
Sound Abstraction and Decomposition of Probabilistic Programs

Steven Holtzen 1 Guy Van den Broeck 1 Todd Millstein 1

Abstract
Probabilistic programming languages are a flexi-
ble tool for specifying statistical models, but this
flexibility comes at the expense of efficient analy-
sis. It is currently difficult to compactly represent
the subtle independence properties of a probabilis-
tic program and to exploit independence proper-
ties to decompose inference. Classical graphical
model abstractions do capture some properties
of the underlying distribution, enabling inference
algorithms to operate at the level of the graph
topology. However, we observe that graph-based
abstractions are often too coarse to capture inter-
esting properties of programs. We propose a form
of sound abstraction for probabilistic programs
wherein the abstractions are themselves simplified
programs. We provide a theoretical foundation
for these abstractions, as well as an algorithm to
generate them. Experimentally, we also illustrate
the practical benefits of our framework as a tool
to decompose probabilistic program inference.

1. Introduction
Graph-based abstractions of probability distributions such
as Bayesian and Markov networks have played a central role
in the rise of probabilistic machine learning models. His-
torically, these abstractions have served as both a semantic
and computational tool. Semantically, the topology of the
graph both asserts strong independence assumptions about
the distribution – such as d-separation (Pearl, 1988) – and
provides a scaffolding for specifying the salient quantities
which define the distribution compactly, e.g., in terms of
conditional probabilities. Computationally, the graph is used
to construct efficient inference algorithms such as join-tree
and variable elimination, which abstract away the details of
local factors (Koller & Friedman, 2009; Kschischang et al.,
2006). Sparsity of the graphical model implies conditional

1University of California, Los Angeles. Correspondence to:
Steven Holtzen <sholtzen@cs.ucla.edu>, Guy Van den Broeck
<guyvdb@cs.ucla.edu>, Todd Millstein <todd@cs.ucla.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

independences that can speed up inference by factorization;
for example, low-width tree decompositions of the graph
abstraction yield efficient junction trees.

This paper studies the question: when a probability dis-
tribution is defined by a probabilistic program, what is a
natural form of abstraction? We identify abstractions that
semantically encode conditional independence assumptions
about the distribution, and computationally help guide the
design of algorithms that decompose inference. Our ap-
proach is to automatically generate such an abstraction by
utilizing techniques from the program verification commu-
nity for analyzing deterministic code. In essence, by using
a generalization of the well-known framework of predicate
abstraction (Graf & Saı̈di, 1997; Ball et al., 2001), we gener-
ate abstract probabilistic programs which capture properties
of the original program.

We present a novel notion of distributional soundness which
ensures that the distribution modeled by the abstract prob-
abilistic program is consistent with the distribution of the
concrete probabilistic program. Then, we provide a theory
and methodology for constructing distributionally sound
abstract programs for a wide class of probabilistic programs,
and show that this process can decompose the concrete pro-
gram by exploiting subtle independence structures such as
context-sensitive and conditional independence (Boutilier
et al., 1996; Pearl, 1988). Finally, we demonstrate the bene-
fits of abstraction by recovering specialized inference proce-
dures on a variety of archetypal statistical models encoded
as probabilistic programs.

2. Motivating Example
Probabilistic programs can exhibit complex structure. In par-
ticular, they admit complex operations such as control-flow
logic and numerical manipulation, which entangle random
variables in ways that are difficult to reason about. Consider
Figure 1a, which shows a simple probabilistic program that
combines two random variables via multiplication. We wish
to compute the query Pr(z = 0) on this program. Initially,
this seems to be difficult since the variables x and y are
entangled via multiplication. In a typical probabilistic pro-
gramming system such as Stan, Psi, or Anglican, this query
would be evaluated by sampling or integration beginning on
Line 1 of the program (Carpenter et al., 2016; Gehr et al.,

Sound Abstraction and Decomposition of Probabilistic Programs

1 x←discrete_dist();
2 y ←continuous_dist();
3 z ← x*floor(y);

(a) A concrete probabilistic program. Probabilistic sub-program
discrete dist returns a discrete random variable. Sub-
program continuous dist returns a continuous random vari-
able. floor rounds down to the nearest integer.

x

y z

(b) A factor graph which captures the conditional independences
in Figure 1a. Factors encapsulate the two sub-programs and
represent dependencies between the three random variables x, y,
and z.

1 {x = 0} ←flip(θx=0);
2 {0 ≤ y < 1} ←flip(θ0≤y<1);
3 {z = 0} ← {x = 0} ∨ {0 ≤ y < 1};

(c) A probabilistic program which captures the distribution only on
the predicates {x = 0}, {0 ≤ y < 1}, and {z = 0}. A flip(θ)
expression is true with probability θ.

Figure 1. Abstracting a probabilistic program as a factor graph and
a probabilistic predicate abstraction.

2016; Wood et al., 2014). This would require jointly inte-
grating over the random variables x and y (or approximating
the integral by sampling).

One option for potentially simplifying inference on this pro-
gram is to generate a factor graph abstraction on which to
perform inference, which is the approach taken by compi-
lation techniques such as Factorie, Infer.Net and Figaro
(McCallum et al., 2009; Winn & Minka, 2009; Pfeffer,
2009).Figure 1b shows such a factor graph abstraction. The
parameters of this factor graph are chosen so that it is a dis-
tributionally sound abstraction: it is possible to instantiate
the factors in such a way that the graphical model exactly
captures the probabilistic program’s intended distribution.
However, a key disadvantage is that the graph-based ab-
straction may be overly coarse, disregarding key structural
aspects of the program.

For this example, the abstraction is overly coarse, and thus
during inference it yields no useful decompositions. From
the perspective of the graph, all three random variables are
inextricably linked via an opaque factor. Thus, computing
Pr(z = 0) on the factor graph abstraction would require
jointly integrating x and y. Nonetheless, we observe that
this factor is actually highly structured: in the program, z
is linked to x and y via a deterministic multiplication. We
wish to exploit this structure.

We propose to instead utilize a simpler probabilistic pro-
gram as our abstraction, rather than a graph. Specifically,

this probabilistic program will only model the distribution
on a collection of Boolean predicates – statements about the
original program which are true or false. The parameters
of this probabilistic program will be chosen so that it is
distributionally sound with respect to the original program.
In this paper, we show how to automatically produce a dis-
tributionally sound abstraction for a given program relative
to a given set of predicates. While a distributionally sound
abstraction always exists, whether that abstraction is infor-
mative depends on the choice of predicates. Our approach
assumes that the predicates are provided a priori; we discuss
potential automated techniques for selecting predicates in
Section 5.1.

As an example of the flexibility of probabilistic programs
as a language for abstraction, we illustrate their ability to
capture a nuanced decomposition which relies on properties
of multiplication. We observe that the program in Figure 1a
has the following property: after executing Line 3, z = 0 if
and only if x = 0 or 0 ≤ y < 1. Our notion of abstraction is
capable of representing this relationship, and our approach
can automatically produce such an abstraction.

Given the three predicates above, we will automatically gen-
erate the abstract probabilistic program in Figure 1c, which
only models the distribution on the three predicates; such
abstractions are a specific kind of probabilistic predicate
abstraction (Holtzen et al., 2017). We denote the Boolean
variable that corresponds with a predicate as {·}. In order
for this abstraction to be distributionally sound, it requires
the correct parameterization. In this case, we must compute
two sub-queries on the original probabilistic program:

θx=0 = Pr(discrete dist() = 0)

θ0≤y<1 = Pr(0 ≤ continuous dist() < 1)

With these parameters, Figure 1c is distributionally sound;
computing Pr({z = 0}) on this abstract program will yield
the same result as computing Pr(z = 0) on the original
program. Therefore, in the process of parameterizing this
abstraction, we have decomposed the concrete program: at
no point were we required to jointly integrate x and y. Fur-
ther, each of the two sub-queries can be answered using the
inference method that is most suitable for it, which may for
be different for discrete and continuous distributions. This
motivating example raises the following questions, which
the remainder of the paper will be devoted to answering:

Formalization What is a distributionally sound probabilis-
tic program abstraction? (Section 4)

Existence For a fixed choice of predicates, can a distribu-
tionally sound abstraction always be generated? What is
an algorithm for doing so? (Section 5)

Usefulness What are the benefits of constructing and query-
ing a distributionally sound abstraction over querying the
original program? (Section 6)

Sound Abstraction and Decomposition of Probabilistic Programs

3. Background
The goal of this section is to provide a concise background
in semantics of probabilistic programming languages and
program abstractions. We first describe the language of
probability theory. Then, this language is used to give the
semantics of probabilistic programming languages. Finally,
we describe predicate abstractions.

3.1. Probability Theory

We will require some standard notions from probability
theory such as a measurable space, probability space, and
measurable function. Please see the appendix for detailed
definitions. We will denote probability spaces as (Ω,Σ, µ),
where Ω is a sample space, Σ is a σ-algebra on Ω, (Ω,Σ) is a
measurable space, and µ is a probability measure. Of partic-
ular importance is the notion of a push-forward probability
measure, which will be the foundation of our probabilistic
program semantics:

Definition 1 (Push-forward). Let (Ω,Σ, µ) be a probability
space and (Ω′,Σ′) be a measurable space. Let f : Ω →
Ω′ be a measurable function. Then, the push-forward of
µ through f is a probability measure ν on (Ω′,Σ′) such
that for any e ∈ Σ′, ν(e) = µ(f−1(e)). As notation, we
sometimes treat f as a mapping between probability spaces.

3.2. Semantics of Probabilistic Programs

The probabilistic programs we study are defined in two
parts: the first part assigns an initial probability distribution
to variables, and the second produces a new probability
measure that results from the manipulation of these variables
through the composition of measurable functions.1

Definition 2 (Semantics of probabilistic programs). A prob-
abilistic program P has two semantic components:

1. An initial probability space (Ω,Σ, µ). The sample space
Ω is the set of joint states of the variables in the program.

2. A measurable function JPK : Ω→ Ω′. It is implied that
there exists some σ-algebra Σ′ on Ω′ such that (Ω′,Σ′)
form a measurable space.

We say the probability measure induced by P is the proba-
bility measure which results from pushing µ through JPK.

This style of semantics does not reason about arbitrary un-
bounded loops or higher-order functions, as these cannot in
general be represented as measurable functions (Aumann,
1961). However, measurable functions typically form a core
component of the underlying semantics of higher-order and
loopy programming languages, allowing our technique to be
applied to measurable sub-programs within such languages

1This two-part style of semantics is used by the popular proba-
bilistic programming language Stan (Carpenter et al., 2016).

(Kozen, 1981). Further, many existing useful probabilistic
programming languages do not have loops. We leave the
generalization of our work to loopy programs as future work.

3.3. Predicate Abstraction

Predicate abstraction is a common style of program analysis
(Graf & Saı̈di, 1997; Ball et al., 2001). At a high level,
the goal is to generate an abstract program that is easier
to analyze than the original program, while maintaining a
meaningful relationship – known as soundness – with the
original program. The traditional soundness property for
predicate abstraction is over-approximation, the property
that the abstraction contains the original program’s behavior
as a subset of its own. This is useful for proving safety
properties: for instance, if the abstraction never divides an
integer by zero, then neither does the original program.

The way a predicate abstraction accomplishes this feat is
by generating an abstract program that only manipulates a
selection of Boolean predicates. A predicate is a property
of the domain of the concrete program. For example, a
predicate on the concrete variable x may be {x < 4}. A
collection of predicates forms a predicate domain:
Definition 3 (Predicate domain). Let Ω be a domain, and
let Ψ = {ψ1, ψ2, · · · , ψn} be a collection of predicates on
Ω. Then the predicate domain DΨ over Ψ is the set of all
2n truth assignments to the predicates in Ψ.

As notation, let c be a concrete state. We write [c] to denote
the abstract state corresponding with the predicates that
hold for c, and [a]−1 = {c | [c] = a} for its inverse. When
necessary, we use the subscript [·]Ψ to denote abstract states
with respect to a particular set of predicates Ψ.

When the collection of predicates Ψ is insufficient to capture
the behavior of the concrete program, the abstraction must
behave non-deterministically in order to remain an over-
approximation. This is best illustrated with an example:
Example 1 (A simple predicate abstraction). Consider the
concrete program C = x ← x + 1;, which simply in-
crements a variable x. We consider the predicate domain
Ψ = {x < 0}. Our goal is to generate an abstract program
A that represents how the predicate {x < 0} changes as a
result of this assignment to x. Specifically, if x is negative
before incrementing, it could remain negative or become
non-negative: in this case, we conservatively allow the pred-
icate to take either value. However, if x is non-negative, it is
guaranteed to remain non-negative after incrementing. We
can write this update using the syntax of a programming
language, denoting a non-deterministic Boolean choice with
the * symbol: {x<0} ← {x<0} ∧ *;

An over-approximate predicate abstraction can be automat-
ically generated for a program relative to a given set of
predicates (Ball et al., 2001). The process of constructing

Sound Abstraction and Decomposition of Probabilistic Programs

a predicate abstraction relies on the ability to compute a
weakest precondition, a tool which will be utilized in later
technical sections and can be computed automatically for
loop-free programs (Dijkstra, 1976):
Definition 4 (Weakest precondition). Let P be a program
and φ be a predicate. Then the weakest precondition of P
with respect to φ, denoted WP(P, φ), is the most general
predicate ψ such that ψ holding before executing P implies
that φ holds after executing P .

Probabilistic predicate abstractions Building on tech-
niques from the program analysis community for construct-
ing predicate abstractions, we recently introduced a notion
of probabilistic predicate abstraction and a technique for
constructing them (Holtzen et al., 2017). Specifically, each
non-deterministic Boolean choice in a non-deterministic
predicate abstraction is replaced with a Bernoulli random
variable. However, the notion of soundness in that work
is a probabilistic analog of the traditional notion of over-
approximation, which is not sufficient to relate the results
of inference on the abstract and concrete programs. This
motivates our stronger notion of distributional soundness,
which is defined in the next section.

4. Distributional Soundness
Traditional over-approximate predicate abstractions are in-
sufficient as abstractions for probabilistic programs since
they are not distributionally sound: they do not preserve the
distributions of the given predicates in the original program.
In particular, the use of non-determinism is not compatible
with distributional soundness; for example, the abstraction
shown in Example 1 does not preserve Pr(x < 0) from
the original program. This section formally defines what it
means for a predicate abstraction A that manipulates vari-
ables from a predicate domain DΨ to be distributionally
sound for a given concrete probabilistic program C.

First we require a way of connecting the concrete and ab-
stract initial probability spaces. There is a straightforward
mapping of probability measures on the concrete domain
to probability measures on the abstract domain, simply by
evaluating the concrete measure for each abstract state’s
equivalence class.
Definition 5 (Probabilistic abstraction function). Let
(Ω,Σ, µ) be a probability space and (DΨ,ΣDΨ

) be a mea-
surable space where the sample space is a predicate domain
DΨ over predicates Ψ. Then, a probabilistic abstraction
function α : (Ω,Σ, µ) → (DΨ,ΣDΨ , ν), is defined as the
push-forward of µ through [·].

Now utilizing this definition we give the formal notion of
distributional soundness:
Definition 6 (Distributional soundness). Let JCK : Ω→ Ω′

and JAK : DΨ → DΨ′ be measurable functions, where DΨ

and DΨ
′ are predicate domains on Ω and Ω′ respectively.

Then JAK is a distributionally sound abstraction of JCK if
the following diagram commutes for any initial concrete
probability space (Ω,Σ, µ):

(Ω,Σ, µ) (Ω′,Σ′, µ′)

(DΨ,ΣDΨ
, ν) (DΨ′ ,ΣDΨ′ , ν

′)

JCK

α α′

JAK

Distributional soundness requires that the probability of
a predicate being true in the abstraction is equal to the
probability of the corresponding predicate being true in the
concrete program. This in turn implies that inference on
the abstraction is sound for queries that can be defined in
terms of the predicates in DΨ′ . Specifically, we describe a
class of events for which we can perform inference using
exclusively the abstraction:

Definition 7 (Corresponding events). Let (Ω,Σ, µ) be a
probability space, (DΨ,ΣDΨ

) be a measurable space over
predicate domain DΨ, and [·] be an abstraction function.
Then for any abstract event eDΨ ∈ ΣDΨ , there exists a
corresponding concrete event eΩ =

⋃{
[a]−1 | a ∈ eDΨ

}
.

We call the pair (eDΨ
, eΩ) an event pair.

Formally, the abstraction can be used to reason about the
concrete program by utilizing event pairs:

Proposition 1 (Distributional soundness implies soundness
for inference). Let JAK : DΨ → DΨ′ be a distributionally
sound abstraction of JCK : Ω → Ω. Then for any initial
probability space (Ω,Σ, µ), and any event pair (eDΨ′ , eΩ′),
it is the case that Prν′(eDΨ′) = Prµ′(eΩ′), where µ′ is the
push-forward of µ through JCK and ν′ is the push-forward
of µ through JAK ◦ [·].

As outlined in Section 1, graph-based abstractions often
serve as a semantic tool, by asserting independences that
are assumed to hold in the distribution of interest. For
probabilistic program abstractions, distributional soundness
guarantees that the abstraction is able to exactly capture the
concrete program’s distribution over some key predicates:

Proposition 2 (Independence Assumptions). Let C be a con-
crete probabilistic program and let JAK be a distributionally
sound abstraction of JCK. Then any conditional indepen-
dence that holds between abstract events eDΨ ∈ ΣDΨ in
A also holds between the corresponding concrete events
eΩ ∈ ΣΩ in C.

Distributionally sound abstractions are a powerful technique
for reasoning about probabilistic programs: they allow one
to reason about a simplified program that only manipulates
a collection of predicates. The obvious question is: can we
always construct such a distributionally sound abstraction

Sound Abstraction and Decomposition of Probabilistic Programs

for an arbitrary choice of predicates? The following section
answers this question affirmatively.

5. Constructing Sound Abstractions
The goal of this section is to provide a technique to auto-
matically generate a distributionally sound abstraction for
a given concrete program and set of predicates. Initially
we are provided a program C and a set of predicates Ψ of
interest. We show how to construct a distributionally sound
abstractionA, which consists of two parts: (1) a measurable
function JAK, and (2) an initial abstract probability space
such that the diagram in Definition 6 commutes.

Given C and Ψ it is not always possible to generate a dis-
tributionally sound abstraction from DΨ to DΨ, because
the predicates in Ψ might not be sufficiently expressive
to capture all the required concrete behavior. We resolve
this problem by automatically identifying predicates called
completions (denoted Φ), which are added to Ψ, yielding
a new set of predicates Ψ ∪ Φ. Then, we generate a distri-
butionally sound abstraction A with measurable function
JAK : DΨ∪Φ → DΨ and initial abstract probability space
(DΨ∪Φ,ΣΨ∪Φ, ν). In the process of constructing the initial
probability space, we automatically identify sub-queries on
the original probabilistic program, which are used to pro-
vide the values of the parameters and which are the source
of the decomposition that we saw in Section 1.

First we give a criterion on abstractions that is sufficient to
ensure distributional soundness. Crucially, the criterion is
solely a relationship between concrete and abstract states, so
it allows us to avoid directly reasoning about distributions.
Definition 8 (Tight abstraction). Let JCK : Ω → Ω′ and,
JAK : DΨ → DΨ′ be measurable functions, where DΨ and
DΨ
′ are predicate domains. Then we say JAK is a tight

abstraction of JCK if for any c ∈ Ω, we have that:[
JCK(c)

]
Ψ′

= JAK
(
[c]Ψ

)
. (1)

Theorem 1 (Tightness implies soundness). Let JCK : Ω→
Ω′ and JAK : Ψ → Ψ′ be measurable functions. Then, if
JAK is a tight abstraction of JCK, then JAK is a distribution-
ally sound abstraction of JCK.

See the supplementary materials for a detailed proof. With
the guarantee that tight abstractions are sound, we now seek
to generate a tight abstraction. Unfortunately, it is not al-
ways possible to generate a tight abstraction for an arbitrary
choice of predicates. The following example demonstrates
this, and also shows how we can find additional predicates
called completions which, when added to the domain of the
abstraction, allow us to generate tight abstractions.
Example 2 (Completing an abstract domain). Consider
the program JCK(x) = x + 1. A tight abstraction for the

predicate domain over the predicate {x is even} is2:

JAK = {({x is even},¬{x is even}),
(¬{x is even}, {x is even})}

On the other hand, no tight abstraction exists for the pred-
icate domain over the predicate Ψ = {x < 0}: it is not
possible to choose an element of DΨ for JAK({x < 0})
that satisfies condition (1) in Definition 8. However, we
observe that if we add the predicate {x < −1} to the do-
main (but not to the range) of JAK, then we can build a tight
abstraction of JCK:

JAK = {({x < −1} ∧ {x < 0}, {x < 0}),
(¬{x < −1} ∧ {x < 0},¬{x < 0}),
(¬{x < 0},¬{x < 0})}

We call {x < −1} a completion predicate.

Completing the domain. Example 2 showed that adding
completion predicates Φ to Ψ enables the creation of a tight
abstraction from DΨ∪Φ to DΨ. In general we say that Φ
completes Ψ with respect to Ψ′ and JCK if there exists a
tight abstraction JAK : DΨ∪Φ → DΨ′ . We call Ψ ∪ Φ
the completed set of predicates and DΨ∪Φ the completed
predicate domain. Algorithm 1 automatically completes a
set of predicates Ψ with respect to Ψ′ and JCK and gener-
ates a corresponding tight abstraction and initial probability
space.3 The algorithm relies on the standard notion of the
weakest precondition (see Definition 4). We formally state
the correctness of Algorithm 1:

Theorem 2 (Domain completion). Let JCK : Ω → Ω′ be
a measurable function and Ψ and Ψ′ be sets of predicates,
and let (Ω,Σ, µ) be an initial concrete probability space.
Then Algorithm 1 produces: (1) a tight abstraction JAK :
DΨ∪Φ → DΨ′ of JCK over a completed predicate domain
DΨ∪Φ; (2) an initial probability space (DΨ∪Φ,ΣDΨ∪Φ , ν),
where ν is the push-forward of µ through [·]Ψ∪Φ.

Discussion We provide some discussion of Algorithm 1.
Then, we describe optimizations that can improve the per-
formance of the algorithm in practice. Algorithm 1 proceeds
as follows. First, on Line 4 the set of predicates Φ is gener-
ated using the weakest precondition. By construction, there
exists a tight measurable function from DΦ to DΨ′ . This
fact relies on the definition of the weakest precondition. For-
mally, for each φ ∈ DΦ, there exists some a′ ∈ DΨ′ such
that for any c ∈ [φ]−1, [JCK(c)]Ψ′ = a′.

2We will represent functions with discrete domains as sets of
pairs, where the first element of the pair is the input and the second
element is the output of the function.

3We describe Algorithm 1 as directly producing a measurable
function, but our implementation adapts standard predicate abstrac-
tion techniques (Ball et al., 2001; Holtzen et al., 2017) to generate
an abstract probabilistic program.

Sound Abstraction and Decomposition of Probabilistic Programs

Algorithm 1 Domain completion

1: Input: probability space (Ω,Σ, µ), measurable func-
tion JCK, input predicates Ψ and output predicates Ψ′.

2: JAK← [] // New tight abstract function
3: ν ← [] // New probability measure
4: Φ =

{
WP(JCK, a′) | a′ ∈ DΨ′

}
5: for a ∈ DΨ∪Φ do
6: c′ ← JCK(c) for any c ∈ [a]−1

7: Append (a, [c′]Ψ′) to JAK
8: Append (a,Prµ(a)) to ν
9: end for

10: return (JAK, (DΨ∪Φ,ΣDΨ∪Φ
, ν))

Now, we must construct a tight measurable function on the
domain DΨ∪Φ and compute the appropriate sub-queries,
both of which are done in the loop beginning on Line 5.
For each a ∈ DΦ∪Ψ, there is some φ ∈ DΦ such that a
implies φ, which guarantees that we can give a deterministic
function JAK for a following the arguments in the previous
paragraph.

As an example, consider the program P = x←x+1 and the
predicate Ψ = {x < 0}. We wish to evaluate Algorithm 1
with input probability space (DΨ,Σ, µ) with initial and final
predicate domains over Ψ, i.e. DΨ = {{x < 0},¬{x <
0}}, as in Example 2. Then, Φ = {x < −1}, and DΨ∪Φ =
{{x < 0} ∧ {x < −1},¬{x < 0} ∧ {x < −1}, . . . }.
Consider the case a = {x < 0}∧{x < −1}. The algorithm
will select a c ∈ [a]−1; for example −2. Then, JAK(a) will
be assigned to [−2 + 1]Ψ′ = [−1]Ψ′ = {x < 0}.

As described, this algorithm produces 2n completion predi-
cates, where n is the size of Ψ′. However, in practice various
logical optimizations are used to reduce the number of com-
pletion predicates and sub-queries, such as exploiting logical
implication between predicates, pruning unsatisfiable config-
urations of predicates, and exploiting independence between
non-overlapping predicates (Ball et al., 2001; Holtzen et al.,
2017).

5.1. Selecting Predicates

Thus far we have assumed the collection of predicates from
which the abstraction is built is provided a priori. In gen-
eral, the problem of finding a useful set of predicates –
i.e., one that fruitfully decomposes the program – is hard.
Nonetheless, even simple heuristics may work well for many
programs. For example, one approach is to include each
Boolean expression in the program as a predicate; this has
the useful property of capturing the behavior of if and
observe statements, constructs that many existing prob-
abilistic programming systems struggle with due to their
non-differentiability (Carpenter et al., 2016).

More generally, we believe that much of the insight from

Markov Chain

Multiplication
Shuffle

100
101
102

L
og

Ti
m

e
(s

)

(a) Exact inference results on the Psi system (see Section 6.1).
represent un-abstracted models, and represent abstracted models.

1 2.5 5 7.5 10

0.1

1

MCMC Samples (thousands)

L
og
` 1

E
rr

or

(b) Convergence for approximate inference, lower is better. The
red boxes show the log error for the decomposed MCMC sampler;
the blue circles show log error for the non-decomposed MCMC
sampler. The error bars show the upper and lower quartile, points
show the mean over 20 runs, and error is the `1-norm between the
true value and the approximated value. See Section 6.2.

Figure 2. Experimental results.

decades of research on constructing non-deterministic predi-
cate abstractions can be applied here, and generalizing these
techniques to the setting of probabilistic predicate abstrac-
tions is a direction for future research. For instance, a com-
mon technique for predicate generation is counterexample-
guided refinement, which iteratively generates new pred-
icates on demand, until the abstraction is rich enough to
either prove or disprove a query of interest (Clarke et al.,
2003).

6. Decomposition via Abstraction
The theory and algorithm presented in the previous sections
can be used to simplify inference via a process we call de-
composition via abstraction. The process is as follows. First,
we are given a program C over which we wish to perform
some inference query Pr(q | e). Then we choose, or are
provided with, a set of predicates Ψ, which must include
the necessary predicates for describing q and e. Next, we
utilize Algorithm 1, which (1) generates a tight abstract
probabilistic program A, and (2) parameterizes the abstrac-
tion by performing sub-queries to the original probabilistic
program. To answer queries, we perform inference on the
abstraction A. This is sound due to Proposition 1.

Figure 2a shows the computational benefits of decompo-
sition via abstraction on exact and approximate inference
tasks, which are elaborated on in the following sub-sections.

Sound Abstraction and Decomposition of Probabilistic Programs

6.1. Exact Inference

We ask the question: does decomposition improve the per-
formance of exact inference? Many existing techniques
for exact probabilistic program inference utilize path-based
decompositions (Gehr et al., 2016; Chistikov et al., 2015;
Albarghouthi et al., 2017; Sankaranarayanan et al., 2013).
Specifically, they operate by integrating the probability mass
along each path of a probabilistic program. We show how
our decomposition technique serves to complement path-
based decompositions in the following way. For each proba-
bilistic program, we used Psi4 (Gehr et al., 2016) to compute
an inference query on (1) the concrete program, and (2) the
abstract program and the sub-queries. We report the total
time for each query task in Figure 2a. The supplementary
material gives the source code of each probabilistic pro-
gram. We report three experiments, which each highlight
an important property of probabilistic programs that may be
exploited via abstraction. In each case, we show experimen-
tally that the total time spent parameterizing and performing
inference on the abstraction is less than the time spent per-
forming inference on the original concrete program.

Multiplication This experiment uses a complete ver-
sion of the example described in Section 2 and illustrates
how abstraction via decomposition can automatically per-
form context-sensitive decomposition. Specifically, com-
puting the sub-queries during the abstraction procedure can
implicitly decompose a complex probability distribution,
even when a factor-graph representation is fully connected.
Given the appropriate predicates, Algorithm 1 automatically
constructs an abstraction and exploits these independence
properties when performing sub-queries.

Markov Chain Decomposition via abstraction can ex-
ploit conditional independences that are typically unex-
ploited by existing probabilistic programming inference
algorithms. One particular example is a Markov chain, a
model which has exponentially many paths yet retains linear-
time exact inference (Koller & Friedman, 2009):

n1 n2 · · · nk

In order to compute Pr(n1 | nk), path-based inference tech-
niques must integrate O(2k) paths, which quickly becomes
infeasible as the Markov chain grows. However, there is
a natural choice of predicates for decomposing such pro-
grams: simply including the guard of each if-statement.
By applying an optimized Algorithm 1 recursively on each
if-statement in turn, we recover a linear-time inference
algorithm for Markov-Chain-like probabilistic programs,
and more generally a join-tree-like inference algorithm for
Bayesian-network-like programs. For demonstration, con-
sider performing inference on the following Boolean-valued

4We utilized build 5334524fe.

Markov chain, although our decomposition technique gen-
eralizes to more complex networks:

1 n1 ←flip(θn1);
2 n2 ←if n1 then flip(θn2|n1

) else flip(θn2|n1
)

3 · · ·
4 nk ←if nk−1 then flip(θnk|nk−1

) else
5 flip(θnk|nk−1

);

First we generate an abstraction using the predicates {n1}
and {nk}. Our algorithm generates (1) an abstract pro-
gram which describes the relationship between these two
predicates, and (2) sub-queries necessary for computing the
parameters in (1). The generated abstract program is:

1 {n1} ←flip(θn1);
2 {nk} ←if {n1} then flip(θnk|n1

) else
3 flip(θnk|n1

);

Next we must evaluate the sub-queries. The parameter θn1

is from the original program; it is the prior on the first vari-
able in the chain. The parameters θnk|n1

and θnk|n1
are

completion predicates, which must both be evaluated on
the concrete program. To evaluate these sub-queries, we
can utilize abstraction recursively, this time using the pred-
icates {n1}, {nk}, and {nk−1}. The intermediate abstract
program is:

1 {n1} ←flip(θn1);
2 {nk−1} ←if {n1} then flip(θnk−1|n1

) else
flip(θnk−1|n1

);
3 {nk} ←if {nk−1} then flip(θnk|nk−1

) else
flip(θnk|nk−1

);

The sub-query on Line 3 implicitly exploits the conditional
independence between n1 and nk−1 given nk. In this case,
θnk|nk−1,n1

= θnk|nk−1,n1
, so Line 3 performs only one

of these equivalent queries. This is an optimization that
Algorithm 1 would not do automatically, as it would naively
consider all possible joint assignments to predicates on Line
3, and would thus evaluate both of these equivalent sub-
queries. In practice, identifying duplicate sub-queries will
be an important optimization. In this case probabilistic pro-
gram slicing would discover this equivalence (Hur et al.,
2014). The process of querying the concrete program re-
cursively utilizing abstraction may be repeated inductively
for each sub-program. Ultimately, n sub-programs will be
generated, each with 2 paths, for a total of 2n sub-queries.

Shuffle Many intractable models can be rendered
tractable by exploiting the underlying symmetry of ran-
dom variables; this is often called lifted inference (Kersting,
2012; Niepert & Van den Broeck, 2014). This example
illustrates the potential connections between probabilistic
program abstraction and lifted inference. Consider the fol-
lowing probabilistic program, which shuffles a small deck

Sound Abstraction and Decomposition of Probabilistic Programs

of cards:

1 deck←[1,2,3,4,5,6];
2 for idx in [0..5) {
3 j←uniformInt(idx, 6);
4 swap(deck[j], deck[i]);
5 }

We wish to compute Pr(deck[0] = 1), i.e. the proba-
bility that the top card of the deck is still 1 after shuffling.
There is a key symmetry that reduces the state space of our
problem: it is not necessary to model the distribution on all
the cards. For answering this query, it is sufficient to treat
the cards as either “1” or “not 1”, since all cards that are not
1 are exchangeable. Specifically, we can create an abstract
program by changing the first line of the original program:

1 deck←[{1},¬{1},¬{1},¬{1},¬{1},¬{1}];

Before this abstraction, there were 6! arrangements of cards;
after this abstraction, there are only 6, drastically reducing
the cost of inference.

Note that while this abstract program is distributionally
sound, it is not a predicate abstraction and thus not gener-
ated by Algorithm 1. Specifically, this abstraction is con-
structed by surgically abstracting portions of the concrete
program, rather than by building an abstraction from the
ground up with predicates. Automating such abstractions is
an interesting direction for future work.

6.2. Approximate Inference

Many existing probabilistic programming systems rely on
approximate inference methods such as Markov-Chain
Monte Carlo or variational approximations to perform infer-
ence (Carpenter et al., 2016; Wood et al., 2014; Goodman
et al., 2008; Tran et al., 2017). These techniques typically
make assumptions about the underlying program structure
in order to perform well: for example, Hamiltonian Monte-
Carlo will assume that the underlying distribution is contin-
uous, and variational inference assumes that the distribution
can be well-captured by the proposal family. In general,
we may utilize decomposition via abstraction to apply ap-
proximate inference methods to evaluate the sub-queries for
which they are best suited.

Consider the following probabilistic program. We wish to
infer the probability that x is less than a constant k given
three noisy observations about x (as notation, N (µ, σ) is a
normal distribution with mean µ and variance σ):

1 x←N(µ, σ);
2 y1 ←if(x<k){N(µy,σy)} else {N(µ′y,σ′y)};
3 y2 ←if(x<k){N(µy,σy)} else {N(µ′y,σ′y)};
4 y3 ←if(x<k){N(µy,σy)} else {N(µ′y,σ′y)};
5 observe(y1<c ∧ y2<c ∧ y3 ≥c);
6 return x<k;

Approximate inference techniques such as Markov-Chain
Monte-Carlo (MCMC) or direct sampling struggle with this
example: the distribution is multi-modal, non-differentiable,
and the a-priori probability of the observations being satis-
fied is low. This is evidenced by the blue circle performance
line in Figure 2b, which shows the performance of MCMC
on the un-abstracted model using WebPPL with a fixed
number of samples (Goodman & Stuhlmüller, 2014).

The red performance line in Figure 2b shows the conver-
gence of an abstracted model generated by Algorithm 1 with
respect to the predicates {x < k}, {yi < c}. This abstrac-
tion allows us to perform a hybrid inference procedure. Each
sub-query (i.e., computing Pr(x < k)) is differentiable and
uni-modal, and can be easily evaluated using MCMC; in this
experiment, we evaluated each sub-query using a portion
of a fixed total budget of samples. Because the abstraction
itself is a discrete program, the final query on the abstract
program may be performed using enumeration, which can
handle discontinuities and low-probability evidence. See
the appendix for the full text of these programs.

7. Related Work
Graph compilation. There exists a family of inference
tools that compile probabilistic programs to structured prob-
abilistic models (Pfeffer, 2009; McCallum et al., 2009;
Minka et al., 2014). Often, these tools are too coarse; our
technique can exploit more decompositions than a graph
captures by exploiting nuanced program structure.

Program analysis. Some approximate inference tools inte-
grate static information from the program: for instance, Cha-
ganty et al. (2013) and Nori et al. (2014) utilize symbolic
execution or weakest precondition computations to draw
samples more efficiently from a probabilistic program. How-
ever, they do not exploit statistical decompositions such as
conditional independence, and they perform their analyses
over the entire program, rather than performing sub-queries.
Probabilistic abstract interpretation has been studied in prior
work, but in all cases the soundness relationship is weaker
than distributional soundness (Cousot & Monerau, 2012;
Monniaux, 2000; 2001).

8. Conclusion
This work addresses the question: what is a useful abstrac-
tion for a probabilistic program? We showed that such a use-
ful abstraction must be distributionally sound, and described
the theory and practice for constructing such abstractions.
Then, we empirically validated this approach on approxi-
mate and exact inference tasks. For future work, we plan
to explore loopy programs as well as automated predicate
discovery techniques.

Sound Abstraction and Decomposition of Probabilistic Programs

Acknowledgments
This work is partially supported by NSF grants #CCF-
1527923, #IIS-1657613, #IIS-1633857 and DARPA XAI
grant #N66001-17-2-4032. The authors would like to thank
Tal Friedman and Jon Aytac for helpful discussions.

References
Albarghouthi, A., D’Antoni, L., Drews, S., and Nori, A.

Fairsquare: Probabilistic verification for program fairness.
In OOPSLA, volume 1, pp. 80:1–80:30, October 2017.

Aumann, R. J. Borel structures for function spaces. Illinois
Journal of Mathematics, 1961-12:–, 1961.

Ball, T., Majumdar, R., Millstein, T., and Rajamani, S. K.
Automatic predicate abstraction of c programs. In Proc. of
PLDI, pp. 203–213, 2001.

Boutilier, C., Friedman, N., Goldszmidt, M., and Koller, D.
Context-specific independence in bayesian networks. In
Proceedings of the Twelfth International Conference on
Uncertainty in Artificial Intelligence, UAI’96, pp. 115–
123, San Francisco, CA, USA, 1996. Morgan Kaufmann
Publishers Inc. ISBN 1-55860-412-X.

Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich,
B., Betancourt, M., Brubaker, M. A., Li, P., and Rid-
dell, A. Stan: A probabilistic programming language. J.
Statistical Software, VV(Ii), 2016.

Chaganty, A., Nori, A. V., and Rajamani, S. K. Efficiently
Sampling Probabilistic Programs via Program Analysis.
Proc. of AISTATS, 31:153–160, 2013. ISSN 15337928.

Chistikov, D., Dimitrova, R., and Majumdar, R. Approx-
imate counting in smt and value estimation for prob-
abilistic programs. In Proc. of TACAS, pp. 320–334,
New York, NY, USA, 2015. Springer-Verlag New York,
Inc. ISBN 978-3-662-46680-3. doi: 10.1007/978-3-662-
46681-0 26.

Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith,
H. Counterexample-guided abstraction refinement
for symbolic model checking. J. ACM, 50(5):752–
794, September 2003. ISSN 0004-5411. doi:
10.1145/876638.876643.

Cousot, P. and Monerau, M. Probabilistic abstract inter-
pretation. In Proc. of ESOP, pp. 169–193, 2012. ISBN
9783642288685. doi: 10.1007/978-3-642-28869-20 9.

Dijkstra, E. W. A Discipline of Programming. Prentice-Hall,
Englewood Cliffs, New Jersey, 1976.

Gehr, T., Misailovic, S., and Vechev, M. Psi: Exact symbolic
inference for probabilistic programs. Proc. of ESOP/E-
TAPS, 9779:62–83, 2016. ISSN 16113349.

Goodman, N. D. and Stuhlmüller, A. The Design and Im-
plementation of Probabilistic Programming Languages.
http://dippl.org, 2014. Accessed: 2018-5-22.

Goodman, N. D., Mansinghka, V. K., Roy, D. M., Bonawitz,
K., and Tenenbaum, J. B. Church: A language for gener-
ative models. In Proc. of UAI, pp. 220–229, 2008.

Graf, S. and Saı̈di, H. Construction of abstract state graphs
with PVS. In Proc. of CAV, volume 1254, pp. 72–83.
Springer-Verlag, June 1997.

Holtzen, S., Millstein, T., and Van den Broeck, G. Prob-
abilistic program abstractions. In Proceedings of the
33rd Conference on Uncertainty in Artificial Intelligence
(UAI), August 2017.

Hur, C.-K., Nori, A. V., Rajamani, S. K., and Samuel, S.
Slicing probabilistic programs. Proc. of PLDI, pp. 133–
144, 2014. doi: 10.1145/2594291.2594303.

Kersting, K. Lifted probabilistic inference. In Proceedings
of the 20th European Conference on Artificial Intelli-
gence, ECAI’12, pp. 33–38, Amsterdam, The Nether-
lands, The Netherlands, 2012. IOS Press. ISBN 978-1-
61499-097-0. doi: 10.3233/978-1-61499-098-7-33.

Koller, D. and Friedman, N. Probabilistic Graphical Mod-
els: Principles and Techniques - Adaptive Computation
and Machine Learning. The MIT Press, 2009. ISBN
0262013193, 9780262013192.

Kozen, D. Semantics of probabilistic programs. Journal of
Computer and System Sciences, 22(3):328 – 350, 1981.
ISSN 0022-0000. doi: https://doi.org/10.1016/0022-
0000(81)90036-2.

Kschischang, F. R., Frey, B. J., and Loeliger, H. A. Factor
graphs and the sum-product algorithm. IEEE Trans. Inf.
Theor., 47(2):498–519, September 2006. ISSN 0018-
9448. doi: 10.1109/18.910572.

McCallum, A., Schultz, K., and Singh, S. Factorie: Prob-
abilistic programming via imperatively defined factor
graphs. Proc. of NIPS, 22:1249–1257, 2009. ISSN
03643417.

Minka, T., Winn, J., Guiver, J., Webster, S., Zaykov,
Y., Yangel, B., Spengler, A., and Bronskill, J. In-
fer.NET 2.6, 2014. Microsoft Research Cambridge.
http://research.microsoft.com/infernet.

Monniaux, D. Abstract interpretation of probabilistic se-
mantics. In International Symposium on Static Analysis,
pp. 322–339, 2000. ISBN 3-540-67668-6.

Monniaux, D. An abstract monte-carlo method for the
analysis of probabilistic programs. SIGPLAN Not.,

Sound Abstraction and Decomposition of Probabilistic Programs

36(3):93–101, January 2001. ISSN 0362-1340. doi:
10.1145/373243.360211.

Niepert, M. and Van den Broeck, G. Tractability through
exchangeability: A new perspective on efficient proba-
bilistic inference. In Proceedings of the 28th AAAI Con-
ference on Artificial Intelligence, AAAI Conference on
Artificial Intelligence, July 2014.

Nori, A., Hur, C.-K., Rajamani, S., and Samuel, S. R2:
An efficient mcmc sampler for probabilistic programs.
AAAI, July 2014.

Pearl, J. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1988. ISBN
0-934613-73-7.

Pfeffer, A. Figaro: An object-oriented probabilistic pro-
gramming language. Charles River Analytics Technical
Report, pp. 1–9, 2009. ISSN 10450823.

Sankaranarayanan, S., Chakarov, A., and Gulwani, S. Static
analysis for probabilistic programs: Inferring whole pro-
gram properties from finitely many paths. SIGPLAN
Not., 48(6):447–458, June 2013. ISSN 0362-1340. doi:
10.1145/2499370.2462179.

Tran, D., Hoffman, M. D., Saurous, R. A., Brevdo, E., Mur-
phy, K., and Blei, D. M. Deep probabilistic programming.
In International Conference on Learning Representations,
2017.

Winn, J. and Minka, T. Probabilistic programming with
infer.net. September 2009.

Wood, F., van de Meent, J. W., and Mansinghka, V. A
new approach to probabilistic programming inference. In
Proc. of AISTATS, pp. 1024–1032, 2014.

Sound Abstraction and Decomposition of Probabilistic Programs

A. Background: Probability Theory
Some standard notation and concepts from probability the-
ory are necessary during our formalization of probabilistic
programs. First, we define a measurable space:
Definition 9 (Measurable space). Let Ω be a set, called the
sample space. In the context of programs Ω is sometimes
called a domain. A σ-algebra Σ on Ω is a collection of
subsets of Ω that is (i) closed under countable unions; (ii)
closed under complementation; (iii) contains Ω. We call the
pair (Ω,Σ) a measurable space.

We will rely on the notion of a probability space: a measur-
able space with a probability measure.
Definition 10 (Probability space). Let (Ω,Σ) be a measur-
able space and µ : Σ → R be a function such that (i) µ
is countably additive; (ii) µ(Ω) = 1. The tuple (Ω,Σ, µ)
is called a probability space, and µ is called a probability
measure.

Measurable spaces afford a particular class of functions
called measurable functions. Intuitively, such functions
represent a random variable.
Definition 11 (Measurable function). Let (Ω,Σ) and
(Ω′,Σ′) be two measurable spaces. Then a function f :
Ω→ Ω′ is called a measurable function if for any E ∈ Σ′,
we have that f−1(E) = {x ∈ Ω | f(x) ∈ E} ∈ Σ.

Measurable functions define a transformation between prob-
ability spaces known as a push-forward:
Definition 12 (Push-forward). Let (Ω,Σ, µ) be a prob-
ability space and (Ω′,Σ′) be a measurable space, and
f : Ω → Ω′ be a measurable function. Then, the push-
forward of µ through f is a probability measure ν on
(Ω′,Σ′) such that for any e ∈ Σ′, ν(e) = µ(f−1(e)). As
notation, we sometimes treat f as a mapping between prob-
ability spaces.

B. Proofs of Theorems
Proof of Theorem 1. Let µ : Σ → [0, 1] be an initial prob-
ability measure. The proof will follow by deriving a prob-
ability measure on the abstract domain ν′ : ΣDΨ

→ [0, 1]
by following both paths in the commutative diagram from
Definition 6, and showing that the result is the same for both
paths.

Following the concrete path, we compute µ′ : Σ′ → [0, 1],
which is the push-forward µ′(c′) = µ(JCK−1(c′)). Then,
abstracting this measure, we have that

ν′ = α′(µ′) = a′ 7→ µ′([a′]−1)

= a′ 7→ µ(JCK−1([a′]−1)). (2)

Note that [a′]−1 is an element of the σ-algebra and therefore
the inverse JCK−1([a′]−1) is well defined.

Next, following the abstract path, we first compute ν :
ΣDΨ → [0, 1], which is ν = α(µ) = a 7→ µ([a]−1). Then,
we compute ν′ using the push-forward of JAK:

ν′ = a′ 7→ ν((JAK)−1(a′)) = a′ 7→ α(µ)((JAK)−1(a′))

= a′ 7→ µ([(JAK)−1(a′)]−1).
(3)

To prove these ν′ measures equivalent, it suffices to show
that JCK−1([a′]−1) = [(JAK)−1(a′)]−1. This follows from
Definition 8 by taking the inverse of both sides.

Proof of Theorem 2. We must show that (1) the generated
measurable function JAK is a tight abstraction of JCK, and
(2) that the resulting probability space (ΩΨ∪Φ,ΣΨ∪Φ, ν) is
correctly pushed forward through [·]Ψ∪Φ. The second point
clearly is true, since the loop iterates over each element of
DΨ∪Φ and updates ν accordingly, so we focus on the first
point.

It is clear that JAK is a well-defined function, since each
element of the domain is assigned to some element of the co-
domain in the loop. Then, we must show that the resulting
function is tight, i.e. that for any c ∈ Ω, it is the case that
[JCK(c)]Ψ′ = JAK([c]Ψ∪Φ).

For each a ∈ DΨ∪Φ, there is some aφ ∈ DΦ such that
a implies aφ. For any concrete state c such that [c]Ψ∪Φ

implies aφ, by the definition of the weakest precondi-
tion, [JCK(c)]Ψ′ = a′ for some a′ ∈ DΨ′ . Then, we let
JAK([c]Ψ∪Φ) = a′, so by definition JAK is a tight measur-
able function.

C. Source Code for Experiments
For each experiment, the time reported in Figure 2a for
the “un-abstracted model” is the time taken to evaluate the
program given in the “Concrete program” sub-section, and
the time given to evaluate the “abstracted model” is the net-
total of running all the programs given in the “Sub-queries”
section plus the “Abstract program” section.

C.1. Markov Chain

C.1.1. CONCRETE PROGRAM

1 % def main(){
2 n1 := flip(0.5);
3 n2 := 0;
4 if n1 {
5 n2 = flip(0.1);
6 } else {
7 n2 = flip(0.95);
8 }
9

10 n3 := 0;
11 if n2 {

Sound Abstraction and Decomposition of Probabilistic Programs

12 n3 = flip(0.8);
13 } else {
14 n3 = flip(0.2);
15 }
16

17 n4 := 0;
18 if n3 {
19 n4 = flip(0.1);
20 } else {
21 n4 = flip(0.4);
22 }
23

24 n5 := 0;
25 if n4 {
26 n5 = flip(0.2);
27 } else {
28 n5 = flip(0.9);
29 }
30

31 n6 := 0;
32 if n5 {
33 n6 = flip(0.3);
34 } else {
35 n6 = flip(0.7);
36 }
37

38 n7 := 0;
39 if n6 {
40 n7 = flip(0.4);
41 } else {
42 n7 = flip(0.2);
43 }
44

45 n8 := 0;
46 if n7 {
47 n8 = flip(0.2);
48 } else {
49 n8 = flip(0.9);
50 }
51

52 n9 := 0;
53 if n8 {
54 n9 = flip(0.01);
55 } else {
56 n9 = flip(0.001);
57 }
58

59 observe(n9);
60 return n1;
61 }

C.1.2. ABSTRACT PROGRAM

1 % def main(){
2 n1 := flip(0.5);
3 n9 := 0;
4 if n1 {
5 // result of decomp2a
6 n9 = flip(4561249/625000000);
7 } else {
8 // result of decomp2b
9 n9 = flip(9189971/1250000000);

10 }
11 observe(n9);

12 return n1;
13 }

C.1.3. SUB-QUERIES

Listing 1. decomp2a
1 % // Pr(n9 | n1 = t)
2 def main(){
3 // result of decomp3a
4 n8 := flip(437361/625000);
5 n9 := 0;
6 if n8 {
7 n9 = flip(0.01);
8 } else {
9 n9 = flip(0.001);

10 }
11 return n9;
12 }

Listing 2. decomp2b
1 % // Pr(n9 | n1 = f)
2 def main(){
3 // result of decomp3b
4 n8 := flip(882219/1250000);
5 n9 := 0;
6 if n8 {
7 n9 = flip(0.01);
8 } else {
9 n9 = flip(0.001);

10 }
11 return n9;
12 }

The remaining decompositions are similar to these first two,
and omitted.

C.2. Multiplication

C.2.1. CONCRETE PROGRAM

1 % // a complex mixture
2 def cont_mix() {
3 a := uniform(0,10);
4 b := uniform(0,5);
5 c := uniform(0,5);
6 if c < 0 {
7 c = c * 4;
8 }
9 if a < c {

10 b = b + a;
11 }
12 return a + b + c;
13 }
14

15 def markov() {
16 n1 := flip(0.5);
17 n2 := 0;
18 if n1 {
19 n2 = flip(0.1);
20 } else {

Sound Abstraction and Decomposition of Probabilistic Programs

21 n2 = flip(0.95);
22 }
23

24 n3 := 0;
25 if n2 {
26 n3 = flip(0.8);
27 } else {
28 n3 = flip(0.2);
29 }
30

31 n4 := 0;
32 if n3 {
33 n4 = flip(0.1);
34 } else {
35 n4 = flip(0.4);
36 }
37

38 n5 := 0;
39 if n4 {
40 n5 = flip(0.2);
41 } else {
42 n5 = flip(0.9);
43 }
44

45 n6 := 0;
46 if n5 {
47 n6 = flip(0.3);
48 } else {
49 n6 = flip(0.7);
50 }
51

52 n7 := 0;
53 if n6 {
54 n7 = flip(0.4);
55 } else {
56 n7 = flip(0.2);
57 }
58 return n7;
59 }
60

61 def main() {
62 r := markov();
63 mul := 0;
64 if r {
65 mul = 0;
66 } else {
67 mul = 1;
68 }
69

70 z := floor(cont_mix()) * mul;
71 return z < 1
72 }

C.2.2. ABSTRACT PROGRAM

1 % def main() {
2 // result of decomp1
3 cont_lt1 := flip(1/1800);
4 // result of decomp2
5 disc_lt1 := flip(70437/250000);
6 z := cont_lt1 || disc_lt1;
7 return z;
8 }

C.2.3. SUB-QUERIES

Listing 3. decomp1
1 % def cont_mix() {
2 a := uniform(0,10);
3 b := uniform(0,5);
4 c := uniform(0,5);
5 if c < 0 {
6 c = c * 4;
7 }
8 if a < c {
9 b = b + a;

10 }
11 return a + b + c;
12 }
13 def main() {
14 return cont_mix() < 1;
15 }

Listing 4. decomp2
1 % def markov() {
2 n1 := flip(0.5);
3 n2 := 0;
4 if n1 {
5 n2 = flip(0.1);
6 } else {
7 n2 = flip(0.95);
8 }
9

10 n3 := 0;
11 if n2 {
12 n3 = flip(0.8);
13 } else {
14 n3 = flip(0.2);
15 }
16

17 n4 := 0;
18 if n3 {
19 n4 = flip(0.1);
20 } else {
21 n4 = flip(0.4);
22 }
23

24 n5 := 0;
25 if n4 {
26 n5 = flip(0.2);
27 } else {
28 n5 = flip(0.9);
29 }
30

31 n6 := 0;
32 if n5 {
33 n6 = flip(0.3);
34 } else {
35 n6 = flip(0.7);
36 }
37

38 n7 := 0;
39 if n6 {
40 n7 = flip(0.4);
41 } else {
42 n7 = flip(0.2);

Sound Abstraction and Decomposition of Probabilistic Programs

43 }
44 return n7;
45 }
46

47 def main() {
48 return markov()
49 }

C.3. Shuffle

C.3.1. CONCRETE PROGRAM

1 % def main() {
2 deck := [1,2,3,4,5,6];
3 for idx in [0..5) {
4 j := uniformInt(idx, 6);
5 tmp := deck[idx];
6 deck[idx] = deck[j];
7 deck[j] = tmp;
8 }
9 return deck[0] == 1;

10 }

C.3.2. ABSTRACT PROGRAM

1 % def main() {
2 // encode ’1’ as 1, ’not 1’ as 0
3 deck := [1,0,0,0,0,0];
4 for idx in [0..5) {
5 j := uniformInt(idx, 6);
6 tmp := deck[idx];
7 deck[idx] = deck[j];
8 deck[j] = tmp;
9 }

10 return deck[0] == 1;
11 }

C.3.3. SUB-QUERIES

This program required no sub-queries.

D. Approximate Inference
The approximate inference experiments were implemented
using WebPPL (Goodman & Stuhlmüller, 2014).

First, we give the initial un-abstracted model:

1 % var mix = function(x) {
2 if(x<0) {
3 return gaussian(0, 5);
4 } else {
5 return gaussian(-10, 5);
6 }
7 }
8

9 var model = function() {
10 var x = gaussian(0, 10);
11 var y = mix(x);
12 var y2 = mix(x);
13 var y3 = mix(x);

14 var y4 = mix(x);
15

16 condition((y < -5) && (y2 < -5)
17 && (y3 >= -5) && (y4 >= -5));
18 return x < 0;
19 }
20

21 var dist = Infer(
22 {method: ’MCMC’, samples: 7500, lag: 0,

burn: 10}, model);

1 var intoProb = function(o) {
2 // converts an inference result into a

probability of being true
3 ...
4 }
5

6 var gauss1 = function() {
7 return gaussian(0, 5) < -5
8 }
9

10 var gauss2 = function() {
11 return gaussian(-10, 5) < -5
12 }
13

14 var probGaus1 = function() {
15 var dist1 = Infer(
16 {method: ’MCMC’, samples: num_samples,

lag: 0, burn: 10}, gauss1);
17 return intoProb(dist1)
18 }
19

20 var probGaus2 = function() {
21 var dist2 = Infer(
22 {method: ’MCMC’, samples: num_samples

, lag: 0, burn: 10},
23 gauss2);
24 return intoProb(dist2)
25 }
26

27 var dist3 = function() {
28 return gaussian(0, 10) < 0;
29 }
30

31 var distGuard = Infer(
32 {method: ’MCMC’, samples: num_samples,

lag: 0, burn: 10},
33 dist3);
34

35 var conditionedGeometric = function() {
36 var x = bernoulli(intoProb(distGuard))

;
37 var y1 = x ? bernoulli(probGaus1()) :

bernoulli(probGaus2());
38 var y2 = x ? bernoulli(probGaus1()) :

bernoulli(probGaus2());
39 var y3 = x ? bernoulli(probGaus1()) :

bernoulli(probGaus2());
40 var y4 = x ? bernoulli(probGaus1()) :

bernoulli(probGaus2());
41

42 condition(y1 && y2 && !y3 && !y4);
43 return x
44 }

