
Model Checking Finite-Horizon Markov Chains
with Probabilistic Inference

Steven Holtzen⋆1 , Sebastian Junges⋆2 , Marcell Vazquez-Chanlatte2 ,
Todd Millstein1 , Sanjit A. Seshia2 , and Guy Van den Broeck1

1 University of California, Los Angeles, CA, USA⋆⋆

2 University of California, Berkeley, CA, USA⋆ ⋆ ⋆

Abstract. We revisit the symbolic verification of Markov chains with
respect to finite horizon reachability properties. The prevalent approach
iteratively computes step-bounded state reachability probabilities. By
contrast, recent advances in probabilistic inference suggest symbolically
representing all horizon-length paths through the Markov chain. We ask
whether this perspective advances the state-of-the-art in probabilistic
model checking. First, we formally describe both approaches in order to
highlight their key differences. Then, using these insights we develop Ru-
bicon, a tool that transpiles Prism models to the probabilistic inference
tool Dice. Finally, we demonstrate better scalability compared to proba-
bilistic model checkers on selected benchmarks. All together, our results
suggest that probabilistic inference is a valuable addition to the proba-
bilistic model checking portfolio, with Rubicon as a first step towards
integrating both perspectives.

1 Introduction

Systems with probabilistic uncertainty are ubiquitous, e.g., probabilistic pro-
grams, distributed systems, fault trees, and biological models. Markov chains re-
place nondeterminism in transition systems with probabilistic uncertainty, and
probabilistic model checking [7,4] provides model checking algorithms. A key
property that probabilistic model checkers answer is: What is the (precise) prob-
ability that a target state is reached (within a finite number of steps h)? Contrary
to classical qualitative model checking and approximate variants of probabilistic
model checking, precise probabilistic model checking must find the total proba-
bility of all paths from the initial state to any target state.

Nevertheless, the prevalent ideas in probabilistic model checking are gener-
alizations of qualitative model checking. Whereas qualitative model checking
⋆ Contributed equally

⋆⋆ This work is partially supported by NSF grants #IIS-1943641, #IIS-1956441, #CCF-
1837129, DARPA grant #N66001-17-2-4032, a Sloan Fellowship, a UCLA Disserta-
tion Year Fellowship, and gifts by Intel and Facebook Research.

⋆ ⋆ ⋆ This work is partially supported by NSF grants 1545126 (VeHICaL), 1646208 and
1837132, by the DARPA contracts FA8750-18-C-0101 (AA) and FA8750-20-C-0156
(SDCPS), by Berkeley Deep Drive, and by Toyota under the iCyPhy center.

http://orcid.org/0000-0002-8190-5412
http://orcid.org/0000-0003-0978-8466
http://orcid.org/0000-0002-1248-0000
http://orcid.org/0000-0002-2031-1514
http://orcid.org/0000-0001-6190-8707
http://orcid.org/0000-0003-3434-2503

2 Holtzen et al.

s1 t1 · · ·|| || sn tn

p1

q1

p̄1 :=

1−p1
q̄1 :=

1−q1
pn

qn

p̄n :=

1−pn
q̄n :=

1−qn

(a) Motivating factory Markov chain with si = [[ci = 0]], ti = [[ci = 1]].

const double p1, p2, p3, q1, q2, q3;
module F1
c1 : bool init false;
[a] !c1 ->p1: (c′1=1) +1−p1: (c′1=0);
[a] c1 -> q1: (c′1=0) +1−q1: (c′1=1);

endmodule
module F2 = F1[c1=c2,p1=p2,q1=q2]
module F3 = F1[c1=c3,p1=p3,q1=q3]
label "allStrike" = c1 & c2 & c3;

(b) A Prism model of (a) with 3 factories.

5 10 15 20

0

500

1,000

1,500

Parallel Chains

tim
e

in
s

(c) Relative scaling.

p1

p2

p3

p̄1
p̄2
p̄3

c
(1)
1

c
(1)
2

c
(1)
3

T F

(d) BDD
Fig. 1. Motivating example. Figure 1(c) compares the performance of Rubicon (),
Storm’s explicit engine (), Storm’s symbolic engine () and Prism ()
when invoked on a (b) with arbitrarily fixed (different) constants for pi, qi and horizon
h = 10. Times are in seconds, with a time-out of 30 minutes.

tracks the states that can reach a target state (or dually, that can be reached
from an initial state), probabilistic model checking tracks the i-step reachability
probability for each state in the chain. The i+1-step reachability can then be
computed via multiplication with the transition matrix. The scalability concern
is that this matrix grows with the state space in the Markov chain. Mature model
checking tools such as Storm [38], Modest [36], and Prism [52] utilize a variety
of methods to alleviate the state space explosion. Nevertheless various natural
models cannot be analyzed by the available techniques.

In parallel, within the AI community a different approach to representing a
distribution has emerged, which on first glance can seem unintuitive. Rather than
marginalizing out the paths and tracking reachability probabilities per state, the
probabilistic AI community commonly aggregates all paths that reach the target
state. At its core, inference is then a weighted sum over all these paths [17].
This hinges on the observation that this set of paths can often be stored more
compactly, and that the probability of two paths that share the same prefix or
suffix can be efficiently computed on this concise representation. This inference
technique has been used in a variety of domains in the artificial intelligence
(AI) and verification communities [40,28,15,9], but is not part of any mature
probabilistic model checking tools.

This paper theoretically and experimentally compares and contrasts these
two approaches. In particular, we describe and motivate Rubicon, a probabilis-
tic model checker that leverages the successful probabilistic inference techniques.
We begin with an example that explains the core ideas of Rubicon followed by
the paper structure and key contributions.

Motivating Example Consider the example illustrated in Fig. 1(a). Suppose
there are n factories. Each day, the workers at each factory collectively decide

Model Checking Finite-Horizon Markov Chains with Probabilistic Inference 3

whether or not to strike. To simplify, we model each factory (i) with two states,
striking (ti) and not striking (si). Furthermore, since no two factories are identi-
cal, we take the probability to begin striking (pi) and to stop striking (qi) to be
different for each factory. Assuming that each factory transitions synchronously
and in parallel with the others, we query: “what is the probability that all the
factories are simultaneously striking within h days?”

Despite its simplicity, we observe that state-of-the-art model checkers like
Storm and Prism do not scale beyond 15 factories.3 For example, Figure 1(b)
provides a Prism encoding for this simple model (we show the instance with
3 factories), where a Boolean variable ci is used to encode the state of each
factory. The “allStrike” label identifies the target state. Figure 1(c) shows the
run time for an increasing number of factories. While all methods eventually
time out, Rubicon scales to systems with an order of magnitude more states.

Why is this problem hard? To understand the issue with scalability, observe
that tools such as Storm and Prism store the transition matrix, either explicitly
or symbolically using algebraic decision diagrams (ADDs). Every distinct entry
of this transition matrix needs to be represented; in the case of ADDs using a
unique leaf node. Because each factory in our example has a different probability
of going on strike, that means each subset of factories will likely have a unique
probability of jointly going on strike. Hence, the transition matrix then will
have a number of distinct probabilities that is exponential in the number of
factories, and its representation as an ADD must blow up in size. Concretely,
for 10 factories, the size of the ADD representing the transition matrix has 1.9
million nodes. Moreover, the explicit engine fails due to the dense nature of the
underlying transition matrix. We discuss this method in Sec. 3.

How to overcome this limitation? This problematic combinatorial explosion
is often unnecessary. For the sake of intuition, consider the simple case where
the horizon is 1. Still, the standard transition matrix representations blow up
exponentially with the number of factories n. Yet, the probability of reaching
the “allStrike” state is easy to compute, even when n grows: it is p1 · p2 · · · pn.

Rubicon aims to compute probabilities in this compact factorized way by
representing the computation as a binary decision diagram (BDD). Fig. 1(d)
gives an example of such a BDD, for three factories and a horizon of one. A key
property of this BDD, elaborated in Sec. 3, is that it can be interpreted as a
parametric Markov chain, where the weight of each edge corresponds with the
probability of a particular factory striking. Then, the probability that the goal
state is reached is given by the weighted sum of paths terminating in T : for this
instance, there is a single such path with weight p1 ·p2 ·p3. These BDDs are tree-
like Markov-chains, so model checking can be performed in time linear in the size
of the BDD using dynamic programming. Essentially, the BDD represents the
set of paths that reach a target state—an idea common in probabilistic inference.

To construct this BDD, we propose to encode our reachability query sym-
bolically as a weighted model counting (WMC) query on a logical formula. By
compiling that formula into a BDD, we obtain a diagram where computing the
3 Section 6 describes the experimental apparatus and our choice of comparisons.

4 Holtzen et al.

query probability can be done efficiently (in the size of the BDD). Concretely
for Fig. 1(d), the BDD represents the formula c

(1)
1 ∧ c(1)2 ∧ c(1)3 , which encodes

all paths through the chain that terminate in the goal state (all factories strike
on day 1). For this example and this horizon, this is a single path. WMC is a
well-known strategy for probabilistic inference and is currently the among the
state-of-the-art approaches for discrete graphical models [17], discrete probabilis-
tic programs [40], and probabilistic logic programs [28].

In general, the exponential growth of the number of paths might seem like
it dooms this approach: for n = 3 factories and horizon h = 1, we need to only
represent 8 paths, but for h = 2, we would need to consider 64 different paths,
and so on. However, a key insight is that, for many systems – such as the factory
example – the structural compression of BDDs allows a concise representation
of exponentially many paths, all while being parametric over path probabili-
ties (see Sec. 4). To see why, observe that in the above discussion, the state of
each factory is independent of the other factories: independence, and its natu-
ral generalizations like conditional and contextual independence, are the driving
force behind many successful probabilistic inference algorithms [48]. Succinctly,
the key advantage of Rubicon is that it exploits a form of structure that has
thus far been under-exploited by model checkers, which is why it scales to more
parallel factories than the existing approaches on the hard task. In Section 6
we consider an extension to this motivating example that adds dependencies
between factories. This dependency (or rather, the accompanying increase in
the size of the underlying MC) significantly decreases scalability for the existing
approaches but negligibly affects Rubicon.

This leads to the task: how does one go from a Prism model to a concise BDD
efficiently? To do this, Rubicon leverages a novel translation from Prism models
into a probabilistic programming language called Dice (outlined in Section 5).

Contribution and Structure Inspired by the example, we contribute concep-
tual and empirical arguments for leveraging BDD-based probabilistic inference
in model checking. Concretely:
1. We demonstrate fundamental advantages in using probabilistic inference on

a natural class of models (Sec. 1 and 6).
2. We explain these advantages by showing the fundamental differences be-

tween existing model checking approaches and probabilistic inference (Sec. 3
and 4). To that end, Section 4 presents probabilistic inference based on an
operational and a logical perspective and combines these perspectives.

3. We leverage those insights to build Rubicon, a tool that transpiles Prism
to Dice, a probabilistic programming language (Sec. 5).

4. We demonstrate that Rubicon indeed attains an order-of-magnitude scaling
improvement on several natural problems including sampling from paramet-
ric Markov chains and verifying network protocol stabilization (Sec. 6).

Ultimately we argue that Rubicon makes a valuable contribution to the port-
folio of probabilistic model checking backends, and brings to bear the extensive
developments on probabilistic inference to well-known model checking problems.

Model Checking Finite-Horizon Markov Chains with Probabilistic Inference 5

0,0

0,1

1,0

1,1

0.4 0.4

0.6

0.6

0.5

0.5

0.5

0.5

(a) Toy-example M

0,0

0,1

1,0

1,1

p p

1−p
1−p

q

1−q

q1−q

(b) pMC M′

y
y′

x

x′ x′ x′x′

00.6 0.4 0.5

(c) For M: P as ADD

Fig. 2. (a) MC toy example (b) (distinct) pMC toy example (c) ADD transition matrix

2 Preliminaries and Problem Statement

We state the problem formally and recap relevant concepts. See [7] for details. We
sometimes use p̄ to denote 1−p. A Markov chain (MC) is a tuple M = 〈S, ι, P, T 〉
with S a (finite) set of states, ι ∈ S the initial state, P : S → Distr(S) the
transition function, and T a set of target states T ⊆ S, where Distr(S) is the set
of distributions over a (finite) set S. We write P (s, s′) to denote P (s)(s′) and call
P a transition matrix. The successors of s are Succ(s) = {s′ | P (s, s′) > 0}. To
support MCs with billions of states, we may describe MCs symbolically, e.g., with
Prism [52] or as a probabilistic program [49,43]. For such a symbolic description
P, we denote the corresponding MC with [[P]]. States then reflect assignments
to symbolic variables.

A path π = s0 . . . sn is a sequence of states, π ∈ S+. We use π↓ to denote
the last state sn, and the length of π above is n and is denoted |π|. Let Pathsh
denote the paths of length h. The probability of a path is the product of the
transition probabilities, and may be defined inductively by Pr(s) = 1, Pr(π ·
s) = Pr(π) · P (π↓, s). For a fixed horizon h and set of states T , let the set
[[s→♢≤hT]] = {π | π0 = s ∧ |π| ≤ h ∧ π↓ ∈ T ∧ ∀i < |π|. πi 6∈ T} denote paths
from s of length at most h that terminate at a state contained in T . Furthermore,
let PrM(s |= ♢≤hT) =

∑
π∈[[s→♢≤hT]] Pr(π) describe the probability to reach

T within h steps. We simplify notation when s = ι and write [[♢≤hT]] and
PrM(♢≤hT), respectively. We omit M whenever that is clear from the context.

Formal Problem: Given an MC M and a horizon h, compute PrM(♢≤hT).

Example 1. For conciseness, we introduce a toy example MC M in Fig. 2(a).
For horizon h = 3, there are three paths that reach state 〈1,0〉: For example the
path 〈0, 0〉〈0, 1〉〈1, 0〉 with corresponding reachability probability 0.4 · 0.5. The
reachability probability PrM(♢≤3{〈1, 0〉}) = 0.42.

It is helpful to separate the topology and the probabilities. We do this by
means of a parametric MC (pMC) [23]. A pMC over a fixed set of parameters
p generalises MCs by allowing for a transition function that maps to Q[p], i.e.,
to polynomials over these variables [23]. A pMC and a valuation of parameters
u : p → R describe a MC by replacing p with u in the transition function P

6 Holtzen et al.

to obtain P [u]. If P [u](s) is a distribution for every s, then we call u a well-
defined valuation. We can then think about a pMC M as a generator of a set
of MCs {M[u] | u well-defined}. Fig. 2(b) shows a pMC; any valuation u with
u(p),u(q) ∈ [0, 1] is well-defined. We consider the following associated problem:

Parameter Sampling: Given a pMC M, a finite set of well-defined valu-
ations U , and a horizon h, compute PrM[u](♢≤hT) for each u ∈ U .

We recap binary decision diagrams (BDDs) and their generalization into
algebraic decision diagrams (ADDs, a.k.a. multi-terminal BDDs). ADDs over a
set of variables X are directed acyclic graphs whose vertices V can be partitioned
into terminal nodes Vt without successors and inner nodes Vi with two successors.
Each terminal node is labeled with a polynomial over some parameters p (or
just to constants in Q), val : Vt → Q[p], and each inner node Vi with a variable,
var : Vi → X. One node is the root node v0. Edges are described by the two
successor functions E0 : Vi → V and E1 : Vi → V . A BDD is an ADD with
exactly two terminals labeled T and F . Formally, we denote an ADD by the tuple
〈V, v0, X, var, val, E0, E1〉. ADDs describe functions f : BX → Q[p] (described by
a path in the underlying graph and the label of the corresponding terminal node).
As finite sets can be encoded with bit vectors, ADDs represent functions from
(tuples of) finite sets to polynomials.

Example 2. The transition matrix P of the MC in Fig. 2(a) maps states, encoded
by bit vectors, 〈x, y〉, 〈x′, y′〉 to the probabilities to move from state 〈x, y〉 to
〈x′, y′〉. Fig. 2(c) shows the corresponding ADD.4

3 A Model Checking Perspective

We briefly analyze the de-facto standard approach to symbolic probabilistic
model checking of finite-horizon reachability probabilities. It is an adaptation of
qualitative model checking, in which we track the (backward) reachable states.
This set can be thought of as a mapping from states to a Boolean indicating
whether a target state can be reached. We generalize the mapping to a function
that maps every state s to the probability that we reach T within i steps, de-
noted PrM(s |= ♢≤iT). First, it is convenient to construct a transition relation
in which the target states have been made absorbing, i.e., we define a matrix
with A(s, s′) = P (s, s′) if s 6∈ T and A(s, s′) = [s = s′]5 otherwise. The following
Bellman equations characterize that aforementioned mapping:

Pr
M

(
s |= ♢≤0T

)
= [s ∈ T],

Pr
M

(
s |= ♢≤iT

)
=

∑
s′∈Succ(s)

A(s, s′) · Pr
M

(s′ |= ♢≤i−1T) with i > 0.

4 The ADD also depends on the variable order, which we assume fixed for conciseness.
5 Where [x]=1 if x holds and 0 otherwise.

Model Checking Finite-Horizon Markov Chains with Probabilistic Inference 7

state horizon h
0 1 2 3

⟨0,0⟩ 0 0 0.2 0.42
⟨0,1⟩ 0 0.5 0.75 0.875
⟨1,0⟩ 1 1 1 1
⟨1,1⟩ 0 0.5 0.75 0.875

(a) PrM(♢≤h{⟨0,1⟩})

y

x

1 0.2 0.75

(b) PrM(♢≤2{⟨0,1⟩}) as ADD

Fig. 3. Bounded reachability and symbolic model checking for the MC M in Fig. 2(a).

The main aspect model checkers take from these equations is that to compute
the h-step reachability from state s, one only needs to combine the h−1-step
reachability from any state s′ and the transition probabilities P (s, s′). We define
a vector T with T (s) = [s ∈ T]. The algorithm then iteratively computes and
stores the i step reachability for i = 0 to i = h, e.g. by computing A3 · T
using A · (A · (A ·T)). This reasoning is thus inherently backwards and implicitly
marginalizing out paths. In particular, rather than storing the i-step paths that
lead to the target, one only stores a vector x = Ai ·T that stores for every state
s the sum over all i-long paths from s.

Explicit representations of matrix A and vector x require memory at least in
the order |S|.6 To overcome this limitation, symbolic probabilistic model checking
stores both A and Ai · T as an ADD by considering the matrix as a function
from a tuple 〈s, s′〉 to A(s, s′), and x as a function from s to x(s) [2].

Example 3. Reconsider the MC in Fig. 2(a). The h-bounded reachability prob-
ability PrM(♢≤h{〈1, 0〉}) can be computed as reflected in Fig. 3(a). The ADD
for P is shown in Fig. 2(c). The ADD for x when h = 2 is shown in Fig. 3(b).

The performance of symbolic probabilistic model checking is directly gov-
erned by the sizes of these two ADDs. The size of an ADD is bounded from
below by the number of leafs. In qualitative model checking, both ADDs are
in fact BDDs, with two leafs. However, for the ADD representing A, this lower
bound is given by the number of different probabilities in the transition matrix.
In the running example, we have seen that a small program P may have an un-
derlying MC [[P]] with an exponential state space S and equally many different
transition probabilities. Symbolic probabilistic model checking also scales badly
on some models where A has a concise encoding but x has too many different
entries.7 Therefore, model checkers may store x partially explicit [50].

The insights above are not new. Symbolic probabilistic model checking has
advanced [47] to create small representations of both A and x. In competitions,
Storm often applies a bisimulation-to-explicit method that extracts an explicit
representation of the bisimulation quotient [27,38]. Finally, game-based abstrac-
tion [45,34] can be seen as a predicate abstraction technique on the ADD level.
However, these methods do not change the computation of the finite horizon
6 Excluding e.g., partial exploration or sampling which typically are not exact.
7 For an interesting example of this, see the “Queue” example in Section 6.

8 Holtzen et al.

s

st

ss

stv

stu

sss

sst

stvv

stvu

ssss
ssst

sstv
sssu

(a) CT(M, 3)

{s}

{st}

{ss}

{sst, stv}

{stu, . . . , s3u}

{s3, . . . , stvv}

(b) CT(M, 3) compressed

cs,0

cs,1ct,1

ct,2cv,2

T F

(c) Predicate as BDD

Fig. 4. The computation tree for M and horizon 3 and its compression. We label states
as s=⟨0,0⟩, t=⟨0,1⟩, u=⟨1,0⟩, v=⟨1,1⟩. Probabilities are omitted for conciseness.

reachability probabilities and thus do not overcome the inherent weaknesses of
the iterative approach in combination with an ADD-based representation.

4 A Probabilistic Inference Perspective
We present four key insights into probabilistic inference. (1) Section 4.1 shows
how probabilistic inference takes the classical definition as summing over the
set of paths, and turns this definition into an algorithm. In particular, these
paths may be stored in a computation tree. (2) Section 4.2 gives the traditional
reduction from probabilistic inference to the classical weighted model counting
(WMC) problem [17,59]. (3) Section 4.3 connects this reduction to point (1) by
showing that a BDD that represents this WMC is bisimilar to the computation
tree assuming that the out-degree of every state in the MC is two. (4) Section 4.4
describes and compares the computational benefits of the BDD representation.
In particular, we clarify that enforcing an out-degree of two is a key ingredient
to overcoming one of the weaknesses of symbolic probabilistic model checking:
the number of different probabilities in the underlying MC.

4.1 Operational perspective
The following perspective frames (an aspect of) probabilistic inference as a model
transformation. By definition, the set of all paths – each annotated with the
transition probabilities – suffices to extract the reachability probability. These
sets of paths may be represented in the computation tree (which is itself an MC).

Example 4. We continue from Ex. 1. We put all paths of length three in a com-
putation tree in Fig. 4(a) (cf. the caption for state identifiers). The three paths
that reach the target are highlighted in red. The MC is highly redundant. We
may compress to the MC in Fig. 4(b).
Definition 1. For MC M and horizon h, the computation tree (CT) CT(M, h) =
〈Pathsh, ι, P ′, T ′〉 is an MC with states corresponding to paths in M, i.e., PathsMh ,
initial state ι, target states T ′ = [[♢≤hT]], and transition relation

P ′(π, π′) =

{
P (π↓, s) if π↓ /∈ T ∧ π′ = π.s,

[π↓ ∈ T ∧ π′ = π] otherwise.
(1)

Model Checking Finite-Horizon Markov Chains with Probabilistic Inference 9

The CT contains (up to renaming) the same paths to the target as the original
MC. Notice that after h transitions, all paths are in a sink state, and thus we can
drop the step bound from the property and consider either finite or indefinite
horizons. The latter considers all paths that eventually reach the target. We
denote the probability mass of these paths with PrM(s |= ♢T) and refer to [7]
for formal details.8 Then, we may compute bounded reachability probabilities
in the original MC by analysing unbounded reachability in the CT:

PrM(♢≤hT) = PrCT(M,h)(♢≤hT ′) = PrCT(M,h)(♢T ′).

The nodes in the CT have a natural topological ordering. The unbounded reach-
ability probability is then computed (efficiently in CT’s size) using dynamic pro-
gramming (i.e., topological value iteration) on the Bellman equation for s 6∈ T :

PrM(s |= ♢T) =
∑
s′∈Succ(s) P (s, s

′) · PrM(s′ |= ♢T).

For pMCs, the right-hand side naturally is a factorised form of the solution
function f that maps parameter values to the induced reachability probability, i.e.
f(u) = PrM[u](♢≤hT) [23,35,25]. For bounded reachability (or acyclic pMCs),
this function amounts to a sum over all paths with every path reflected by a term
of a polynomial, i.e., the sum is a polynomial. In sum-of-terms representation,
the polynomial can be exponential in the number of parameters [5].

For computational efficiency, we need a smaller representation of the CT. As
we only consider reachability of T , we may simplify [44] the notion of (weak)
bisimulation [6] (in the formulation of [41]) to the following definition.

Definition 2. For M with states S, a relation R ⊆ S × S is a (weak) bisim-
ulation (with respect to T) if sRs′ implies PrM(s |= ♢T) = PrM(s′ |= ♢T).
Two states s, s′ are (weakly) bisimilar (with respect to T) if PrM(s |= ♢T) =
PrM(s′ |= ♢T)

Two MCs M,M′ are bisimilar, denoted M ∼ M′ if the initial states are bisimilar
in the disjoint union of the MCs. It holds by definition that if M ∼ M′, then
PrM(♢T) = PrM′(♢T ′). The notion of bisimulation can be lifted to pMCs [35].

Idea 1: Given a symbolic description P of a MC [[P]], efficiently construct
a concise MC M that is bisimilar to CT([[P]], h).

Indeed, the (compressed) CT in Fig. 4(b) and Fig. 4(a) are bisimilar. We remark
that we do not necessarily compute the bisimulation quotient of CT([[P]], h).

4.2 Logical perspective

The previous section defined weakly bisimilar chains and showed computational
advantages, but did not present an algorithm. In this section we frame the fi-
nite horizon reachability probability as a logical query known as weighted model
8 Alternatively, on acyclic models, a large step bound h > |S| suffices.

10 Holtzen et al.

counting (WMC). In the next section we will show how this logical perspective
yields an algorithm for constructing bisimilar MCs.

Weighted model counting is well-known as an effective reduction for prob-
abilistic inference [59,17]. Let φ be a logical sentence over variables C. The
weight function WC : C → R≥0 assigns a weight to each logical variable. A to-
tal variable assignment η : C → {0, 1} by definition has weight weight(η) =∏
c∈CWC(c)η(c) + (1 −WC(c)) · (1 − η(c)). Then the weighted model count for

φ given W is WMC(φ,WC) =
∑
η|=φ weight(η). Formally, we desire to compute

a reachability query using a WMC query in the following sense:

Idea 2: Given an MC M, efficiently construct a predicate φCM,h and a
weight-function WC such that PrM(♢≤hT) = WMC(φCM,h,WC).

Consider initially the simplified case when the MC M is binary: every state has
at most two successors. In this case producing (φCM,h,WC) is straightforward:

Example 5. Consider the MC in Fig. 2(a), and note that it is binary. We in-
troduce logical variables called state/step coins C = {cs,i | s ∈ S, i < h} for
every state and step. Assignments to these coins denote choices of transitions at
particular times: if the chain is in state s at step i, then it takes the transition
to the lexicographically first successor of s if cs,i is true and otherwise takes the
transition to the lexicographically second successor. To construct the predicate
φCM,3, we will need to write a logical sentence on coins whose models encode
accepting paths (red paths) in the CT in Fig. 4(a).

We start in state s = 〈0, 0〉 (using state labels from the caption of Fig. 4).
We order states as s = 〈0, 0〉 < t = 〈0, 1〉 < u = 〈1, 0〉 < v = 〈1, 1〉. Then, cs,0
is true if the chain transitions into state s at time 0 and false if it transitions to
state t at time 0. So, one path from s to the target node 〈1, 0〉 is given by the
logical sentence (cs,0 ∧ ¬cs,1 ∧ ct,2). The full predicate φCM,3 is therefore:

φCM,3 = (cs,0 ∧ ¬cs,1 ∧ ct,2) ∨ (¬cs,0 ∧ ct,1) ∨ (¬cs,0 ∧ ¬ct,1 ∧ cv,2).

Each model of this sentence is a single path to the target. This predicate φCM,h

can clearly be constructed by considering all possible paths through the chain,
but later on we will show how to build it more efficiently.

Finally, we fix WC : The weight for each coin is directly given by the transition
probability to the lexicographically first successor: for 0 ≤ i < h, WC(cs,i) = 0.6
and WC(ct,i) =WC(cv,i) = 0.5. The WMC is indeed 0.42, reflecting Ex. 1.

When the MC is not binary, it suffices to limit the out-degree of an MC
to be at most two by adding auxiliary states, hence binarizing all transitions,
cf. Appendix A.

Model Checking Finite-Horizon Markov Chains with Probabilistic Inference 11

4.3 Connecting the Operational and the Logical Perspective

Now that we have reduced bounded reachability to weighted model counting,
we reach a natural question: how do we perform WMC?9 Various approaches
to performing WMC have been explored; a prominent approach is to compile
the logical function into a binary decision diagram (BDD), which supports fast
weighted model counting [22]. In this paper, we investigate the use of a BDD-
driven approach for two reasons: (i) BDDs admit straightforward support for
parametric models. (ii) BDDs provide a direct connection between the logical and
operational perspectives. To start, observe that the graph of the BDD, together
with the weights, can be interpreted as an MC:

Definition 3. Let φX be a propositional formula over variables X and <X an
ordering on X. Let BDD(φX , <X) = 〈V, v0, X, var, val, E0, E1〉 be the correspond-
ing BDD, and let W be a weight function on X with 0 ≤ W (x) ≤ 1. We define
the MC BDDMC(φ

X , <X ,W) = 〈S, ι, P, T 〉 with S = V , ι = v0, P (s) = {E0(s) 7→
W (var(s)), E1(s) 7→ 1−W (var(s))} and T = {v ∈ V | val(v) = 1}.

These BDDs are intimately related to the computation trees discussed before.
For a binary MC M, the tree CT(M, h) is binary and can be considered as a (not
necessarily reduced) BDD. More formally, let us construct BDDMC(φ

C
M,h, <C ,).

We fix a total order on states. Then we fix state/step coins C = {cs,i | s ∈ S, i <
h} and the weights as in Example 5. Finally, let <C be an order on C such that
i < j implies cs,i<Ccs,j . Then:

CT(M, h) ∼ BDDMC(φ
C
M,h, <C ,W). (2)

In the spirit of Idea 1, we thus aim to construct BDDMC(φ
C
M,h, <C ,W), a repre-

sentation as outlined in Idea 2, efficiently. Indeed, the BDD (as MC) in Fig. 4(c)
is bisimilar to the MC in Fig. 4(b).

Idea 3: Represent a bisimilar version of the computation tree using a BDD.

4.4 The Algorithmic Benefits of BDD Construction

Thus far we have described how to construct a binarized MC bisimilar to the
CT. Here, we argue that this construction has algorithmic benefits by filling in
two details. First, the binarized representation is an important ingredient for
compact BDDs. Second, we show how to choose a variable ordering that ensures
that the BDDs grow linearly in the horizon. In sum,

Idea 4: WMC encodings of binarized Markov Chains may increase compres-
sion of computation trees.

9 In this paper, we concentrate on reductions to exact WMC, leaving approximate
approaches for future work [15].

12 Holtzen et al.

p̄1p̄2p̄3
p1p̄2p̄3 p1p2p3

s
(1)
1 s

(1)
2 s

(1)
3

s
(2)
1 s

(2)
2 s

(2)
3 t

(2)
1 s

(2)
2 s

(2)
3

· · · t
(2)
1 t

(2)
2 t

(2)
3

(a) Unfactorized computation tree for (h=1, n=3).

p1 p̄1

p2 p̄2

q1 q̄1

p2 p̄2

p2p̄2

p1 p̄1

q̄2 q2

p1 p̄1

c
(1)
1

c
(1)
2 c

(1)
2

T c
(2)
1 c

(2)
1c

(2)
1

c
(2)
2F c

(2)
2 FF

T F T F

(b) Factorized (h=2, n=2).

Fig. 5. Two computation trees for the motivating example in Section 1.

To see the benefits of binarized transitions, we return to the factory example
in Section 1. Figure 5(a) gives a bisimilar computation tree for the 3-factory
h = 1 example. However, in this tree, the states are unfactorized: each node in
the tree is a joint configuration of factories. This tree has 8 transitions (one for
each possible joint state transition) with 8 distinct probabilities. On the other
hand, the bisimilar computation tree in Figure 1(d) has binarized transitions:
each node corresponds to a single factory’s state at a particular time-step, and
each transition describes an update to only a single factory. This binarization
enables the exploitation of new structure: in this case, the independence of the
factories leads to smaller BDDs, that is otherwise lost when considering only
joint configurations of factories.

Recall that the size of the ADD representation of the transition function is
bounded from below by the number of distinct probabilities in the underlying
MC: in this case, this is visualized by the number of distinct outgoing edge
probabilities from all nodes in the unfactorized computation tree. Thus, a good
binarization can have a drastically positive effect on performance. For the run-
ning example, rather than 2n different transition probabilities (with n factories),
the system now has only 4 · n distinct transition probabilities!
Causal orderings. Next, we explore some of the engineering choices Rubicon
makes to exploit the sequential structure in a MC when constructing the BDD for
a WMC query. First, note that the transition matrix P (s, s′) implicitly encodes
a distribution over state transition functions, S → S. To encode P as a BDD,
we must encode each transition as a logical variable, similar to the situation in
Sec. 4.2. In the case of binary transitions this is again easy. In the case of non-
binary transitions, we again introduce additional logical variables [28,59,40,17].
This logical function has the following form:

fP : {0, 1}C → (S → S). (3)

Whereas the computation tree follows a fixed (temporal) order of states,
BDDs can represent the same function (and the same weighted model count)
using an arbitrary order. Note that the BDD’s size and structure drastically
depends both on the construction of the propositional formula and the order of
the variables in that encoding. We can bound the size of the BDD by enforcing
a variable order based on the temporal structure of the original MC. Specifically,

Model Checking Finite-Horizon Markov Chains with Probabilistic Inference 13

given h coin collections C = C×. . .×C, one can generate a function f describing
the h-length paths via repeated applications of fP :

f : {0, 1}C → Pathsh f(C1, . . . , Ch) =

(
fP (Ch) ◦ . . . ◦ fP (C1)

)
(ι) (4)

Let ψ denote an indicator for the reachability property as a function over paths,
ψ : Pathsh → {0, 1} with ψ(π) = [π ∈ [[♢≤hT]]]. We call predicates formed
by composition with fP , i.e., φ = ψ ◦ fP , causal encodings and orderings on
ci,t ∈ C that are lexicographically sorted in time, t1 < t2 =⇒ ci,t1 < cj,t2 ,
causal orderings. Importantly, causally ordered / encoded BDDs grow linearly in
horizon h [63, Corollary 1]. More precisely, let φC

M,h be causally encoded where
|C| = h ·m. The causally ordered BDD for φC

M,h has at most h · |S×Sψ| ·m ·2m

nodes, where |Sψ| = 2 for reachability properties.10 However, while the worst-
case growth is linear in the horizon, constructing that BDD may induce a super-
linear cost in the size, e.g., function composition using BDDs is super-linear!

Figure 5(b) shows the motivating factory example with 2 factories and h = 2.
The variables are causally ordered: the factories in time step 1 occur before the
factories in time step 2. For n factories, a fixed number f(n) of nodes are added
to the BDD upon each iteration, guaranteeing growth on the order O(f(n) · h).
Note the factorization that occurs: the BDD has node sharing (node c

(2)
2 is

reused) that yields additional computational benefits.
Summary and remaining steps. The operational view highlights that we want

to compute a transformation of the original input MC M. The logical view
presents an approach to do so efficiently: By computing a BDD that stores a
predicate describing all paths that reach the target, and interpreting and evalu-
ating the (graph of the) BDD as an MC. In the following section, we discuss the
two steps that we follow to create the BDD: (i) From P generate P ′ such that
CT([[P]], h) ∼ [[P ′]]. (ii) From P ′ generate M such that M = [[P ′]].

5 Rubicon

We present Rubicon which follows the two steps outlined above. For exposition,
we first describe a translation of monolithic Prism programs to Dice programs
and then extend this translation to admit modular programs. Technical steps
and extensions are deferred to Appendix B.
Dice Preliminaries We give a brief description of Dice, a probabilistic pro-
gramming language (PPL) introduced in [40]. A PPL is a programming language
augmented with a primitive notion of random choice: for instance, in Dice, a
Bernoulli random variable is introduced by the syntax flip 0.5. The syntax
of Dice is similar to the programming language OCaml: local variables are intro-
duced by the syntax let x = e1 in e2, where e1 and e2 are expressions, i.e.,
sub-programs. Dice supports procedures, bounded integers, bounded loops, and
standard control flow via if-statements.
10 Generally, it is the smallest number of states required for a DFA to recognize ψ.

14 Holtzen et al.

One goal of a PPL is to perform probabilistic inference: compute the prob-
ability that the program returns a particular value. Inference on the tiny Dice
program let x = flip 0.1 in x would yield that true is returned with proba-
bility 0.1. The Dice compiler performs probabilistic inference via weighted model
counting and BDD compilation. In doing so, it accomplishes the non-trivial tasks
of: (i) choosing a logical encoding for probabilistic programs (ii) establishing good
variable orderings (iii) efficiently manipulating and constructing BDDs (iv) per-
forming WMC. For details, we refer the reader to [40].

Rubicon uses Dice to effectively construct a BDD and perform WMC on
a Dice program that reflects a description of some computation tree. This im-
plementation exploits the structure that was described in Sec. 4.4: in particular,
the BDD generated in Figure 5(b) is exactly the BDD that will be generated
by Dice from the output of Rubicon. The variable ordering used by Dice is
given by the order in which program variables are introduced, and Rubicon’s
translation was designed with this variable ordering in mind.

Transpiling Prism to Dice We present the core translation routine imple-
mented in Rubicon. We note that the ultimate performance of Rubicon is
heavily dependent on the quality of this translation. We evaluate the perfor-
mance in the next section.

The Prism specification language consists of one or more reactive modules (or
partially synchronized state machines) that may interact with each other. Our
example in Fig. 1(b) illustrates fully synchronized state machines. While Prism
programs containing multiple modules can be flattened into a single monolithic
program, this yields an exponential blow-up: If one flattens the n modules in
Fig. 1(b) to a single module, the resulting program has 2n updates per command.
This motivates our direct translation of PRISM programs containing multiple
modules.
Monolithic Prism programs. We explain most ideas on Prism programs that
consist of a single “monolithic” module before we address the modular translation
at the end of the subsection. A module has a set of bounded variables, and the
valuations of these variables span the state space of the underlying MC. Its
transitions are described by guarded commands of the form:

[act] guard → p1 : update1 ++ pn : updaten

The action name act is only relevant in the modular case and can be ignored for
now. The guard is a Boolean expression over the module’s variables. If the guard
evaluates to true for some state (a valuation), then the module evolves into one
of the n successor states by updating its variables. An update is chosen according
to the probability distribution given by the expressions p1, . . . , pn. In every state
enabling the guard, the evaluation of p1, . . . , pn must sum up to one. A set of
guards overlap if they all evaluate to true on a given state. The semantics of
overlapping guards in the monolithic setting is to first uniformly select an active
guard and then apply the corresponding stochastic transition. Finally, a self-loop
is implicitly added to states without an enabled guard.

Model Checking Finite-Horizon Markov Chains with Probabilistic Inference 15

module main
x : [0..1] init 0;
y : [0..2] init 1;
[] x=0 & y<2 -> 0.5:x'=1 + 0.5:y'=y+1;
[] y=2 -> 1:y'=y-1;
[] x=1 & y!=2 -> 1:x'=y & y'=x;

endmodule
property: P=? [F<=2 (x=0 & y=2)]

(a) Prism program with reachability query

⟨0, 0⟩ ⟨0, 1⟩ ⟨0, 2⟩

⟨1, 0⟩ ⟨1, 1⟩ ⟨1, 2⟩

1/2

1/2

1/2

1/2

1

1

1

1

(b) Underlying MC

let s = init() in // init state
let T = hit(s) in // init target
let (s, T) =if !T

then let s' =step(s) in (s', hit(s'))
else (s, T) in

let (s, T) =if !T then
then let s' =step(s) in (s', hit(s'))
else (s, T) in

T
(c) Main Dice program for h=2

fun init() { (0,1) }
fun hit((x,y)) { x ==0&& y == 2 }
fun step((x,y)) {
if x==0 &&y<2 then

if flip 0.5 then (1,y) else (x,y+1)
else if y==2 then (x,y-1)
else if x==1 &&y!=1 then (y,x)
else (x,y)

}
(d) Dice auxiliary functions

Fig. 6. From Prism to Dice using Rubicon.

Example 6. We present our translation primarily through example. In Fig. 6(a),
we give a Prism program for a MC. The program contains two variables x and
y, where x is either zero or one, and y between zero and two. There are thus 6
different states. We denote states as tuples with the x- and y-value. We depict
the MC in Fig. 6(b). From state 〈0, 0〉, (only) the first guard is enabled and thus
there are two transitions, each with probability a half: one in which x becomes
one and one in which y is increased by one. Finally, there is no guard enabled
in state 〈1, 1〉, resulting in an implicit self-loop.

Translation. All Dice programs consist of two parts: a main routine, which is
run by default when the program starts, and function declarations that declare
auxiliary functions. We first define the auxiliary functions. For simplicity let us
temporarily assume that no guards overlap and that probabilities are constants,
i.e., not state-dependent.

The main idea in the translation is to construct a Dice function step that,
given the current state, outputs the next state. Because a monolithic Prism
program is almost a sequential program, in its most basic version, the step func-
tion is straightforward to construct using built-in Dice language primitives: we
simply build a large if-else block corresponding to each command. This block
iteratively considers each command’s guard until it finds one that is satisfied.
To perform the corresponding update we flip a coin – based on the probabili-
ties corresponding to the updates – to determine which update to perform. If
no command is enabled, we return the same state in accordance with the im-
plicit self-loop. Fig. 6(d) shows the program blocks for the Prism program from
Fig. 6(a) with target state [[x = 0, y = 2]]. There are two other important auxil-
iary functions. The init function simply returns the initial state by translating

16 Holtzen et al.

module main
x : [0..2] init 1;
y : [0..2] init 1;
[] x>1 -> 1:x'=y&y'=x;
[] y<2 -> 1:x'=min(x+1,2);
endmodule

(a)

fun step((x,y)) {
let aEn =(x>1) in
let bEn =(y<2) in
let act = selectFrom(aEn, bEn) in
if act==1 then (y,x)
else if act==2 then (min(x+1,2),y)
else (x,y)} ...

(b)

Fig. 7. Prism program with overlapping guards and its translation (conceptually).

module m1
x : [0..1] init 0;
[a] x=1 ->1:x'=1-y;
[b] x=0 ->1:x'=0;
endmodule
module m2
y : [0..1] init 0;
[b] y=1 ->0.5:y'=0 +0.5:y'=1;
[c] true ->1:x'=1-x;
endmodule

(a)

fun step((x,y)) {
let aEn =(x==1) in
let bEn =(x=0 &&y=1) in
let cEn =true in
let act =selectFrom(aEn, bEn, cEn) in
if act==1 then (1-y, y)
else if act==2 then (0, flip 0.5)
else if act==3 then (1-x, y)
else (x, y)

}
(b)

Fig. 8. Modular Prism and resulting Dice step function.

the initialization statements from Prism, and the hit function checks whether
the current state is a target state that is obtained from the property.

Now we outline the main routine, given for this example in Figure 6(c). This
function first initializes the state. Then, it calls step 2 times, checking on each
iteration using hit if the target state is reached. Finally, we return whether we
have been in a target state. The probability to return true corresponds to the
reachability probability on the underlying MC specified by the Prism program.
Overlapping guards. Prism allows multiple commands to be enabled in the same
state, with semantics to uniformly at random choose one of the enabled com-
mands to evaluate. Dice has no primitive notion of this construct.11 We illustrate
the translation in Fig. 7(a) and Fig. 7(b). It determines which guards aEn, bEn,
cEn are enabled. Then, we randomly select one of the commands which are en-
abled, i.e., we uniformly at random select a true bit from a given tuple of bits.
We store the index of that bit and use it to execute the corresponding command.
Modular Prism Programs. For modular Prism programs, the action names at
the front of Prism commands are important. In each module, there is a set
of action names available. An action is enabled if each module that contains
this action name has (at least) one command with this action whose guard
is satisfied. Commands with an empty action are assumed to have a globally
unique action name, so in that case the action is enabled iff the guard is enabled.
Intuitively, once an action is selected, we randomly select a command per module
in all modules containing this action name. Our approach resembles that for
11 One cannot simply condition on selecting an enabled guard as this redistributes

probability mass over all paths and not only over paths with the same prefix.

Model Checking Finite-Horizon Markov Chains with Probabilistic Inference 17

overlapping guards described above. See Fig. 8 for an intuitive example. To
automate this, the updates require more care, see Appendix B for details.
Implementation. Rubicon is implemented on top of Storm’s Python API and
translates Prism to Dice fully automatically. Rubicon supports all MCs in the
Prism benchmark suite and a large set of benchmarks from the Prism website
and the QVBS [37], with the note that we require a single initial state and ignore
reward declarations. Furthermore, we currently do not support the hide/restrict
process-algebraic compositions and some integer operations.

6 Empirical Comparisons

We compare and contrast the performance of Storm against Rubicon to em-
pirically demonstrate the following strengths and weaknesses:12

Explicit Model Checking (Storm) represents the MC explicitly in a sparse
matrix format. The approach suffers from the state space explosion, but has
been engineered to scale to models with many states. Besides the state space,
the sparseness of the transition matrix is essential for performance.

Symbolic Model Checking (Storm) represents the transition matrix and the
reachability probability as an ADD. This method is strongest when the tran-
sition matrix and state vector have structure that enables a small ADD
representation, like symmetry and sparsity.

Rubicon represents the set of paths through the MC as a (logical) BDD. This
method excels when the state space has structure that enables a compact
BDD representation, such as conditional independence, and hence scales well
on examples with many (asymmetric) parallel processes or queries that admit
a compact representation.

The sources, benchmarks and binaries are archived.13

There is no clear-cut model checking technique that is superior to others (see
QCOMP [13]). We demonstrate that, while Rubicon is not competitive on some
commonly used benchmarks [53], it improves a modern model checking portfolio
approach on a significant set of benchmarks. Below we provide several natural
models on which Rubicon is superior to one or both competing methods. We
also evaluated Rubicon on standard benchmarks, highlighting that Rubicon
is applicable to models from the literature. We see that Rubicon is effective on
Herman (elaborated below), has mixed results on BRP (see Appendix C) and
is currently not competitive on some other standard benchmarks (NAND, EGL,
LeaderSync). While not exhaustive, our selected benchmarks highlight specific
strengths and weaknesses of Rubicon. Finally, a particular benefit of Rubicon
is fast sampling of parametric chains, which we demonstrate on Herman and
our factory example.
12 All experiments were conducted with Storm version 1.6.0 on the same server with

512GB of RAM, using a single thread of execution. Time was reported using the
built-in Unix time utility; the total wall-clock time is reported.

13 doi.org/10.5281/zenodo.4726264 and github.com/sjunges/rubicon

doi.org/10.5281/zenodo.4726264
github.com/sjunges/rubicon

18 Holtzen et al.

10 15

0

500

1,000

1,500

Factories

T
im

e
(s

)

(a) Weather Factory

10 15

0

500

1,000

1,500

Factories

(b) Weather Factory 2

10 20 30 40

0

2

4

6

Horizon (h)

(c) Herman-13

10 20 30 40

0

50

100

Horizon (h)

(d) Herman-13 (R)

20 40

0

100

200

300

400

Horizon (h)

T
im

e
(s

)

(e) Herman-17

20 40

0

50

100

150

200

Horizon (h)

(f) Herman-17 (R)

5 10 15
0

500

1,000

Horizon (h)

(g) Herman-19 (R)

5 10 15

0

200

400

Horizon (h)

(h) Queues

Fig. 9. Scaling plots comparing Rubicon (), Storm’s symbolic engine (), and
Storm’s explicit engine (). An “(R)” in the caption denotes random parameters.

Scaling Experiments In this section, we describe several scaling experiments
(Figure 9), each designed to highlight a specific strength or weakness.

Weather Factories. First, Figure 9(a) describes a generalization of the moti-
vating example from Sec. 1. In this model, the probability that each factory is on
strike is dependent on a common random event: whether or not it is raining. The
rain on each day is dependent on the previous day’s weather. We plot runtime
for an increasing number of factories for h=10. Both Storm engines eventually
fail due to the state explosion and the number of distinct probabilities in the MC.
Rubicon is orders of magnitude faster in comparison, highlighting that it does
not depend on complete independence among the factories. Figure 9(b) shows
a more challenging instance where the weather includes wind which, each day,
affects whether or not the sun will shine, which in turn affects strike probability.

Herman. Herman is based on a distributed protocol [39] that has been well-
studied [54,1] and which is one of the standard benchmarks in probabilistic
model checking. Rather than computing the expected steps to ‘stabilization’, we
consider the step-bounded probability of stabilization. Usually, all participants in
the protocol flip a coin with the same bias. The model is then highly symmetric,
and hence is amenable to symbolic representation with ADDs. Figures 9(c) and
9(e) show how the methods scale on Herman examples with 13 and 17 parallel
processes. We observe that the explicit approach scales very efficiently in the
number of iterations but has a much higher up-front model-construction cost,
and hence can be slower for fewer iterations.

To study what happens when the coin biases vary over the protocol partici-
pants, we made a version of the Herman protocol where each participant’s bias
is randomly chosen, which ruins the symmetry and so causes the ADD-based
approaches to scale significantly worse (Figures 9(d) and 9(f), and 9(g)); we see
that symbolic ADD-based approaches completely fail on Herman 17 and Herman

Model Checking Finite-Horizon Markov Chains with Probabilistic Inference 19

Table 1. Sampling performance comparison and pMC model checking, time in seconds.

Model Rubicon Storm (w/ ADD) Storm (explicit)
build WMC build solve pMC solving

Herman R 13 (h = 10) 3 < 1 32 18 > 1800
Herman R 17 (h = 10) 45 28 >1800 - > 1800
Factories 12 (h = 15) 2 <1 59 286 > 1800
Factories 15 (h = 15) 40 4 >1800 - > 1800

19 (the curve terminating denotes a memory error). Rubicon and the explicit
approach are unaffected by varying parameters.

Queues. The Queues model has K queues of capacity Q where every step,
tasks arrive with a particular probability. Three queues are of type 1, the others
of type 2. We ask the probability that all queues of type 1 and at least one
queue of type 2 is full within k steps. Contrary to the previous models, the ADD
representation of the transition matrix is small. Figure 9(h) shows the relative
scaling on this model with K = 8 and Q = 3. We observe that ADDs quickly
fail due to inability to concisely represent the probability vector x from Sec. 3.
Rubicon outperforms explicit model checking until h = 10.

Sampling Parametric Markov Chains We evaluate performance for the
pMC sampling problem outlined in Sec. 2. Table 1 gives for four models the time
to construct the BDD and to perform WMC, as well as the time to construct
an ADD in Storm and to perform model checking with this ADD. Finally,
we show the time for Storm to compute the solution function of the pMC
(with the explicit representation). The pMC sampling in Storm – symbolic and
explicit – computes the reachability probabilities with concrete probabilities.
Rubicon, in contrast, constructs a ‘parametric’ BDD once, amortizing the cost
of repeated efficient evaluation. The ‘parametric BDD’ may be thought of as a
solution function, as discussed in Sec. 4.1. Storm cannot compute these solution
functions as efficiently. We observe in Tab. 1 that fast parametric sampling is
realized in Rubicon: for instance, after a 40s up-front compilation of the factories
example with 15 factories, we have a solution function in factorized form and it
costs an order of magnitude less time to draw a sample. Hence, sampling and
computation of solution functions of pMCs is a major strength of Rubicon.

7 Discussion, Related Work, and Conclusion

We have demonstrated that the probabilistic inference approach to probabilistic
model checking can improve scalability on an important class of problems. An-
other benefit of the approach is for sampling pMCs. These are used to evaluate
e.g., robustness of systems [1], or to synthesise POMDP controllers [42]. Many
state-of-the-art approaches [18,25,20] require the evaluation of various instanti-
ated MCs, and Rubicon is well-suited to this setting. More generally, support
of inference techniques opens the door to a variety of algorithms for additional
queries, e.g, computing conditional probabilities [3,8].

20 Holtzen et al.

An important limitation of probabilistic inference is that only finitely many
paths can be stored. For infinite horizon properties in cyclic models, an infi-
nite set of arbitrarily long paths would be required. However, as standard in
probabilistic model checking, we may soundly approximate infinite horizons. Ad-
ditionally, the inference algorithm in Dice does not support a notion of non-
determinism. It thus can only be used to evaluate MCs, not Markov decision
processes. However, [63] illustrates that this is not a conceptual limitation. Fi-
nally, we remark that Rubicon achieves its performance with a straightforward
translation. We are optimistic that this is a first step towards supporting a larger
class of models by improving the transpilation process for specific problems.

Related work The tight connection with inference has been recently investi-
gated via the use of model checking for Bayesian networks, the prime model in
probabilistic inference [57]. Recently, this has been extended to consider param-
eter synthesis methods from the verification community [58]. Bayesian networks
can be described as probabilistic programs [11] and their operational semantics
coincides with MCs [32]. Our work complements these insights by studying how
symbolic model checking can be sped up by probabilistic inference.

The path-based perspective is tightly connected to factored state spaces.
Factored state spaces are often represented as (bipartite) Dynamic Bayesian
networks. ADD-based model checking for DBNs has been investigated in [26],
with mixed results. Their investigation focuses on using ADDs for factored state
space representations. We investigate using BDDs representing paths. Other ap-
proaches also investigated a path-based view: The symbolic encoding in [29]
annotates propositional sub-formulae with probabilities, an idea closer to ours.
The underlying process implicitly constructs an (uncompressed) CT leading to
an exponential blow-up. Likewise, an explicit construction of a computation tree
without factorization is considered in [64]. Compression by grouping paths has
been investigated in two approximate approaches: [56] discretises probabilities
and encodes into a satisfiability problem with quantifiers and bit-vectors. This
idea has been extended [62] to a PAC algorithm by purely propositional en-
codings and (approximate) model counting [15]. Finally, factorisation exploits
symmetries, which can be exploited using symmetry reduction [51]. We highlight
that the latter is not applicable to the example in Fig. 1(d).

There are many techniques for exact probabilistic inference in various forms
of probabilistic modeling, including probabilistic graphical models [55,21]. The
semantics of graphical models make it difficult to transpile Prism programs,
since commonly used operations are lacking. Recently, probabilistic program-
ming languages have been developed which are more amenable to transpila-
tion [14,24,31,61,30]. We target Dice due to the technical development that it
enables in Section 4, which enabled us to design and explain our experiments.
Closest related to Dice is ProbLog [28], which is also a PPL that performs in-
ference via WMC; ProbLog has different semantics from Dice that make the
translation less straightforward. The paper [63] uses an encoding similar to Dice
for inferring specifications based on observed traces. ADDs and variants have
been considered for probabilistic inference [16,19,60], which is similar to the pro-

Model Checking Finite-Horizon Markov Chains with Probabilistic Inference 21

cess commonly used for probabilistic model checking. The planning community
has developed their own disjoint sets of methods [46]. Some ideas from learning
have been applied in a model checking context [12].

Conclusion We present Rubicon, bringing probabilistic AI to the probabilistic
model checking community. Our results show that Rubicon can outperform
probabilistic model checkers on some interesting examples, and that this is not
a coincidence but rather the result of a significantly different perspective.

References

1. Aflaki, S., Volk, M., Bonakdarpour, B., Katoen, J.P., Storjohann, A.: Automated
fine tuning of probabilistic self-stabilizing algorithms. In: SRDS. pp. 94–103. IEEE
(2017)

2. de Alfaro, L., Kwiatkowska, M.Z., Norman, G., Parker, D., Segala, R.: Symbolic
model checking of probabilistic processes using mtbdds and the Kronecker repre-
sentation. In: TACAS. LNCS, vol. 1785, pp. 395–410. Springer (2000)

3. Andrés, M., van Rossum, P.: Conditional probabilities over probabilistic and non-
deterministic systems. In: TACAS. LNCS, vol. 4963, pp. 157–172. Springer (2008)

4. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic
systems. In: Handbook of Model Checking, pp. 963–999. Springer (2018)

5. Baier, C., Hensel, C., Hutschenreiter, L., Junges, S., Katoen, J.P., Klein, J.: Para-
metric Markov chains: PCTL complexity and fraction-free Gaussian elimination.
Inf. Comput. 272, 104504 (2020)

6. Baier, C., Hermanns, H.: Weak bisimulation for fully probabilistic processes. In:
CAV. LNCS, vol. 1254, pp. 119–130. Springer (1997)

7. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)
8. Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional probabil-

ities in markovian models efficiently. In: TACAS. LNCS, vol. 8413, pp. 515–530.
Springer (2014)

9. Baluta, T., Shen, S., Shinde, S., Meel, K.S., Saxena, P.: Quantitative verification
of neural networks and its security applications. In: CCS. pp. 1249–1264. ACM
(2019)

10. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Handbook of Satisfiability, vol. 185, pp. 825–885. IOS Press (2009)

11. Batz, K., Kaminski, B.L., Katoen, J.P., Matheja, C.: How long, O Bayesian net-
work, will I sample thee? - A program analysis perspective on expected sampling
times. In: ESOP. LNCS, vol. 10801, pp. 186–213. Springer (2018)

12. Brázdil, T., Chatterjee, K., Chmelik, M., Forejt, V., Kretínský, J., Kwiatkowska,
M.Z., Parker, D., Ujma, M.: Verification of markov decision processes using learning
algorithms. In: ATVA. LNCS, vol. 8837, pp. 98–114. Springer (2014)

13. Budde, C.E., Hartmanns, A., Klauck, M., Křetínský, J., Parker, D., Quatmann, T.,
Turrini, A., Zhang, Z.: On correctness, precision, and performance in quantitative
verification: QComp 2020 competition report. In: ISOLA. LNCS, Springer (2020)

14. Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M.A., Li, P., Riddell, A.: Stan: A probabilistic programming language.
J. Stat. Soft. VV(Ii) (2016)

15. Chakraborty, S., Fried, D., Meel, K.S., Vardi, M.Y.: From weighted to unweighted
model counting. In: IJCAI. pp. 689–695. AAAI Press (2015)

22 Holtzen et al.

16. Chavira, M., Darwiche, A.: Compiling bayesian networks using variable elimination.
In: IJCAI. pp. 2443–2449 (2007)

17. Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting.
Artif. Intell. 172(6-7), 772–799 (2008)

18. Chen, T., Hahn, E.M., Han, T., Kwiatkowska, M.Z., Qu, H., Zhang, L.: Model
repair for Markov decision processes. In: TASE. pp. 85–92. IEEE (2013)

19. Claret, G., Rajamani, S.K., Nori, A.V., Gordon, A.D., Borgström, J.: Bayesian
inference using data flow analysis. In: FSE. pp. 92–102 (2013)

20. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.P., Topcu, U.: Scenario-based ver-
ification of uncertain MDPs. In: TACAS. LNCS, vol. 12078, pp. 287–305. Springer
(2020)

21. Darwiche, A.: SDD: A new canonical representation of propositional knowledge
bases. IJCAI pp. 819–826 (2011)

22. Darwiche, A., Marquis, P.: A knowledge compilation map. JAIR 17, 229–264 (2002)
23. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains.

In: ICTAC. LNCS, vol. 3407, pp. 280–294. Springer (2004)
24. De Raedt, L., Kimmig, A., Toivonen, H.: Problog: A probabilistic prolog and its

application in link discovery. In: IJCAI. vol. 7, pp. 2462–2467 (2007)
25. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen,

J.P., Ábrahám, E.: Prophesy: A probabilistic parameter synthesis tool. In: CAV.
LNCS, vol. 9206, pp. 214–231. Springer (2015)

26. Deininger, D., Dimitrova, R., Majumdar, R.: Symbolic model checking for factored
probabilistic models. In: ATVA. LNCS, vol. 9938, pp. 444–460 (2016)

27. van Dijk, T., van de Pol, J.: Multi-core symbolic bisimulation minimisation. STTT
20(2), 157–177 (2018)

28. Fierens, D., Van den Broeck, G., Renkens, J., Shterionov, D., Gutmann, B., Thon,
I., Janssens, G., De Raedt, L.: Inference and learning in probabilistic logic programs
using weighted boolean formulas. Theory Pract. Log. Prog. 15(3), 358–401 (2015)

29. Fränzle, M., Hermanns, H., Teige, T.: Stochastic satisfiability modulo theory: A
novel technique for the analysis of probabilistic hybrid systems. In: HSCC. LNCS,
vol. 4981, pp. 172–186. Springer (2008)

30. Gehr, T., Misailovic, S., Vechev, M.: Psi: Exact symbolic inference for probabilistic
programs. In: CAV. pp. 62–83. Springer (2016)

31. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic program-
ming. In: FOSE. pp. 167–181. ACM (2014)

32. Gretz, F., Katoen, J.P., McIver, A.: Operational versus weakest pre-expectation
semantics for the probabilistic guarded command language. Perform. Eval. 73,
110–132 (2014)

33. Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and IMDPs.
Theor. Comput. Sci. 735, 111–131 (2018)

34. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PASS: abstraction refine-
ment for infinite probabilistic models. In: TACAS. LNCS, vol. 6015, pp. 353–357.
Springer (2010)

35. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. STTT 13(1), 3–19 (2011)

36. Hartmanns, A., Hermanns, H.: The Modest toolset: An integrated environment for
quantitative modelling and verification. In: TACAS. LNCS, vol. 8413, pp. 593–598.
Springer (2014)

37. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quan-
titative verification benchmark set. In: TACAS. LNCS, vol. 11427, pp. 344–350.
Springer (2019)

Model Checking Finite-Horizon Markov Chains with Probabilistic Inference 23

38. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic
model checker storm. STTT (2021), to appear

39. Herman, T.: Probabilistic self-stabilization. Inf. Process. Lett. 35(2), 63–67 (1990)
40. Holtzen, S., Van den Broeck, G., Millstein, T.: Scaling exact inference for discrete

probabilistic programs. PACMPL OOPSLA (nov 2020)
41. Jansen, D.N., Groote, J.F., Timmers, F., Yang, P.: A near-linear-time algorithm for

weak bisimilarity on Markov chains. In: CONCUR. LIPIcs, vol. 171, pp. 8:1–8:20.
Schloss Dagstuhl - LZI (2020)

42. Junges, S., Jansen, N., Wimmer, R., Quatmann, T., Winterer, L., Katoen, J.P.,
Becker, B.: Finite-state controllers of POMDPs using parameter synthesis. In: UAI.
pp. 519–529. AUAI Press (2018)

43. Katoen, J.P., Gretz, F., Jansen, N., Kaminski, B.L., Olmedo, F.: Understanding
probabilistic programs. In: Correct System Design. LNCS, vol. 9360, pp. 15–32.
Springer (2015)

44. Katoen, J.P., Kemna, T., Zapreev, I.S., Jansen, D.N.: Bisimulation minimisation
mostly speeds up probabilistic model checking. In: TACAS. LNCS, vol. 4424, pp.
87–101. Springer (2007)

45. Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for markov decision processes. FMSD 36(3),
246–280 (2010)

46. Klauck, M., Steinmetz, M., Hoffmann, J., Hermanns, H.: Bridging the gap between
probabilistic model checking and probabilistic planning: Survey, compilations, and
empirical comparison. JAIR 68, 247–310 (2020)

47. Klein, J., Baier, C., Chrszon, P., Daum, M., Dubslaff, C., Klüppelholz, S., Märcker,
S., Müller, D.: Advances in probabilistic model checking with PRISM: variable
reordering, quantiles and weak deterministic büchi automata. STTT 20(2), 179–
194 (2018)

48. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques.
MIT press (2009)

49. Kozen, D.: Semantics of probabilistic programs. JCSS 22(3), 328–350 (1981)
50. Kwiatkowska, M.Z., Norman, G., Parker, D.: Probabilistic symbolic model checking

with PRISM: A hybrid approach. In: TACAS. LNCS, vol. 2280, pp. 52–66. Springer
(2002)

51. Kwiatkowska, M.Z., Norman, G., Parker, D.: Symmetry reduction for probabilistic
model checking. In: CAV. LNCS, vol. 4144, pp. 234–248. Springer (2006)

52. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of proba-
bilistic real-time systems. In: CAV. LNCS, vol. 6806, pp. 585–591. Springer (2011)

53. Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In:
QEST. pp. 203–204. IEEE (2012)

54. Kwiatkowska, M.Z., Norman, G., Parker, D.: Probabilistic verification of herman’s
self-stabilisation algorithm. Formal Aspects Comput. 24(4-6), 661–670 (2012)

55. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann (1988)

56. Rabe, M.N., Wintersteiger, C.M., Kugler, H., Yordanov, B., Hamadi, Y.: Symbolic
approximation of the bounded reachability probability in large Markov chains. In:
QEST. LNCS, vol. 8657, pp. 388–403. Springer (2014)

57. Salmani, B., Katoen, J.P.: Bayesian inference by symbolic model checking. In:
QEST. LNCS, vol. 12289, pp. 115–133. Springer (2020)

58. Salmani, B., Katoen, J.P.: Fine-tuning the odds in bayesian networks. In:
EQSQARU (2021), to appear

24 Holtzen et al.

59. Sang, T., Beame, P., Kautz, H.A.: Performing bayesian inference by weighted model
counting. In: AAAI. vol. 5, pp. 475–481 (2005)

60. Smolka, S., Kumar, P., Kahn, D.M., Foster, N., Hsu, J., Kozen, D., Silva, A.:
Scalable verification of probabilistic networks. In: PLDI. pp. 190–203. ACM (2019)

61. van de Meent, J.W., Paige, B., Yang, H., Wood, F.: An Introduction to Probabilis-
tic Programming. arXiv:1809.10756 (2018)

62. Vazquez-Chanlatte, M., Rabe, M.N., Seshia, S.A.: A model counter’s guide to
probabilistic systems. CoRR abs/1903.09354 (2019)

63. Vazquez-Chanlatte, M., Seshia, S.A.: Maximum causal entropy specification in-
ference from demonstrations. In: CAV. LNCS, vol. 12225, pp. 255–278. Springer
(2020)

64. Wimmer, R., Braitling, B., Becker, B.: Counterexample generation for discrete-
time Markov chains using bounded model checking. In: VMCAI. LNCS, vol. 5403,
pp. 366–380. Springer (2009)

Model Checking Finite-Horizon Markov Chains with Probabilistic Inference 25

s u

t

v

1
3

1
3

1
3

(a) Not a binary
MC.

s

s1

s2

u

t

v

1
3

2
3

1

1
2

1
2

(b) A binary MC.

Fig. 10. Making an MC binary.

module main
x : [0..2] init 0;
[] true -> x/(x+1):x'=x-1 +

1-(x/(x+1)):x'=x+1;
endmodule

(a)

fun step(x) {
if true then
if x==0 then
if flip 0then x-1 else x+1

else if x==1 then
if flip 0.5then x-1 else x+1

else
if flip 0.33then x-1 else x+1

} ...
(b)

Fig. 11. Illustrating state-dependent probabilities

A Binary MCs

Any (parametric) Markov chain with out-degree more than two can translated
into a Markov chain with an out-degree of at most two. This operation is stan-
dard and e.g. exploited in [42]. We exemplify one possible construction in Fig. 10.
Notice that this construction requires increasing the horizon.

B Details on Rubicon: Prism to Dice

In this section, we assume some familiarity with the Prism semantics. We refer
to the Prism website for details.

B.1 Extensions to Monolithic Translation

State-dependent probabilities. Dice currently does not support expressions that
evaluate to rationals, and thus, probabilities are constants. Thus, our translation
expands expressions by considering all values for the variables that occur in these
statements. We illustrate this in Fig. 11(a) and Fig. 11(b). Prism programs may

26 Holtzen et al.

contain expressions like x/y, with x and y both ranging from, say, 0 to 10 which
may not necessarily be probabilities. The language only requires the outcomes
to be valid probabilities for reachable expressions.
Init statements The declarative way of initial states – that give an initial state
as the solution of a predicate – is supported by using Storm’s API. Notice that
currently, we only support MCs with a unique initial state.

B.2 Modular Translation

For modular Prism programs, the action names at the front of Prism commands
are important. In each module, there is a set of action names available. An ac-
tion is enabled if each module that contains this action name has (at least) one
command with this action whose guard is satisfied. Commands with an empty
action are assumed to have a globally unique action name, so in that case the
action is enabled iff the guard is enabled. Intuitively, once an action is selected,
we randomly select a command per module in all modules containing this action
name. We then independently and randomly, according to the probability distri-
bution over updates, select an update, and execute these updates in parallel. All
reads are done before all writes. We remark that variables can be read from
and written to from any module. Data races lead to undefined behavior, i.e., any
linearization of updates is valid in Prism.
Modular translation without overlapping guards within action and module. Here,
we assume guards do not overlap within an action and module, see the next
paragraph for the general case. The Dice program first evaluates all actions to
determine their joint guards. Then Dice randomly selects one of the actions
which is enabled14. Once the action is fixed, we now need to select to associated
commands and updates. While similar to the vanilla case, we now run a series of
updates rather than a single update. More precisely, once the actions are fixed,
we iterate over the modules and flip the coins to select the updates for each
command. We use the outcomes of these coin flips to incrementally construct
the next state. We remark that the latter is not completely trivial as for different
actions, different modules may be assigning an update to a particular variable.15

Modular translation with overlapping guards within action and module. When a
module has multiple commands with the same action, the semantics of Prism
programs requires uniform resolving of actions on a global level, among all en-
abled combinations of enabled commands. Thus in our example, if there were
two enabled a actions in module m1 in a given state, then a actions would get
double weight when determining which action to select. Once we have computed
the right weight for every action, we can then continue as before, where we now
in every module must first decide which action to take.

14 The semantics can be thought of as applying a uniform scheduler to an underlying
MDP where all actions are represented.

15 Recall, Prism semantics require that there are no data races.

Model Checking Finite-Horizon Markov Chains with Probabilistic Inference 27

B.3 Discussion on sampling and other properties

Sampling and symbolic distributions. As discussed before, Dice may quickly eval-
uate models with a range of distributions. Technically, we support Prism pro-
grams with symbolic probabilities (parameters), and allow probabilities to be
expressions over these symbols. We collect all commands that depend on these
parameters, and replace these by symbolic transitions. We then (separately)
translate each assignments to these parameters to concrete instantiations of the
symbolic distributions.
Extended finite-horizon properties. Instead of returning the distribution over a
predicate whether a target state has been visited, the Dice program can return
distributions over (bounded) quantities. In the finite horizon case, expected cu-
mulative rewards (that assign to every finite path a bounded quantity rather
than true or false) can thus be supported straightforwardly. Rather than the
simple reachability, the target can be straightforwardly described by an automa-
ton. The translation merely needs to update the hit function (and make it a
stateful function). Dice has native and efficient support for conditioning, which
allows conditioning over a finite horizon events, e.g., to condition on a prefix, or
to condition that within the first H1 steps, a particular state must have been
visited. Combinations of these constructions with indefinite horizon properties
are left for future work.
Indefinite horizon. Inspired by ideas like interval iteration [33] is the following
approximation. Naturally, the probability mass for the bounded horizon is a
lower bound on the indefinite horizon probability. The also obtain an upper
bound, we use the following equality [7]:

Pr(♢T) + Pr(♢(□¬T)) = 1,

that states that eventually we reach a target state, or we reach a state from
which it is impossible to reach a target state, denoted □¬T (‘globally not T ’). By
setting (□¬T) as the bad states, we can approximate Pr(♢Bad) with a bounded
horizon probability, getting

Pr(♢≤hT) ≤ Pr(♢T) ≤ 1− Pr(♢≤hBad).

To generate a Dice program, we compute with Storm a BDD that expresses the
states in Bad [7]. We translate this BDD in a sequence of if-then-else statements,
with one statement per node.

B.4 Technical details

Invalid inputs The semantics for Prism programs assume that bounds are ad-
hered to. However, Rubicon does not enforce this.
Overlapping guards To avoid constantly running into the overlapping guards
case, we run an Satisfiability-Modulo-Theories [10] -solver that checks whether

28 Holtzen et al.

module main
x : [0..1]init 0;
y : [0..2]init 1;

const double p,q,u;

[] x=0&y<2 ->p:x'=1 +1-p:y'=y+1;
[] y=2 ->q*q:y'=y-1 +u:y'=y;
[] x=1&y!=1 ->1:x'=y &y'=x;
endmodule

(a)

fun step(s:(x,y)) {
if x==0 &&y<2 then
if flipsym p (1,y) else (x,y+1)
else if y ==2then
if flipsym qu (x,y-1) else (x,y)
else if x==1 &&y != 1then (y,x)
else (x,y)

}
(b)

Fig. 12. Symbolic probabilities. p = 0.6, q = 0.5, u = 0.75 is mapped to p = 0.6, qu =
0.25, p = 0.3, q = 0.1, u = 0.99 to p = 0.3, qu = 0.01, and p = 0.3, q = 0.1, u = 0.1
yields an error.

fun selectFrom(a,b,c) {
let N =(a?1:0)+(b?1:0)+(c?1:0) in
if N ==0 then 0else

let C =uniform(N) in
if a &&C ==1 then 1else

let C =if a then C -1else a -1in
if b &&C ==1 then 2else
3

}
(a)

Fig. 13. selectFrom auxiliary function
.

commands have overlapping guards. This analysis may be refined, e.g., to take
into account for which states we run into overlapping guards.

selectFrom selectFrom is not a native function in Dice but rather encoded as
in Figure B.3. We first count the number of set bits, then select randomly an
offset C and then count until we found the C’th set bit, and return its index.

Bitwidth and domains. Notice that the translation requires the lower bounds of all
variables to be 0. Dice programs type integers in their bitwidth. This potentially
leads to typing errors when variables with different bitwidths occur within an
expression. We therefore use the bitwidth of the largest domain for all variables.
Static analysis could potentially refine this. We do not explicitly check whether
variables remain in their domain, the behavior of violating variable bounds is
undefined in Prism semantics.

Further technical concerns. Furthermore, we have seen problems with express-
ing that exactly one of a set of predicates ϕ1, . . . , ϕk should be true. In Prism
programs, this is often expressed with (ϕ1?1 : 0) + . . . + (ϕk?1 : 0) = 1, which
is awkward for the aforementioned typing problem. We alleviate this specific
problem by extending the Prism dialect that Storm accepts with predicates like
ExactlyOneOf(ϕ1, . . . , ϕk).

Model Checking Finite-Horizon Markov Chains with Probabilistic Inference 29

C Additional Experiments

See Table 2.

N Max h Rubicon (s) Storm Sym. (s) Storm Expl. (s) Transition Size BDD Size

16 3 10 0.48 0.4 < 0.1 1806 6
16 3 40 13.89 0.4 < 0.1 1806 146
16 6 10 0.46 0.47 < 0.1 1859 2
16 6 40 16.67 1.17 < 0.1 1859 209
32 2 10 0.55 <0.1 0.5 1950 5
64 2 40 20.4 1.07 <0.1 1950 113
128 2 10 0.73 0.778 <0.1 2019 5
128 2 20 5.25 1.28 <0.1 2019 33

Table 2. Comparisons for brp

D Models

See below.

30 Holtzen et al.

dtmc

const double p1 =0.1;
const double q1 =0.2;

const double p2 =0.2;
const double q2 =0.3;

const double p3 =0.41;
const double q3 =0.45;

const double p4 =0.94;
const double q4 =0.243;

const double p5 =0.434;
const double q5 =0.293;

const double p6 =0.4341;
const double q6 =0.2934;

const double p7 =0.4345;
const double q7 =0.2939;

module weathermodule
sun :bool init true;
[act] sun ->0.7:(sun'=sun) +0.3:(sun'=!sun);
[act] !sun ->0.4:(sun'=sun) +0.6:(sun'=!sun);

endmodule

module factory1
state1 :bool init false;
[act] state1 &sun ->0.3* p1: (state1'=true) +1-(0.3* p1): (state1'=false);
[act] !state1 &sun ->0.7* q1: (state1'=true) +1-(0.7* q1): (state1'=false);
[act] state1 &!sun ->0.6* p1: (state1'=true) +1-(0.6* p1): (state1'=false);
[act] !state1 &!sun ->0.4* q1: (state1'=true) +1-(0.4* q1): (state1'=false);

endmodule

module factory2 =factory1[state1=state2,p1=p2,q1=q2] endmodule
module factory3 =factory1[state1=state3,p1=p3,q1=q3] endmodule
module factory4 =factory1[state1=state4,p1=p4,q1=q4] endmodule
module factory5 =factory1[state1=state5,p1=p5,q1=q5] endmodule
module factory6 =factory1[state1=state6,p1=p6,q1=q6] endmodule
module factory7 =factory1[state1=state7,p1=p7,q1=q7] endmodule

label "allStrike" =state1 &state2 &state3 &state4 &state5 &state6 &state7;

Listing 1.1. The “Weather factory” factory Prism model with 7 factories.

Model Checking Finite-Horizon Markov Chains with Probabilistic Inference 31

dtmc

const double p1=0.4;
const double p2=0.5;
const double p3=0.65;
const double p4=0.75;
const double p5=0.85;
const double p6=0.9;
const double p7=0.92;
const double p8=0.96;

const int N =5;
const int N1 =N;
const int N2 =N;
const int N3 =N;
const int N4 =N;
const int N5 =N;
const int N6 =N;
const int N7 =N;
const int N8 =N;

module queue1
pos1 :[0..N1] init 0;
[step] pos1 <N1 ->p1: (pos1'=pos1+1) +1-p1: (pos1'=pos1);
[step] pos1 =N1 ->1:(pos1'=pos1);

endmodule

module queue2=queue1[pos1=pos2,p1=p2,N1=N2] endmodule
module queue3=queue1[pos1=pos3,p1=p3,N1=N3] endmodule
module queue4=queue1[pos1=pos4,p1=p4,N1=N4] endmodule
module queue5=queue1[pos1=pos5,p1=p5,N1=N5] endmodule
module queue6=queue1[pos1=pos6,p1=p6,N1=N6] endmodule
module queue7=queue1[pos1=pos7,p1=p7,N1=N7] endmodule
module queue8=queue1[pos1=pos8,p1=p8,N1=N8] endmodule

label "target" =pos1=N1 &pos2=N2 &pos3=N3 &(pos4 <N4 |pos5 <N5 |pos6 <N6 |pos7 <N7 |pos8 <N8)
;

Listing 1.2. The “Queues” Prism model.

	Model Checking Finite-Horizon Markov Chains with Probabilistic Inference

