1
2

𝑓 2
1

𝑓 2
2

𝑓 3
1

𝑓 3
2

T F

(d) Final BDD.

Fig. 2. A sub-network, its description as a probabilistic program, a compiled function, and the final BDD.

node 𝑓2 is given by taking the weighted sum of the WMC of its children, 0.2×0.4+0.8×0.5. Finally,
the sum taken at the root of the BDD (the node 𝑓1) is exactly the factorized sum in Equation 2.

2.2 Leveraging Functional Abstraction

The previous section highlights how Dice exploits factorization that comes from conditional
independences in the program. One common source of such independences is functional abstraction:
the behavior of a function call is independent of the calling context, given the actual argument. Dice
inference as described above automatically exploits this structure as part of the BDD construction.
In addition, Dice exploits functional abstraction in an orthogonal manner by modularly compiling
a BDD for each function once and then reusing this BDD at each call site, thereby amortizing the
cost of the BDD construction across all callers.
To illustrate the benefits of functional abstraction, we adapt an example from recent work

in probabilistic verification of computer networks via probabilistic programs [Gehr et al. 2018].
Figure 2a shows a łdiamondž network that contains four servers, labeled 𝑆𝑖 . The network’s behavior
is naturally probabilistic, to account for dynamics such as load balancing and congestion. In this
case, server 𝑆1 forwards an incoming packet to either 𝑆2 or 𝑆3, each with probability 50%. In
turn, those servers forward packets received from 𝑆1 to 𝑆4, except that 𝑆3 has a 0.1% chance of
dropping such a packet. The diamond function in Figure 2b defines the behavior of this network as
a probabilistic program in Dice. The argument boolean 𝑠1 represents the existence of an incoming
packet to 𝑆1 from the left, and the function returns a boolean indicating whether a packet was
delivered to 𝑆4.
As mentioned above, Dice compiles functions modularly, so Dice first compiles the diamond

function to a BDD, shown in Figure 2c. The variable 𝑠1 represents the unknown input to the function,
and the 𝑓𝑖 variables represent the flips in the function body, as in our previous example. Next
Dice will create the BDD for the łmainž expression in lines 8ś10 of Figure 2b. During this process,
the BDD for the diamond function is reused at each call site using standard BDD composition
operations like conjunction (Section 4 describes this in more detail). The final BDD for the program

is shown in Figure 2d, where each variable 𝑓
𝑗
𝑖 represents the 𝑖th flip in the 𝑗th call to diamond.

The final BDD automatically identifies and exploits functional abstraction. For example, the
structure of the BDD makes it clear that the third call to diamond depends only on the output of
the second call to diamond, rather than the particular execution path taken to produce that output.
As a result, even though there are three sub-networks, and therefore 26 possible joint assignments
to flips, the BDD only has 8 nodes. More generally, this BDD will grow linearly in the number of
composed diamond calls, though the number of possible executions grows exponentially. Hence
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functional abstraction both produces smaller BDDs, which leads to faster WMC computation, and
reduces BDD compilation time by compiling each function once. We show in Section 5 that these
capabilities provide orders of magnitude speedups in inference.

2.3 Bayesian Inference & Observations

1 fun EncryptChar(key:int, c:char):Bool {

2 let randomChar = ChooseChar() in

3 let ciphertext = (randomChar+key)%26 in

4 let fail = flip 0.0001 in

5 if fail then true else

6 observe ciphertext == c

7 }

8 let k = UniformInt(0, 25) in

9 let _ = EncryptChar(k, 'H') in

10 · · · // encrypt 𝑛 total characters

11 in k

Fig. 3. A frequency analyzer for a noisy Caesar cipher.

Bayesian inference is a general and popu-
lar technique for reasoning about the probabil-
ity of events in the presence of evidence. Dice,
similar to other PPLs, supports Bayesian rea-
soning through an observe expression. Specif-
ically, the expression łobserve ež represents
evidence (or an observation) that e is true; the
expression always evaluates to true, but it has
the side effect that executions on which e is not
true are defined to have 0 probability.
Dice supports first-class observations, in-

cluding inside of functions. An example is
shown in Figure 3, which shows another rich
class of discrete probabilistic inference prob-
lems that come from text analysis. For this prob-
lem the goal is to decrypt a given piece of ciphertext by inferring the most likely encryption key.
We assume that the plaintext was encrypted using a Caesar cipher, which simply shifts characters
by a fixed but unknown constant, so the encryption key is an integer between 0 and 25 (e.g., with
key 2, łabcž becomes łcdež).

The task of decrypting encrypted ciphertext can be cast as a probabilistic inference task by using
frequency analysis [Katz et al. 1996]. In the English language each letter has a certain probability of
being used: for instance, the frequency of letter łEž is 12.02%. In Figure 3, the function EncryptChar
is a generative model for how each letter in the ciphertext was created. The function takes as an
argument the encryption key as well as a received ciphertext character c. First a plaintext character
randomChar is chosen according to its empirical distribution (the ChooseChar function is not shown
but straightforward). Then this character is encrypted with the given key and we observe that the
ciphertext is the actual ciphertext character c that we received. To make the inference problem
more challenging and realistic, we assume that there is a chance that the encryptor mistakenly
forgets to encrypt a character, in which case we do not perform the observation. Initially, the key
(k) is assumed to be uniformly random (line 6). After invoking EncryptChar once for each received
ciphertext character (lines 7ś8), the posterior distribution on the key is returned.

The interaction of probabilistic inference with observations is subtle. Observations have a non-
local and łbackwardsž effect on the probability distribution, which must be carefully preserved
when performing inference. In our example, the observation inside of EncryptChar affects the
posterior distribution of its argument key. These non-local effects are the bane of sampling-based
inference algorithms: observations can impose complex constraints Ð such as the need in our
example for ChooseChar to draw the right character Ð that make it challenging for sampling
algorithms to find sufficiently many valid samples (we highlight this challenge in Section 5).
The WBF compilation strategy outlined in the previous section is inadequate for capturing the

semantics of the EncryptChar function: this function always returns true, so its compiled BDD
would be trivial. Clearly this is incorrect, since the EncryptChar function has an additional, implicit
effect on the program, by making certain encryption keys more or less likely to be the correct one.
To handle observations, we augment our compilation strategy to produce a second logical formula,
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1 𝜏 ::= Bool | 𝜏1 × 𝜏2
2 𝑣 ::= T | F | (𝑣, 𝑣)

3 aexp ::= 𝑥 | 𝑣

4 e ::= aexp | fst aexp | snd aexp | (aexp, aexp) | let 𝑥 = e in e | flip 𝜃

5 | if aexp then e else e | observe aexp | 𝑓 (aexp)

6 func ::= fun 𝑓 (𝑥:𝜏): 𝜏 { e }

7 p ::= e | func p

Fig. 4. Syntax for the core Dice language. The metavariable 𝑓 ranges over function names, 𝑥 over variable
names, and 𝜃 over real numbers in the range [0, 1].

which we call the accepting formula and denote 𝛾 . The accepting formula represents all possible
assignments to flips that cause all observes in the program to be satisfied. Together the formulas
𝜑 and 𝛾 capture the meaning of the program: we can compute the posterior distribution on k by
computing weighted model counts of the form WMC(𝜑 ∧ 𝛾,𝑤)/WMC(𝛾,𝑤) for each value of k. Note
that 𝛾 serves two roles: it constrains 𝜑 to only those executions that satisfy the observations, and
its weighted model count computes the normalizing constant for the final probability distribution.

3 THE DICE LANGUAGE

Dice is a first-order functional language augmented with constructs for probabilistic programming.
This section describes the language formally, providing its syntax and compositional semantics.

3.1 Syntax

The core syntax of Dice is given in Figure 4. We enforce an A-normal form via the usage of
atomic expressions (aexp) [Flanagan et al. 1993], which simplifies the semantics and compilation
rules. A program is a sequence of functions followed by the "main" expression. Each function is
non-recursive and can only call functions that precede it. The language supports booleans, tuples,
and typical operations over those types. In addition to this core syntax our Dice implementation
supports convenient syntactic sugar for logical operations (∧, ∨, and ¬), statically bounded loops,
bounded-size integers, and arbitrary function arity, as we describe in Section 5.1. We utilize these
extensions in our examples freely.
Dice supports two probabilistic expressions. First, the expression flip 𝜃 , where 𝜃 is a real

number between 0 and 1, denotes the distribution that has the value true with probability 𝜃 and
false with probability 1 − 𝜃 . Second, the expression observe e enables Bayesian reasoning by
incorporating evidence. Specifically, observe e represents the observation that e has the value true.
Semantically, executions on which e does not have the value true are defined to have 0 probability,
which has the effect of implicitly increasing the probabilities of other executions. We define the
expression observe e to always evaluate to true.

3.2 Semantics

The semantics of Dice programs is largely standard. We overview the semantics and highlight
its key aspects and design choices. We begin with the semantics of Dice expressions, which are
naturally represented as a probability distribution on values. Formally, let 𝑉 be the set of all Dice
values. Then, a discrete probability distribution on 𝑉 is a function Pr : 𝑉 → [0, 1] such that∑

𝑣∈𝑉 Pr(𝑣) = 1.
Figure 5 provides the semantics for Dice expressions. First we will discuss the semantics of

expressions without function calls and observations, which are deferred to Sections 3.2.1 and 3.2.2
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J𝑣1K (𝑣) ≜
(
𝛿 (𝑣1)

)
(𝑣) Jfst (𝑣1, 𝑣2)K (𝑣) ≜

(
𝛿 (𝑣1)

)
(𝑣) Jsnd (𝑣1, 𝑣2)K (𝑣) ≜

(
𝛿 (𝑣2)

)
(𝑣)

q
if 𝑣𝑔 then e1 else e2

y
(𝑣) ≜





Je1K (𝑣) if 𝑣𝑔 = T

Je2K (𝑣) if 𝑣𝑔 = F

0 otherwise

Jflip 𝜃K (𝑣) ≜




𝜃 if 𝑣 = T

1 − 𝜃 if 𝑣 = F

0 otherwise

Jobserve 𝑣1K (𝑣) ≜
{
1 if 𝑣1 = T and 𝑣 = T,

0 otherwise
J𝑓 (𝑣1)K (𝑣) ≜

( (
𝑇 (𝑓 )

)
(𝑣1)

)
(𝑣)

Jlet 𝑥 = e1 in e2K (𝑣) ≜
∑

𝑣′

Je1K (𝑣 ′) × Je2 [𝑥 ↦→ 𝑣 ′]K (𝑣)

Fig. 5. Semantics for Dice expressions. The function 𝛿 (𝑣) is a probability distribution that assigns a probability
of 1 to the value 𝑣 and 0 to all other values. The implicit context 𝑇 maps function names to their semantics.

respectively. The semantic function J·K maps expressions to unnormalized probability distributions
(i.e., distributions that do not necessarily sum to 1). The semantics of values and tuple access
are straightforward. For example, the semantics of the expression fst (F,T) is the probability
distribution that assigns probability 1 to F and 0 to all other values. The semantics for conditionals
follows from its usual semantics. In well-formed (i.e., closed) programs the conditional guard 𝑣𝑔
is always a value, because the language uses A-normal form. Hence, the semantics of if selects
either the then-branch or else-branch’s semantics depending on the value of 𝑣𝑔. For completeness
of the semantics, we define the semantics of if to be the always-zero function if the argument is
not a Boolean.
The semantics for flips produces the corresponding Bernoulli distribution. For example, the

expression flip 0.8 denotes the distribution that assigns T the probability 0.8, F the probability
0.2, and all other values the probability 0.
The most interesting case in the semantics is for let, as it shows the path enumeration that is

required when sequencing probabilistic expressions. Consider the example:

let 𝑥 = flip 0.1 in flip 0.4 ∨ 𝑥 (ExLet)

To compute the probability that (ExLet) results in some value 𝑣 , we must consider all possi-
ble ways in which that value could result, based on all possible values 𝑣 ′ for 𝑥 . Concretely, to
evaluate Jlet 𝑥 = flip 0.1 in flip 0.4 ∨ 𝑥K (T), the following sum is computed: Jflip 0.1K (T) ×
Jflip 0.4 ∨ 𝑥 [𝑥 ↦→ T]K (T) + Jflip 0.1K (F) × Jflip 0.4 ∨ 𝑥 [𝑥 ↦→ F]K (T) = 0.1 × 1.0 + 0.9 ∗ 0.4 =

0.46.

3.2.1 Functions and Programs. Dice supports non-recursive functions. We generalize the semantics
of expressions to functions in a natural way. Specifically, the semantics of a function f is a conditional
probability distribution, which is a function from each value 𝑣 to a probability distribution for f(𝑣).
Formally, the semantics of a function JfuncK : 𝑉 → 𝑉 → [0, 1] is defined as follows:

Jfun 𝑓 (𝑥 : 𝜏) : 𝜏 ′{e}K (𝑣) ≜ Je[𝑥 ↦→ 𝑣]K (3)

We can now give a semantics to function calls. To do so, we extend the semantics judgment to
include a function table𝑇 , which is a finite map from function names to their conditional probability

distributions. Formally our semantics judgment for expressions now has the form JeK𝑇 : 𝑉 → [0, 1],
and similarly for the semantics of function definitions above, but we leave 𝑇 implicit when it is
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clear from the context. Figure 5 provides the semantics of a function call: the function’s conditional
probability distribution is found in 𝑇 , and the probability distribution associated with the actual
argument 𝑣 is retrieved.

Finally, we define the semantics of programs JpK𝑇 : 𝑉 → [0, 1]. Intuitively, each function is
given a semantics in the context of the prior functions, and then the semantics of the program is
defined as the semantics of the łmainž expression. We formalize this semantics inductively via the
following two rules, where • denotes the empty sequence and 𝜂 (func) denotes the name of the
function func:

J• eK𝑇 ≜ JeK𝑇 Jfunc pK𝑇 ≜ JpK𝑇∪
{
𝜂 (func) ↦→JfuncK𝑇

}
. (4)

3.2.2 Observations & Bayesian Conditioning. Observations complicate the goal of associating a
probability distribution with each program expression. Our semantics of observe in Figure 5
follows prior work by assigning probability 0 to a failed observation [Borgström et al. 2011; Claret
et al. 2013; Huang and Morrisett 2016; Kozen 1979; Nori et al. 2014]. Now consider the following
example program:

let x = flip 0.6 in let y = flip 0.3 in let _ = observe x ∨ y in x (ObsProg)

Because the observe expression is falsified when both x and y are false, that scenario has probability
0. Hence according to our semantics JObsProgK (T) = 0.6 and JObsProgK (F) = 0.12. As a result
the meaning of this program is not a valid probability distribution.
The standard approach to handling this issue is to treat the semantics as producing an unnor-

malized distribution, which need not sum to 1 and which is normalized at the very end to produce
a valid probability distribution for the entire program. Here we explore the subtle properties of
this unnormalized distribution, which will serve a crucial purpose later during our compilation
strategy. Let JeK𝐴 denote the normalizing constant and JeK𝐷 denote the normalized distribution for
an expression. These two quantities can be straightforwardly computed from the unnormalized
semantics in Figure 5:

JeK𝐴 ≜
∑

𝑣

JeK (𝑣), JeK𝐷 (𝑣) ≜
1

JeK𝐴
JeK (𝑣). (5)

For instance, in the above example JObsProgK𝐴 = 0.12+0.6 = 0.72, JObsProgK𝐷 (T) = 0.6/0.72 ≈

0.83, and JObsProgK𝐷 (F) = 0.12/0.72 ≈ 0.17. In the event that JeK𝐴 = 0, the distributional
semantics is also defined to be zero.

By construction, J·K𝐷 always yields a probability distribution (or the always-zero function in the
event that the accepting semantics is zero), so we call it the distributional semantics. This is the
quantity that we need in order to answer inference queries. What does J·K𝐴 represent? Typically it
is not given a meaning but rather simply considered to be an arbitrary normalizing constant that is
only computed for the entire program. And indeed, the normalizing constant is irrelevant for the
purposes of performing global inference: the probabilities in the unnormalized semantics can be
scaled arbitrarily without changing J·K𝐷 . This łnormalize at the endž mode of operation is standard
for many PPLs that use an unnormalized semantics [Claret et al. 2013; Fierens et al. 2015].
However, when reasoning about partial programs, the distributional semantics alone is not

sufficient. For example, consider these two functions:

fun f(x:Bool):Bool { let y = x ∨ flip(0.5) in let z = observe y in y } (6)

fun g(x:Bool):Bool { true } (7)

Because the observation in f requires y to be true, the two functions have the identical distributional
semantics: they both return true with probability 1, regardless of the argument x. However, these
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two functions are not equivalent! Specifically, the observation in f has the effect of changing the
probability distribution of the argument x when the function is called. Concretely,

Jlet x = flip 0.1 in let obs = f(x) in xK𝐷 (T) = 0.1/0.55

Jlet x = flip 0.1 in let obs = g(x) in xK𝐷 (T) = 0.1

The quantity J·K𝐴 carries exactly the information needed to distinguish these functions. Specifi-
cally, JeK𝐴 represents the probability that e has an accepting execution, which satisfies all observa-
tions, so we call it the accepting semantics. In the above example, Jg(F)K𝐴 = 1 but Jf(F)K𝐴 = 0.5: the
function call f(F) will succeed only half of the time. This quantity allows us to precisely compute
the effect of the observation on any caller.

In summary, the semantics in Figure 5 computes an unnormalized distribution. However, since the
normalizing constant is exactly the accepting probability, the semantics has the effect of computing
two key quantities on each program fragment, both of which are necessary to characterize its
meaning: its normalized probability distribution and its probability of accepting. Later this accepting
semantics will be explicitly represented during compilation as the accepting formula.

4 PROBABILISTIC INFERENCE FOR DICE

This section formalizes our approach to probablistic inference in Dice via reduction to weighted

model counting (WMC). In this style, a probabilistic model is compiled to a weighted Boolean formula

(WBF) such that WMC queries on the WBF exactly correspond to inference queries on the original
model. This approach has been successfully used to perform exact inference in discrete Bayesian
networks as well as probabilistic databases and logic programs [Chavira and Darwiche 2008; Fierens
et al. 2015; Van den Broeck and Suciu 2017]. However, to our knowledge it has not been previously
applied to a probablistic programming language with traditional programming language constructs,
functions, and first-class observations.
The bulk of this section formalizes our novel algorithm for compiling Dice programs to WBF.

We describe this compilation in stages: first on the Boolean sub-language, then with the addition of
tuples, and finally with the addition of functions. We also state and prove a correctness theorem,
which formally relates WMC queries over a program’s compiled WBF to the semantics from the
previous section. Finally we illustrate how we use BDDs to represent WBFs, which enables the
approach to automatically perform factorized inference.

4.1 Compiling Boolean Dice Expressions

The formal compilation judgment for Boolean Dice expressions has the form e⇝ (𝜑,𝛾,𝑤), where
𝜑 and 𝛾 are logical formulas and𝑤 is a weight function (recall Definition 2.1). This judgment form
will be extended later to accommodate other language features. We call 𝜑 the unnormalized formula:
it represents all possible assignments to variables and flips for which e evaluates to true, ignoring
observations. We call 𝛾 the accepting formula: it represents all possible assignments to variables
and flips that cause all observations in e to succeed. Before showing the formal rules, we present
two examples to build intuition on the compilation to WBF and how it is used to perform inference.

Example 4.1. The expression (ExLet) from the previous section compiles to the unnormalized
formula 𝜑 = 𝑓1 ∨ 𝑓2, where 𝑓1 and 𝑓2 are Boolean variables associated with flip 0.1 and flip 0.4

respectively. Since there are no observations, 𝛾 = T for this example. The weight function𝑤 assigns
weights to the literals of 𝑓1 and 𝑓2 that correspond with their probabilities in (ExLet). Then we
have that JExLetK (T) = WMC(𝜑,𝑤) = 0.46 and JExLetK (F) = WMC(𝜑,𝑤) = 0.54.

Example 4.2. The program (ObsProg) from the previous section compiles to the unnormalized
formula 𝜑 = 𝑓1 and the accepting formula 𝛾 = 𝑓1 ∨ 𝑓2, where 𝑓1 corresponds with flip 0.6 and 𝑓2
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T⇝ (T, T, ∅)
(C-True)

F⇝ (F, T, ∅)
(C-False)

𝑥 ⇝ (x, T, ∅)
(C-Ident)

fresh f

flip 𝜃 ⇝
(
f, T, (f ↦→ 𝜃, T, f ↦→ 1 − 𝜃 )

) (C-Flip)
aexp⇝ (𝜑, T, ∅)

observe aexp⇝ (T, 𝜑, ∅)
(C-Obs)

aexp⇝ (𝜑𝑔, T, ∅) e𝑇 ⇝ (𝜑𝑇 , 𝛾𝑇 ,𝑤𝑇 ) e𝐸 ⇝ (𝜑𝐸, 𝛾𝐸,𝑤𝐸)

if aexp then eT else eE ⇝

( (
(𝜑𝑔 ∧ 𝜑𝑇

)
∨

(
(𝜑𝑔 ∧ 𝜑𝐸

)
,
(
(𝜑𝑔 ∧ 𝛾𝑇

)
∨

(
(𝜑𝑔 ∧ 𝛾𝐸

)
,𝑤𝑇 ∪𝑤𝐸

)

(C-Ite)

e1 ⇝ (𝜑1, 𝛾1,𝑤1) e2 ⇝ (𝜑2, 𝛾2,𝑤2)

let 𝑥 = e1 in e2 ⇝
(
𝜑2 [x ↦→ 𝜑1], 𝛾1 ∧ 𝛾2 [x ↦→ 𝜑1],𝑤1 ∪𝑤2

) (C-Let)

Fig. 6. Compiling Boolean expressions to WBFs.

with flip 0.3. Hence the formula 𝜑 ∧𝛾 is true if and only if the program evaluates to T and satisfies
all observations, and similarly 𝜑 ∧𝛾 is true if and only if the program evaluates to F and satisfies all
observations. Then, with the appropriate weight function𝑤 , we can perform Bayesian inference on
(ObsProg) via two weighted model counts: J(ObsProg)K𝐷 (T) = WMC(𝜑 ∧ 𝛾,𝑤)/WMC(𝛾,𝑤) ≈ 0.83

and J(ObsProg)K𝐷 (F) = WMC(𝜑 ∧ 𝛾,𝑤)/WMC(𝛾,𝑤) ≈ 0.17.

The formal compilation rules are shown in Figure 6. The above examples show how closed

programs are compiled, but expressions can also have free variables in them. The rule C-Ident
handles a free variable 𝑥 simply by introducing a corresponding Boolean variable x. To illustrate
the rule C-Flip, flip 0.4⇝ (𝑓 , T,𝑤) where𝑤 maps 𝑓 to 0.4 and 𝑓 to 0.6, and 𝑓 is a fresh Boolean
variable. Hence WMC(𝑓 ∧ T,𝑤) = 0.4 = Jflip 0.4K (T) and WMC(𝑓 ,𝑤) = 0.6 = Jflip 0.4K (F).

The rule C-Obs handles observes. Since an expression’s unnormalized formula ignores obser-
vations, the unnormalized formula for observe aexp is simply T. The metavariable aexp ranges
over values and identifiers and hence compiles to an accepting formula of T and an empty weight
function (aexp stands for atomic expression). Finally, the unnormalized formula of aexp becomes the
accepting formula of observe aexp, in order to capture all ways that the observation is satisfied.

The rule C-Ite encodes the usual logical semantics of conditionals. Finally, the C-Let rule shows
how to represent expression sequencing. The logical substitution 𝜑1 [x ↦→ 𝜑2] replaces all occur-
rences of x in 𝜑1 with the formula 𝜑2. For the accepting formula, the expression let 𝑥 = e1 in e2
only accepts if both expressions accept, so we simply conjoin their accepting formulas. To illustrate
the rule, we show the derivation through the rules for our example (ExLet), assuming the obvious
rule for compiling logical disjunction (which is syntactic sugar for a conditional expression):

fresh 𝑓1

flip 0.1⇝ (𝑓1, T,𝑤1)

𝑥 ⇝ (x, T, ∅)

fresh 𝑓2

flip 0.4⇝ (𝑓2, T,𝑤2)

flip 0.4 ∨ 𝑥 ⇝ (𝑓2 ∨ x, T,𝑤2)

let 𝑥 = flip 0.1 in flip 0.4 ∨ 𝑥 ⇝ (𝑓2 ∨ x[x ↦→ 𝑓1], T,𝑤1 ∪𝑤2)
(ExLetCompilation)

This compilationmatches Example 4.1 above and shows how logical substitution captures expression
sequencing. The union of two weight functions, denoted𝑤1 ∪𝑤2, is simply the union of the two
maps𝑤1 and𝑤2; this is well-defined because no two subexpressions can share flips, so there can
be no conflicts.
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The statement of correctness for Boolean Dice expressions connects our compilation rules to
the formal semantics from the previous section:

Lemma 4.3 (Boolean Expression Correctness). Let e be a Boolean Dice expression with free

variables 𝑥1, . . . , 𝑥𝑛 and suppose e⇝ (𝜑,𝛾,𝑤). Then for any Boolean values 𝑣1, . . . , 𝑣𝑛 :

• Je[𝑥𝑖 ↦→ 𝑣𝑖 ]K𝐴 = WMC(𝛾 [x𝑖 ↦→ 𝑣𝑖 ],𝑤)

• for any Boolean value 𝑣 , Je[𝑥𝑖 ↦→ 𝑣𝑖 ]K𝐷 (𝑣) =
WMC( ( (𝜑⇔𝑣)∧𝛾 ) [x𝑖 ↦→𝑣𝑖 ],𝑤)

WMC(𝛾 [x𝑖 ↦→𝑣𝑖 ],𝑤)
.

As in the earlier definition of the distributional semantics, in the event that a division by zero
occurs in the above lemma, the result is defined to be zero. This lemma implies that we can answer
inference queries on the original expression via two WMC queries on the compiled WBF. The
following key lemma directly implies the one above:

Lemma 4.4. Let e be a Boolean Dice expression with free variables 𝑥1, . . . , 𝑥𝑛 and suppose e ⇝

(𝜑,𝛾,𝑤). Then for any Boolean values 𝑣1, . . . , 𝑣𝑛 and Boolean value 𝑣 ,

Je[𝑥𝑖 ↦→ 𝑣𝑖 ]K (𝑣) = WMC(((𝜑 ⇔ 𝑣) ∧ 𝛾) [x𝑖 ↦→ 𝑣𝑖 ],𝑤).

4.2 Tuples & Typed Compilation

Next we extend our compilation rules to support arbitrarily nested tuples. The primary purpose of
tuples is to empower Dice functions by enabling multiple arguments and return values. Intuitively,
this involves generalizing the compilation target from a single Boolean formula 𝜑 to tuples of
Boolean formulas. Formally, this extension requires that we generalize the compilation judgment,
which now has the following form:

Γ ⊢ e : 𝜏 ⇝ (
.
𝜑,𝛾,𝑤).

First, our compilation is now typed: Γ is the usual type environment for free variables and 𝜏 is the
type of e. The types are necessary to determine how to properly encode program variables in the
compiled logical formulas. Second, compilation produces a collection of Boolean formulas, one
per occurrence of the type Bool in 𝜏 . The new metavariable

.
𝜑 is defined inductively as either a

Boolean formula 𝜑 or a pair of the form (
.
𝜑
1
,
.
𝜑
2
).

As a concrete example of compiling a program that contains tuples:

{} ⊢ let 𝑥 = flip 0.2 in (𝑥, T) : Bool × Bool⇝

(
(𝑓1, T), T, [𝑓1 ↦→ 0.2, 𝑓1 ↦→ 0.8]

)
.

Here, the resulting compiled formula
.
𝜑 is a pair of Boolean formulas (𝑓1, T).

Figure 7 shows the new rules for compiling tuples and also presents updated versions of the
rules from Figure 6, other than the Boolean-specific rules. The extended compilation for tuples is
structurally very similar to Boolean compilation, but requires generalizing the Boolean operations
in a natural way to accommodate tuples (The full version of the paper summarizes this new notation
in the appendix). The new version of C-Ident uses the form function 𝐹𝜏 (𝑥), which constructs the
logical representation of a variable 𝑥 based on its type 𝜏 . It is defined inductively as 𝐹Bool (𝑥) ≜ x

and 𝐹𝜏1×𝜏2 (𝑥) ≜ (𝐹𝜏1 (𝑥𝑙 ), 𝐹𝜏2 (𝑥𝑟 )). Note the subscripts 𝑥𝑙 and 𝑥𝑟 that lexically distinguish the left
and right elements. This function also allows us to naturally define the compilation for tuple
creation as well as fst and snd in Figure 7.

The C-Ite rule shows how we generalize the compilation of conditionals to accommodate tuples.
The rule requires that we conjoin a Boolean expression𝜑𝑔 (the compiled guard) with a potential tuple
of formulas (the compiled then and else branches). To do this, we define broadcasted conjunction,
denoted 𝜑𝑔∧

𝜏

.
𝜑 , as conjoining 𝜑𝑔 with all the Boolean expressions in the tuple

.
𝜑 . Formally, we define

it as 𝜑𝑎 ∧
Bool

𝜑𝑏 ≜ 𝜑𝑎 ∧ 𝜑𝑏 and 𝜑𝑎 ∧
𝜏1×𝜏2

(
.
𝜑𝑏1,

.
𝜑𝑏2) ≜

(
𝜑𝑎∧

𝜏1

.
𝜑𝑏1, 𝜑𝑎∧𝜏2

.
𝜑𝑏2

)
. In addition to broadcasted
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Γ(𝑥) = 𝜏

Γ ⊢ 𝑥 : 𝜏 ⇝ (𝐹𝜏 (𝑥), T, ∅)
(C-Ident)

Γ(𝑥1) = 𝜏1 Γ(𝑥2) = 𝜏2

Γ ⊢ (𝑥1, 𝑥2) : 𝜏1 × 𝜏2 ⇝ ((𝐹𝜏1 (𝑥1), 𝐹𝜏2 (𝑥2)), T, ∅)
(C-Tup)

Γ(𝑥) = 𝜏1 × 𝜏2

Γ ⊢ fst 𝑥 : 𝜏1 ⇝ (𝐹𝜏1 (𝑥𝑙 ), T, ∅)
(C-Fst)

Γ(𝑥) = 𝜏1 × 𝜏2

Γ ⊢ snd 𝑥 : 𝜏2 ⇝ (𝐹𝜏2 (𝑥𝑟 ), T, ∅)
(C-Snd)

Γ ⊢ aexp : Bool⇝ (𝜑𝑔, T, ∅) Γ ⊢ e𝑇 : 𝜏 ⇝ (
.
𝜑𝑇 , 𝛾𝑇 ,𝑤𝑇 ) Γ ⊢ e𝐸 : 𝜏 ⇝ (

.
𝜑𝐸, 𝛾𝐸,𝑤𝐸)

Γ ⊢ if aexp then eT else eE : 𝜏 ⇝
( (
(𝜑𝑔∧

𝜏

.
𝜑𝑇

) .
∨
𝜏

(
(𝜑𝑔∧𝜏

.
𝜑𝐸

)
,
(
(𝜑𝑔 ∧ 𝛾𝑇

)
∨

(
(𝜑𝑔 ∧ 𝛾𝐸

)
,𝑤𝑇 ∪𝑤𝐸

)

(C-Ite)

Γ ⊢ e1 : 𝜏1 ⇝ (
.
𝜑
1
, 𝛾1,𝑤1) Γ ∪ {𝑥 : 𝜏1} ⊢ e2 : 𝜏2 ⇝ (

.
𝜑
2
, 𝛾2,𝑤2)

Γ ⊢ let 𝑥 : 𝜏1 = e1 in e2 : 𝜏2 ⇝
( .
𝜑
2
[x

𝜏
↦−→

.
𝜑
1
], 𝛾1 ∧ 𝛾2 [x

𝜏
↦−→

.
𝜑
1
],𝑤1 ∪𝑤2

) (C-Let)

Fig. 7. Typed compilation for tuples. These assume, without loss of generality but for simplicity, that fst,
snd, and tuple construction are only ever performed with identifiers as arguments.

conjunction, C-Ite also requires point-wise disjunction, denoted
.
𝜑
1

.
∨
𝜏

.
𝜑
2
. Point-wise disjunction is

defined inductively as 𝜑1

.
∨

Bool

𝜑2 ≜ 𝜑1 ∨ 𝜑2 and (
.
𝜑
11
,
.
𝜑
12
)

.
∨

𝜏1×𝜏2
(
.
𝜑
21
,
.
𝜑
22
) ≜ (

.
𝜑
11

.
∨
𝜏1

.
𝜑
21
,
.
𝜑
12

.
∨
𝜏2

.
𝜑
22
).

Finally, to generalize the compilation of let expressions, in the C-Let rule we employ typed

substitution
.
𝜑
2
[x

𝜏1
↦−→

.
𝜑
1
] to substitute the compiled version of e1 into the compiled version of e2.

We define typed substitution inductively as follows:

𝜑2 [x
Bool

↦−−−−→ 𝜑1] ≜ 𝜑2 [x ↦→ 𝜑1], 𝜑2 [x
𝜏𝑎×𝜏𝑏
↦−−−−→ (

.
𝜑𝑎,

.
𝜑𝑏)] ≜ 𝜑2 [x𝑙

𝜏𝑎
↦−→

.
𝜑𝑎] [x𝑟

𝜏𝑏
↦−→

.
𝜑𝑏],

(
.
𝜑
1
,
.
𝜑
2
) [x

𝜏
↦−→

.
𝜑] ≜ (

.
𝜑
1
[x

𝜏
↦−→

.
𝜑],

.
𝜑
2
[x

𝜏
↦−→

.
𝜑]).

We can state and prove a natural generalization of our key lemma from the previous subsection,

Lemma 4.4. The lemma depends on pointwise iff, denoted
.
𝜑
1

𝜏
⇐⇒

.
𝜑
2
and defined inductively as

follows: 𝜑1

Bool

⇐===⇒ 𝜑2 ≜ 𝜑1 ⇔ 𝜑2 and (
.
𝜑
1
,
.
𝜑
2
)

𝜏1×𝜏2
⇐====⇒ (

.
𝜑
′
1
,
.
𝜑
′
2
) ≜

(
.
𝜑
1

𝜏1
⇐⇒

.
𝜑
′
1

)
∧

(
.
𝜑
2

𝜏2
⇐⇒

.
𝜑
′
2

)
.

Then we can state the following lemma:

Lemma 4.5 (Typed Correctness Without Functions). Let e be a Dice expression without

function calls, and suppose {𝑥𝑖 : 𝜏𝑖 } ⊢ e : 𝜏 ⇝ (
.
𝜑,𝛾,𝑤). Then for any values {𝑣𝑖 : 𝜏𝑖 } and 𝑣 : 𝜏 , we

have that Je[𝑥𝑖 ↦→ 𝑣𝑖 ]K (𝑣) = WMC

( (
(
.
𝜑

𝜏
⇐⇒ 𝑣) ∧ 𝛾

)
[x𝑖

𝜏𝑖
↦−→ 𝑣𝑖 ],𝑤

)
.

4.3 Functions & Programs

We conclude our development of Dice compilation by introducing functions and programs in
Figure 8. We introduce a new piece of context Φ into our judgment, which maps function names to
their compiled function bodies. Function names are mapped to a 4-tuple (x𝑎𝑟𝑔,

.
𝜑,𝛾,𝑤) where x𝑎𝑟𝑔

is the logical variable for the function’s formal argument and the other items are respectively the
function body’s compiled unnormalized formula, accepting formula, and weight function.
The judgment Γ,Φ ⊢ func⇝ (

.
𝜑,𝛾,𝑤) compiles function definitions. As shown in C-Func, we

simply compile the function’s body in an appropriate type environment. The judgment Γ,Φ ⊢ p :

𝜏 ⇝ (
.
𝜑,𝛾,𝑤) compiles programs by compiling each function in order, followed by the łmainž

expression. The rules C-Prog1 and C-Prog2 perform this compilation. After each function is

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 140. Publication date: November 2020.



Scaling Exact Inference for Discrete Probabilistic Programs 140:15

Γ ∪ {𝑥1 : 𝜏1},Φ ⊢ e : 𝜏2 ⇝ (
.
𝜑,𝛾,𝑤)

Γ,Φ ⊢ fun 𝑓 (𝑥1 : 𝜏1) : 𝜏2 {e}⇝ (
.
𝜑,𝛾,𝑤)

(C-Func)
Γ,Φ ⊢ e : 𝜏 ⇝ (

.
𝜑,𝛾,𝑤)

Γ,Φ ⊢ • e : 𝜏 ⇝ (
.
𝜑,𝛾,𝑤)

(C-Prog1)

Γ,Φ ⊢ fun 𝑓 (𝑥1 : 𝜏1) : 𝜏2 {e}⇝ (
.
𝜑 𝑓 , 𝛾𝑓 ,𝑤 𝑓 )

Γ ∪ {𝑓 ↦→ 𝜏1 → 𝜏2},Φ ∪ {𝑓 ↦→ (x1,
.
𝜑 𝑓 , 𝛾𝑓 ,𝑤 𝑓 )} ⊢ p : 𝜏 ⇝ (

.
𝜑,𝛾,𝑤)

Γ,Φ ⊢ fun 𝑓 (𝑥1 : 𝜏1) : 𝜏2 {e} p : 𝜏 ⇝ (
.
𝜑,𝛾,𝑤)

(C-Prog2)

Γ(𝑓 ) = 𝜏1 → 𝜏2 Γ(𝑥1) = 𝜏1
Φ(𝑓 ) = (x𝑎𝑟𝑔,

.
𝜑,𝛾,𝑤) (

.
𝜑
′
, 𝛾 ′,𝑤 ′) = RefreshFlips(x𝑎𝑟𝑔,

.
𝜑,𝛾,𝑤)

Γ,Φ ⊢ 𝑓 (𝑥1) : 𝜏2 ⇝ (
.
𝜑
′
[x𝑎𝑟𝑔

𝜏1
↦−→ x1], 𝛾

′[x𝑎𝑟𝑔
𝜏1
↦−→ x1],𝑤

′)
(C-FuncCall)

Fig. 8. Compiling functions and programs. These assume without loss of generality but for simplicity that
function calls are only ever given identifiers as arguments.

compiled, its compiled WBF is added to Φ and its name and type are added to Γ, for use in
subsequent compilation.
The final judgment form for expressions is Γ,Φ ⊢ e : 𝜏 ⇝ (

.
𝜑,𝛾,𝑤), and C-FuncCall shows

the rule for compiling function calls. The rule simply looks up the function’s compiled WBF and
substitutes the actual argument for the formal argument. One subtlety is that we must ensure that
the flips in each call to a function are independent of one another. Our compilation approach
makes it straightforward to do so: simply replace all of the variables in

.
𝜑 and𝛾 , aside from the formal

argument x𝑎𝑟𝑔, with fresh variables. We use an auxiliary function RefreshFlips(x𝑎𝑟𝑔,
.
𝜑,𝛾,𝑤) for

this purpose. We now state the full correctness theorem for Dice compilation:

Theorem 4.6 (Compilation Correctness). Let p be a Dice program and ∅, ∅ ⊢ p : 𝜏 ⇝ (
.
𝜑,𝛾,𝑤).

Then: (1) JpK𝐴 = WMC(𝛾,𝑤), and (2) for any value 𝑣 : 𝜏 , JpK𝐷 (𝑣) = WMC((
.
𝜑

𝜏
⇐⇒ 𝑣) ∧ 𝛾,𝑤)/WMC(𝛾,𝑤).

As before, division by zero is defined to be zero, and we prove this theorem as a corollary of the
following stronger property:

Theorem 4.7 (Typed Program Correctness). Let p be a Dice program ∅, ∅ ⊢ p : 𝜏 ⇝ (
.
𝜑,𝛾,𝑤).

Then for any 𝑣 : 𝜏 , we have that JpK (𝑣) = WMC((
.
𝜑

𝜏
⇐⇒ 𝑣) ∧ 𝛾,𝑤).

4.4 Binary Decision Diagrams as WBF

Weighted model counting on WBFs is still #P-hard, so our compilation above is not necessarily
advantageous. Now we reap the benefits of this translation by representing WBF with binary
decision diagrams (BDDs), a data structure that facilitates efficient inference by exploiting the
program structure to minimize the size of the WBF. A BDD is a popular data structure for represent-
ing Boolean formulas, and there is a rich literature of using BDDs to represent the state space of
non-probabilistic programs during model checking [Clarke et al. 1999; Jhala and Majumdar 2009].
The compilation rules in the previous subsections were deliberately designed to facilitate BDD

compilation. Consider the example compilation (ExLetCompilation) from Section 4.1. Each step
in this derivation can be translated into a corresponding BDD operation, as illustrated by the BDD
derivation tree in Figure 9. The final BDD is compiled compositionally, at each step exploiting
program structure to produce a minimal, canonical representation (for the given variable ordering).
The operations necessary for constructing this derivation tree Ð BDD conjunction, disjunction, and
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fresh 𝑓1

flip 0.1⇝

(
𝑓1

T F

, T ,𝑤1

)
𝑥 ⇝

(
x

T F

, T , ∅

)
fresh 𝑓2

flip 0.4⇝

(
𝑓2

T F

, T ,𝑤2

)

flip 0.4 ∨ 𝑥 ⇝

(
x

𝑓2

F T

, T ,𝑤2

)

let 𝑥 = flip 0.1 in flip 0.4 ∨ 𝑥 ⇝

(
𝑓1

𝑓2

F T

, T ,𝑤1 ∪𝑤2

)

Fig. 9. A BDD derivation tree for (ExLetCompilation).

substitution Ð are all standard operations that are available in BDD packages such as CUDD [Somenzi
[n.d.]].
The cost of Dice inference is dominated by the cost of constructing the corresponding BDD

derivation tree: that step is computationally hard in general, while WMC on the final BDD is
linear time in the size of the BDD. However, BDDs can exploit program structure in order to
allow compilation to scale efficiently on many examples. The remainder of this paper is devoted to
showing that the BDD can be efficient to construct for useful programs. In Section 5 we show this
experimentally, and Section 6 characterizes the hardness of Dice inference.

5 DICE IMPLEMENTATION & EMPIRICAL EVALUATION

Now we describe our implementation and empirical evaluation of Dice. Dice is implemented
in OCaml and uses CUDD as its backend for compiling BDDs [Somenzi [n.d.]]. First we describe
extensions to the core Dice syntax that make programming more ergonomic and enable us to more
easily implement some of the benchmark programs. Then we describe our empirical evaluation of
Dice’s performance in comparison with prior PPLs on a suite of benchmarks. In Section 6 we give
context to these experiments and discuss why Dice succeeds on many benchmarks where others
fail.

5.1 Dice Extensions & Ergonomics

Our implementation extends the core Dice syntax from Figure 4 in several ways. We relax the
constraint on A-normal form, allowing more arbitrary placement of expressions. We also include
syntactic sugar for the usual Boolean operators ∧,∨ and ¬. Finally, we include support for bounded
integers and bounded iteration, both of which are described in more detail next. Further details of
our implementation can be found in the full version of this paper.

5.1.1 Bounded Integers. Dice supports probability distributions over integers with the discrete
keyword: for instance, the expression discrete(0.1, 0.4, 0.5) defines a discrete distribution
over {0, 1, 2} where 0 has probability 0.1, 1 has probability 0.4, and 2 has probability 0.5. There
are a number of possible strategies for encoding integers into a WBF. The simplest Ð and the one
we implemented Ð is a one-hot encoding. Specifically, a distribution over 𝑛 integers is represented
as tuple of 𝑛 Boolean variables, each representing one integer value, and flips are used to ensure
that each variable is true with the specified probability. For example, here is the encoding of our
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example distribution above:

discrete(0.1, 0.4. 0.5)⇝

{ let v0 = flip(0.1) in

let v1 = ¬v0 ∧ flip(0.4/(0.4 + 0.5)) in

let v2 = ¬v0 ∧ ¬v1 in (v0, (v1, v2))

Formally, for a discrete distribution discrete(𝜃1, 𝜃2, · · · , 𝜃𝑛), the encoded value v𝑖 is true only if
(1)

∧
𝑘<𝑖 ¬v𝑘 holds and (2) a coin flipped with probability 𝜃𝑖/

∑
𝑗≥𝑖 𝜃 𝑗 is true. Dice also supports the

standard modular arithmetic operations like (+) and (×) on integers.

5.1.2 Statically Bounded Iteration. Iteration and loops are challenging program constructs to
support in PPLs. Dice, like many other PPLs, supports bounded iteration: loops that always terminate
after a finite number of iterations [Claret et al. 2013; Cusumano-Towner et al. 2018; Gehr et al. 2016;
Goodman and Stuhlmüller 2014; Pfeffer 2007b]. It does so via the syntax iterate(f, init, k),
where f is a function name, init is an initialization expression, and k is an integer indicating the
number of times to call f:

iterate(f, init, k)⇝ 𝑓 (𝑓 (· · · 𝑓
︸     ︷︷     ︸

𝑘 times

(init))).

Many useful examples Ð such as the network reachability example from Section 2 Ð can be
expressed as bounded iteration.

5.2 Empirical Performance Evaluation

We have faithfully implemented the compilation strategy and use of BDDs as described in Section 4.
Section 2 highlights some program structure that BDD compilation exploits, and Section 6 explores
this structure further, but the question remains: does this structure exist in practice, and can Dice

effectively exploit it? We investigate these questions from three angles:

Q1: Comparison with Existing PPLs How quickly can Dice perform exact inference on bench-
mark probabilistic programs from the literature? We evaluate this question in Section 5.2.1.

Q2: Exploiting Functions What are the performance benefits of modular compilation for func-
tions? We evaluate this question in Section 5.2.2 by comparing Dice’s performance with and
without inlining function calls.

Q3: Comparison with Bayesian Network Solvers Discrete Bayesian networks are a special
case of Dice programs and are a good source of challenging and realistic inference problems.
A natural question here is: how does Dice compare against state-of-the-art Bayesian network
solvers that are specialized for this class of programs? In Section 5.2.3 we compare Dice

against Ace [Chavira and Darwiche 2008], a state-of-the-art discrete Bayesian network solver.

In our evaluation we compare Dice against state-of-the-art PPLs that employ two different
classes of exact inference algorithms:

Algebraic Methods The first class are algebraic inference methods that represent the probability
distribution as a symbolic expression or algebraic decision diagram (ADD) [Claret et al. 2013;
Dehnert et al. 2017; Gehr et al. 2016; Narayanan et al. 2016]. We discuss this class of inference
algorithms more thoroughly in Section 6.3. In this class, we compare experimentally against
Psi [Gehr et al. 2016].1

Enumerative Methods The second class of inference methods work by exhaustively enumerating

all paths through the probabilistic program, possibly using dynamic programming to reduce
the search space [Albarghouthi et al. 2017; Chistikov et al. 2015; Filieri et al. 2013; Geldenhuys

1We used Psi version 2d21f9fe04cf3aac533e08ccc2df18179947baad
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Table 1. Baselines. Comparison of inference algorithms (times are milliseconds). The total time for Dice is
reported under the łDicež column, and the total size of the final compiled BDD is reported in the łBDD Sizež
column.

Benchmark Psi (ms) DP (ms) Dice (ms) # Paths BDD Size

Grass 167 57 14 95 15
Burglar Alarm 98 10 13 250 11
Coin Bias 94 23 13 4 13
Noisy Or 81 152 13 1640 35
Evidence1 48 32 13 9 5
Evidence2 59 28 13 9 6
Murder Mystery 193 75 10 16 6

et al. 2012; Goodman and Stuhlmüller 2014; Sankaranarayanan et al. 2013; Wingate andWeber
2013]. Both Psi andWebPPL [Goodman and Stuhlmüller 2014] have a mode that supports
dynamic-programming exact inference, and we compare against them experimentally.

Comparing the performance of probabilistic program inference is challenging because perfor-
mance is closely tied to the intricacies of how the program is structured: semantically equivalent
programs may have vastly differing performance. Throughout our experiments we made a best-
effort attempt at representing the programs in a way that was maximally performant in each
language. The tables in this section report the mean value over at least 5 runs for each experiment;
the appendix contains expanded tables that include standard deviations for each result. All experi-
ments were single-threaded and performed on the same server with a 2.66GHz CPU and 512GB
of RAM. The timings were recorded using hyperfine,2 a utility that performs statistical timing
analysis of Unix shell commands.

5.2.1 Baselines. Table 1 summarizes the results of our performance experiments on well-known
baselines, which includes all of the discrete programs that Psi and R2were evaluated on [Borgström
et al. 2011; Gehr et al. 2016; Nori et al. 2014].3 Each row is a different benchmark. The łPsiž, łDPž,
and łDicež columns give the amount of time (in milliseconds) for respectively (1) Psi’s default
inference algorithm [Gehr et al. 2016], (2) Psi’s dynamic programming inference algorithm that
is specialized for finite discrete programs, and (3) the total time for Dice to compile a BDD and
perform weighted model counting. These examples are small and thus relatively easy for exact
inference, but they serve as an important sanity check. Generally these examples are too trivial to
differentiate the performance of Dice and Psi.
We include two other columns, ł# Pathsž and łBDD Sizež, that give a proxy for how hard each

inference problem is. The ł# Pathsž column gives how many paths would be explored by a path
enumeration algorithm. The łBDD Sizež gives the final compiled BDD generated by Dice, which in
conjunction with the ł# Pathsž column gives a metric for how much structure Dice is exploiting.

5.2.2 Modular Compilation. We return to the motivating examples from Section 2 to see how Dice

compares with existing methods, and against a version of itself where all function calls are inlined.
Figure 10 shows how different algorithms scale as the size of the problem grows (note that all plots
are in log-log scale). Figure 10d was introduced and discussed in Section 2.

2https://github.com/sharkdp/hyperfine
3One discrete benchmark, łDigit Recognitionž, was omitted from this table because the version of Psi that we tested with

does not support this program.
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Fig. 10. Log-log scaling plots illustrating the benefits of separate compilation of functions. An łxž-mark
denotes a runtime error was encountered at that point. The time reported for Dice inference includes the
time required to compile and perform WMC. The standard deviation for the run-times are negligible.

Encryption. Figure 3 introduced the Caesar cipher motivating example, and Figure 10a shows
how exact inference on this example scales as the number of characters being encrypted increases.
Dice is about an order of magnitude faster than the case when function calls are inlined, and
multiple orders of magnitude faster than WebPPL and Psi. In particular, Psi’s default algebraic
inference fails to handle the encryption of even a single character; we explore why in Section 6.3.

Approximate inference approaches generally struggle with these kinds of programs, due to the
low probability of finding samples that satisfy the observations. To illustrate this, we also report
the time it took for rejection sampling to draw 10 accepted samples. WebPPL supports rejection
sampling, and Figure 10a shows how it scales for this particular example program. This figure
shows that rejection sampling scales exponentially in this case, and thus is not a feasible route
around the state-space explosion problem.

Network Reachability. Next we examine how separate compilation helps in the network reacha-
bility task described in Figure 2. Figure 10b shows how exact inference scales in the number of
diamond subnetworks. We see a modest benefit over inlining: compiling the diamond function
multiple times is not very expensive since it is so small. Note that modular function compilation is
not strictly beneficial: for this example, the inlined version is faster than the modular version after
about 102 iterations. Also note that both versions of Dice are multiple orders of magnitude faster
than Psi andWebPPL due to the exponential number of paths.

We expect to see overall linear scaling of Dice for many network topologies due to conditional
independence. To evaluate this, Figure 10c shows a version where instead of diamonds we use a

ladder network of the following structure:
. . .

. . .

. . .

. . . . The goal is to determine the prob-

ability of a packet reaching the end of a network that consists of a chain of ladder subnetworks
where each has a similar probabilistic routing policy to the diamond network. Dice continues to
scale well, while this example is challenging for the other methods, in part since the number of
paths is exponential in the length of the network.

5.2.3 Discrete Bayesian Networks. There is currently a lack of challenging discrete probabilistic
program benchmarks in the literature. Tomore rigorously establish the relative performance of Dice
and existing algorithms, here we evaluate the performance of Dice on discrete Bayesian networks
that we translated into equivalent Psi and Dice programs. These benchmarks were selected from
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Table 2. Single Marginal Inference. Comparison of inference algorithms (times are milliseconds). A ł✗ž denotes
a timeout at 2 hours of running. The total time for Dice is reported under the łDicež column, and the total
size of the final compiled BDD is reported in the łBDD Sizež column.

Benchmark Psi (ms) DP (ms) Dice (ms) # Parameters # Paths BDD Size

Cancer 772 46 13 10 1.1×103 28

Survey 2477 152 13 21 1.3×104 73

Alarm ✗ ✗ 25 509 1.0×1036 1.3×103

Insurance ✗ ✗ 212 984 1.2×1040 1.0×105

Hepar2 ✗ ✗ 54 48 2.9×1069 1.3×103

Hailfinder ✗ ✗ 618 2656 2.0×1076 6.5×104

Pigs ✗ ✗ 72 5618 7.3×10492 35

Water ✗ ✗ 2590 1.0 × 104 3.2×1054 5.1×104

Munin ✗ ✗ 1866 8.1 × 105 2.1×101622 1.1×104

the Bayesian Network Repository, an online repository of well-known Bayesian networks.4 These
programs are (1) realistic: each has been used to answer scientific research questions in various
domains such as medical diagnosis, weather modeling, and insurance modeling; and (2) challenging:
many of these examples have on the order of thousands or tens of thousands of random variables.
First, we will compare the performance of Dice and Psi on this task; then we compare Dice

against a specialized Bayesian network tool. We will show that Dice significantly outperforms Psi
on all of these examples and is competitive with the specialized Bayesian network solver.

c

sp

x d

Fig. 11. The łCancerž
Bayesian network.

Comparison with Psi. Table 2 compares Psi against Dice on the task of
computing a single marginal of a leaf node of a Bayesian network, a standard
Bayesian network query. As an example of this task, Figure 11 shows the
łCancerž Bayesian network [Korb and Nicholson 2010], a simple 5-node
network for modeling the probability that a patient has cancer (the c○ node)
given a collection of symptoms ( x○ and d○) and causes ( p○ and s○). The
single-marginal task for this example is to compute the marginal probability
of the leaf node Pr( x○).

Table 2 compares the performance of Dice and Psi on the single-marginal
inference task for a variety of Bayesian networks. The size of the network
Ð a proxy for the difficulty of the inference task Ð is given by the number of parameters (the ł#
Parametersž column in the table). Psi fails to complete the inference within the allotted two hours
on any of the medium or larger sized Bayesian networks.

Comparison with a Bayesian Network Solver. As a final test of the Dice’s performance, in Table 3
we compare against Ace, a state-of-the-art Bayesian network solver [Chavira and Darwiche 2008].
The task here is to compute all marginal probabilities, a strictly harder task than the single-marginal
task considered earlier. We note that Psi fails to complete even a single marginal inference task on
any of these examples within 2 hours, so it is omitted from this table.

Part of what makes the all-marginals inference task challenging is that it requires the computation
of many queries: one for each node in the Bayesian network. One of the benefits of our compilation
is that a single (potentially expensive) compilation, once completed, can be efficiently reused
to perform many marginal probability queries. We highlight this capability in Table 3, which

4https://www.bnlearn.com/bnrepository/
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Table 3. All marginals. A comparison between Dice and Ace on the all-marginal discrete Bayesian network
inference task.

Benchmark Dice (ms) Ace (ms) BDD Size

Alarm 159 422 4.3×105

Hailfinder 1280 522 2.1×105

Insurance 222 492 2.3×105

Hepar2 163 495 5.4×105

Pigs 11243 985 2.6×105

Water 3320 605 6.8×104

Munin 4021194 3500 2.2×107

shows the cost of compiling the full joint distribution of the example discrete Bayesian networks.
These compilations take on the order of several seconds; however, once compiled, computing each
marginal probability Ð or any other query with a small BDD, such as disjoining together several
variables Ð takes milliseconds. For comparison, Psi cannot compute a single marginal on any of
these examples within two hours.
Ace, similar to Dice, reduces the Bayesian network probabilistic inference task to weighted

model counting (with a very different encoding scheme). This gives Ace an inherent advantage
over Dice on this task: Ace does not support arbitrary program constructs Ð such as conditional
branching, procedures, and observe statements Ð and hence can specialize directly for Bayesian
networks, a limited subclass of Dice programs.

Despite these inherent advantages, Table 3 shows that Dice is competitive with Ace on a number
of challenging Bayesian network inference tasks. Ace significantly outperforms Dice only on the
very largest network, łMuninž. These results suggest that even though Dice is a general-purpose
PPL, it is still a competitive exact inference algorithm for medium-sized Bayesian networks.

6 DISCUSSION & ANALYSIS

The previous section demonstrates empirically that Dice can perform exact inference orders of
magnitude faster than existing inference algorithms on a range of benchmarks. In this section we
provide discussion and analysis that provide context for these results. First we ask in Section 6.1:
how hard is exact inference in Dice? We show that inference is PSPACE-hard, which means that
it is likely harder than inference on discrete Bayesian networks. This begs the question: why do
the experiments in Section 5 succeed at all? We explore this question in Section 6.2 by identifying
different forms of program structure that Dice exploits in order to scale. Finally, Section 6.3
considers algebraic representations as an alternative compilation target for probabilistic programs
and discusses the forms of structure that they are and are not capable of exploiting.

6.1 Computational Hardness of Exact Dice Inference

The experiments in Section 5 raise a natural question: how hard is the exact inference challenge
for Dice programs? The complexity of exact inference has been well-studied in the context of
discrete Bayesian networks. In particular, the decision problem of determining whether or not the
probability of an event in a Bayesian network exceeds a certain threshold is PP-complete [Kwisthout
2009; Littman et al. 1998]. The canonical PP-complete problem is MajSat, the problem of deciding
whether or not the majority of truth assignments satisfy a logical formula. It is clear that exact
Dice is PP-hard: indeed, some of our experiments in Section 5 utilize a polynomial-time reduction
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from discrete Bayesian networks to Dice programs. However, in fact exact inference for Dice is
PSPACE-hard, and therefore likely harder than discrete Bayesian network inference as PP⊆PSPACE:

Theorem 6.1. Exact inference in Dice is PSPACE-hard.

A proof sketch is in the full version of the paper. This result depends on the expressiveness of
functions, which Bayesian networks lack. We leave for future work the investigation of tighter
complexity bounds for Dice inference.

6.2 When Is Dice Inference Fast?

Dice inference, in the worst case, is extremely hard. Why, then, do the experiments in Section 5
succeed? Put another way: when can we guarantee that the BDD derivation tree is efficient to
construct (i.e., polynomial in the size of the program)? In this section we explore two sources
of tractability in Dice inference, both of which are structural properties that a programmer can
consciously exploit while designing Dice programs. The first source of structure is independence,
which implies the existence of factorizations. The second is a more subtle property called local

structure that implies that, even in some cases without independence, it can still be efficient to
construct the BDD derivation tree [Boutilier et al. 1996; Chavira and Darwiche 2005]. These forms
of structure were first introduced in the context of graphical models for capturing conditional
probability tables with various forms of structure. We show that these insights can be generalized
to Dice programs.

6.2.1 Independence. The independence property implies that two program parts communicate only
over a limited interface. It is the key reason why Dice performs so well in many of the benchmarks
(Section 5.2.1). Programs naturally have conditional independence, implied by their control flow,
function boundaries, etc. In the motivating example in Figure 1b, variable z does not depend on
x given an assignment to y. This is commonly called conditional independence of x and z given
y, and it partially explains why Dice scales to thousands of conditionally independent layers in
Figure 10d.
Dice naturally exploits conditional independence. We can formalize this by giving bounds on the

cost of composing BDDs that are conditionally independent. In general, the operation 𝐵1 ∧ 𝐵2 on
two BDDs 𝐵1 and 𝐵2 has time and space complexity O(|𝐵1 | × |𝐵2 |), and similarly for 𝐵1∨𝐵2 [Meinel
and Theobald 1998]. This implies a worst-case exponential blowup as BDDs are composed. However,
Dice can exploit conditional independence Ð among other properties Ð to avoid this exponential
blowup in practice:

Proposition 6.2. Let 𝐵1 and 𝐵2 be BDDs that share no variables other than some variable 𝑧, and

let |𝐵 | be the size of the BDD 𝐵. Then we say 𝐵1 and 𝐵2 are conditionally independent given 𝑧, and

computing 𝐵1 ∧ 𝐵2 and 𝐵1 ∨ 𝐵2 has time and space complexity O(|𝐵1 | + |𝐵2 |) for a variable order

that orders the variables in 𝐵1 before 𝑧 and 𝑧 before the variables in 𝐵2.

Proposition 6.2 implies that compositional rules that utilize conjunction and disjunction to
compose Dice programs Ð likeC-LetÐ can be efficient in the presence of conditional independence.
One useful source of conditional independence is function calls: they are conditionally independent
from all other expressions given their arguments and return value. The motivating example in
Figure 2 illustrates an example of this form of conditional independence. Each call to the diamond
procedure is independent of all prior calls given only the immediately previous call. It follows that
the size of the BDD for the example in Figure 2d grows as O(|diamond| × 𝑐), where 𝑐 is the number
of calls to the diamond procedure and |diamond| is the size of the compiled BDD for the procedure.

Dice exploits another, more fine-grained form of independence called context-specific indepen-

dence. Historically, context-specific independence has led to significant speedups in graphical
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1 let z = flip1 0.5 in

2 let x = if z then flip2 0.6 else flip3 0.7 in

3 let y = if z then flip4 0.7 else x in (x, y)

(a) Context-specific independence.

𝑓1 𝑓1

l r

𝑓4 𝑓3 𝑓2

T F

(b) Compiled BDD.

1 fun foo(a:Bool, b:Bool, c:Bool):Bool {

2 a ∨ b ∨ c

3 }

(c) Structure without independence.

a

b

c

TF

(d) Compiled BDD.

Fig. 12. Dice programs and their compiled BDDs illustrating different degrees of structure.

model inference [Boutilier et al. 1996]. We briefly sketch its benefits here. Two BDDs 𝐵1 and 𝐵2 are
contextually independent given 𝑧 = 𝑣 , for some variable 𝑧 and value 𝑣 , if 𝐵1 [𝑧 ↦→ 𝑣] and 𝐵2 [𝑧 ↦→ 𝑣]

share no variables [Boutilier et al. 1996]. As for conditional independence, composing contextually
independent BDDs can often be efficient.
An example program that exhibits context-specific independence is shown in Figure 12a. The

variables 𝑥 and 𝑦 are correlated if 𝑧 = F or if 𝑧 is unknown, but they are independent if 𝑧 = T. Thus,
𝑥 is independent of 𝑦 given 𝑧 = T. Figure 12b shows how our compilation strategy exploits this
independence. Since the program evaluates to a tuple, it is compiled to a tuple of two BDDs. However,
in our implementation these BDDs share nodes wherever possible, so they can be equivalently
viewed as a single, multi-rooted BDD. The left and right element of the tuple are represented by the
l and r roots respectively. The program’s context-specific independence implies that there will be
no shared sub-BDD between l and r if 𝑓1 is true. We refer to Boutilier et al. [1996] for more on the
performance benefits of exploiting context-specific independence in probabilistic graphical models.

6.2.2 Local Structure. Finally, it is possible for the BDD compilation process to be efficient even
in the absence of independence if the program has structure that is amenable to efficient BDD
compilation. Chavira and Darwiche [2005] showed that exploiting local structure led to significant
speedups in Bayesian network inference, and this performance was one of the primary motivations
for developing Ace. Local structure is a broad category of structural properties that can make
performance more efficient, including determinism, context-specific independence, and other
properties [Boutilier et al. 1996; Chavira and Darwiche 2008; Gogate and Dechter 2011; Sang et al.
2005].

At its core, local structure is a property that makes compiling a BDD more efficient than naively
using a conditional probability table to represent a probability distribution. Figure 12c gives an
example Dice function that computes the disjunction of three arguments. Figure 12d shows the
compiled BDD for this function. It is compact and hence exploiting the program structure. Note
that, if the number of variables disjoined together were to increase, the size of the BDD Ð and the
cost of compiling it Ð would increase only linearly with the number of variables. This stands in
stark contrast to an approach to inference that is agnostic to local structure (such as simple variable
elimination), which would not identify that this or-function is a compact way of representing the
distribution.
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Dice implicitly exploits local structure during inference. For instance, the Bayesian network
łHepar2ž has many examples of determinism, sparse probability tables, and context-specific inde-
pendence; Dice exploits these properties to be competitive with the performance of Ace on this
example and others in Table 3.

6.3 Algebraic Representations

𝑥

𝑦 𝑦

𝑧 .04 𝑧 .315

.008 .012 .108 .162

Fig. 13. An ADD representation
of the distribution in Equation 1.

Previous sections have shown that BDDs naturally capture and
exploit factorization and procedure reuse. While these are common
and useful program properties, they are not the only possible ones,
and different compilation targets will naturally exploit others. In
this section we consider algebraic compilation targets as a foil to
our approach, to highlight their relative strengths and weaknesses.
In contrast to our WMC approach that explicitly separates the

logical representation from probabilities, algebraic approaches inte-
grate probabilities directly into the compilation target. A common
algebraic target are algebraic decision diagrams (ADDs) [Bahar et al.
1997], which are similar to binary decision diagrams except that they have numeric values as
leaves. This makes them a natural choice for compactly encoding probability distributions in the
probabilistic programming and probabilistic model checking communities, with different encoding
strategies from Dice [Claret et al. 2013; Dehnert et al. 2017; Kwiatkowska et al. 2011]. As an example,
Figure 13 shows an ADD for the program in Figure 1a if it returned a tuple of 𝑥 , 𝑦, and 𝑧. ADDs
encode probabilities of total assignments of variables: in this example, a probability of 0.008 is
given to the assignment 𝑥 = 𝑦 = 𝑧 = T.
ADDs have several similarities with BDDs. First, they support composition operations and so

can offer a compositional compilation target [Claret et al. 2013], albeit very different from the
one described by our compilation rules. Second, they support efficient inference once the ADD
is constructed. Despite these similarities, ADDs have strikingly different scaling properties from
BDDs because they exploit different underlying structure of the program. The key difference is
that BDDs are agnostic to the flip parameters: they naturally exploit logical program structure
such as independence and local structure in order to scale without needing to know what any
probabilities are. As the previous subsections have argued, BDDs excel at this task. In contrast,
ADDs naturally exploit global repetitious probabilities: repeated probabilities of possible worlds in
the entire distribution. This is shown in Figure 13, which collapses states with the same probability
Ð for example, if 𝑥 = 𝑦 = F, then the ADD terminates with a node that does not depend on 𝑧’s

value: .315 .
Global repetitious probabilities are an orthogonal property to independence. ADDs do not exploit

independence in the same way as Dice. ADDs must explicitly represent the probability of each
total instantiation of the variables of interest, corresponding to each possible value of the returned
tuple. In our example, this means that the ADD cannot exploit the conditional independence of 𝑧
and 𝑥 given 𝑦, and instead needs to enumerate their joint probabilities.

Hence, unlike Dice’s BDD representation, the size of a compiled ADD is sensitive to the precise
parameters chosen for flips in the program. If these parameters are chosen such that the probability
of each total assignment is distinct, and we are interested in a tuple of all the random variables, then
the number of leaves in the ADD will equal the number of of paths in the probabilistic program.
As shown in Table 1, this can be prohibitively large for many examples; the BDD size is typically
many orders of magnitude smaller than the number of paths on these real-world programs.
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7 RELATED WORK

There is a large literature on probabilistic programming languages and inference algorithms. At
a high level, Dice is distinguished from existing PPLs by being the first to use weighted model
counting to perform exact inference for a PPL that includes traditional programming language
constructs, functions, and first-class observations. In this section we survey the existing literature
on probabilistic program inference and provide context for how each relates to Dice.

Path-based inference algorithms. The most common class of probabilistic program inference algo-
rithms today are operational, meaning that they work by executing the probabilistic program on
concrete values. Common examples include sampling algorithms [Carpenter et al. 2016; Chaganty
et al. 2013; Goodman et al. 2008; Hur et al. 2015; Mansinghka et al. 2013, 2018; Pfeffer 2007a; Saad
and Mansinghka 2016; van de Meent et al. 2015; Wood et al. 2014] and variational approxima-
tions [Bingham et al. 2019; Dillon et al. 2017; Kucukelbir et al. 2015; Minka et al. 2014; Wingate and
Weber 2013]. Other approaches use symbolic techniques to perform inference but are similar in
spirit, in the sense that they separately enumerate paths through the program [Albarghouthi et al.
2017; Filieri et al. 2013; Geldenhuys et al. 2012; Sankaranarayanan et al. 2013]. These approaches do
not factorize the program: they consider entire execution paths as a whole. Chistikov et al. [2015]
proposes performing weighted model integration Ð a generalization of weighted model counting to
the continuous domain [Belle et al. 2015; Dos Martires et al. 2019; Zeng and Van den Broeck 2020]
Ð to perform inference by integrating along paths through a probabilistic program.

Additionally, sampling and variational algorithms are distinguished from our approach by being
approximate rather than exact inference algorithms. In general, these techniques can be applied
to both discrete and continous distributions, though they often rely on program continuity or
differentiation to be effective [Carpenter et al. 2016; Gram-Hansen et al. 2018; Hoffman and Gelman
2014; Kucukelbir et al. 2015; Minka et al. 2014; Wingate and Weber 2013]. In contrast to all of these
approaches, Dice performs factorized, exact inference on non-smooth, non-differentiable, discrete
programs.

Algebraic inference algorithms. A number of PPL inference algorithms work by translating the
probabilistic program into an algebraic expression that encodes its probability distribution, and
then using symbolic algebra tools in order to manipulate that expression and perform probabilistic
inference. Examples include Psi [Gehr et al. 2016], Hakaru [Narayanan et al. 2016], and approaches
that employ algebraic decision diagrams [Claret et al. 2013; Dehnert et al. 2017]. Algebraic repre-
sentations exploit fundamentally different program structure from our approach based on weighted
model counting; see Section 6.3 for a discussion.

Graphical model compilation. There exists a large number of PPLs that perform inference by
converting the program into a probabilistic graphical model [Bornholt et al. 2014; McCallum et al.
2009; Minka et al. 2014; Pfeffer 2009]. These compilation strategies are limited by the semantics of
graphical models: key program structure Ð such as functions, conditional branching, etc. Ð is usually
lost during compilation and so cannot be exploited during inference. Further, graphical models can
express conditional independence via the graphical structure, but typical inference algorithms such
as variable elimination cannot exploit more subtle, context-specific forms of independence that our
approach exploits, as shown in Section 6.2.1 [Darwiche 2009].

Probabilistic Logic Programs. Closest to our approach are techniques for exact inference in proba-
bilistic logic programs [De Raedt et al. 2007; Fierens et al. 2015; Riguzzi and Swift 2011; Vlasselaer
et al. 2015]. Similar to our work, these techniques reduce probabilistic inference to weighted model
counting and employ representations that support efficient WMC, such as BDDs [Bryant 1986]
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or sentential decision diagrams [Darwiche 2011]. Unlike that work, Dice supports traditional
programming language constructs, including functions, and it supports first-class observations
rather than only observations at the very end of the program. We show how to exploit functional
abstraction for modular compilation, and first-class observations require us to explicitly account
for an accepting probability in both the semantics and the compilation strategy.

Programmer-Guided Inference Decomposition. Several PPLs provide a sublanguage that allows
the programmer to provide information that can be used to decompose program inference into
multiple separate parts [Holtzen et al. 2018; Mansinghka et al. 2018; Pfeffer et al. 2018]. Hence
the goal is similar in spirit to our goal of automated program factorization. These approaches
are complementary to ours: Dice automatically finds and exploits program factorizations and
local structure, while these approaches can perform sophisticated decompositions through explicit
programmer guidance.

Static Analysis & Model Checking. Forms of symbolic model checking often represent the reach-
able state space of a program as a BDD [Biere 2009; Jhala and Majumdar 2009]. Our work can be
thought of as enriching this representation with probabilities: we track the possible assignments
to each flip and the accepting formula in order to do exact Bayesian inference via WMC. Static
analysis techniques have also been generalized to analyze probabilistic programs. For example,
probabilistic abstract interpretation [Cousot and Monerau 2012] provides a general framework
for static analysis of probabilistic programs. However, these techniques seek to acquire lower or
upper bounds on probabilities, while we target exact inference. Probabilistic model checking (PMC)
is a mature generalization of traditional model checking with multiple high-quality implementa-
tions [Dehnert et al. 2017; Kwiatkowska et al. 2011]. The goal of PMC is typically to verify that
a system meets a given probabilistic temporal logic formula. They can also be used to perform
probablistic inference, but they have not used weighted model counting for inference and instead
typically rely on ADDs, which gives them different scaling properties than Dice as we discussed
earlier. Vazquez-Chanlatte and Seshia [2020] recently described an approach to learn Boolean task
specifications on Markov decision processes. This work shares some core technical machinery with
our approach but differs markedly in its goals and encoding strategy.

8 CONCLUSION

We presented a new approach to exact inference for discrete probabilistic programs and implement
it in the Dice probabilistic programming language. We (1) showed how to reduce exact inference
for Dice to weighted model counting, (2) proved this translation correct, (3) demonstrated the
performance of this inference strategy over existing methods, and (4) characterized the efficiency
of compiling Dice in key scenarios.

In the future we hope to extend Dice in several ways. First, we believe that the insights of Dice
can be cleanly integrated into many existing probabilistic programming systems, even those with
approximate inference that can handle continuous random variables. We see this as an exciting
avenue for extending the reach of approximate inference algorithms, which currently struggle
with discreteness. Second, we believe that Dice can be extended to handle more powerful data
structures and programming constructs, notably forms of unbounded loops and recursion. And
finally, we hope to further explore the landscape of weighted model counting approaches.
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Table 4. Comparison of inference algorithms on standard baselines (times are milliseconds). The reported
time is the mean plus or minus a single standard deviation over 5 runs.

Benchmark Psi (ms) DP (ms) Dice (ms)

Grass 167±2 58±2 14.0±1.0

Burglar Alarm 98±14 30±2 13.0±0.1

Coin Bias 94±19 23±13 13.0±1.5

Noisy Or 81±38 152±10 13.0±2.0

Evidence1 70±34 43±23 12.9±1.3

Evidence2 67±40 46±23 13.2±2.3

Murder Mystery 193±33 75±10 13.6±1.6

Table 5. Comparison of inference algorithms on the single-marginal inference task (times are milliseconds).
The reported time is the mean plus or minus a single standard deviation over 5 runs. A single standard
deviation and the mean are reported.

Benchmark Psi (ms) DP (ms) Dice (ms)

Cancer [Korb and Nicholson 2010] 772±60 46±2 13±3

Survey [Scutari and Denis 2014] 2477±569 152±58 13±1

Alarm [Beinlich et al. 1989] ✗ ✗ 25±3

Insurance [Binder et al. 1997] ✗ ✗ 212±12

Water [Jensen et al. 1989] ✗ ✗ 2590±21

Hailfinder [Abramson et al. 1996] ✗ ✗ 618±8

Hepar2 [Onisko 2003] ✗ ✗ 48±6

Pigs ✗ ✗ 72±2

Munin [Andreassen et al. 1989] ✗ ✗ 1866±27

Table 6. All marginals. A comparison between Dice and Ace on the all-marginal discrete Bayesian network
inference task. A single standard deviation and the mean are reported.

Benchmark Dice (ms) Ace (ms)

Alarm 159±12 422±32

Hailfinder 1280±16 522±37

Insurance 222±1 492±34

Hepar2 163±3 495±17

Pigs 11 243±79 985±76

Water 3320±118 605±10

Munin 4 021 194±2 123 290 3500±575

A SUPPLEMENTAL EXPERIMENTAL RESULTS

This section extends the experimental results by showing the mean and standard deviation over
at least 5 runs for all of the tables in the main body of the paper. Table 4 extends Table 1, Table 5
extends Table 2, and Table 6 extends Table 3.
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