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Abstract
We focus on the task of future frame prediction
in video governed by underlying physical dynam-
ics. We work with models which are object-centric,
i.e., explicitly work with object representations,
and propagate a loss in the latent space. Specifi-
cally, our research builds on recent work by Kipf
et al. [Kipf et al., 2020], which predicts the next
state via contrastive learning of object interactions
in a latent space using a Graph Neural Network.
We argue that injecting explicit inductive bias in
the model, in form of general physical laws, can
help not only make the model more interpretable,
but also improve the overall prediction of model.
As a natural by-product, our model can learn fea-
ture maps which closely resemble actual object po-
sitions in the image, without having any explicit su-
pervision about the object positions at the training
time. In comparison with earlier works [Jaques et
al., 2020], which assume a complete knowledge of
the dynamics governing the motion in the form of
a physics engine, we rely only on the knowledge
of general physical laws, such as, world consists of
objects, which have position and velocity. We pro-
pose an additional decoder based loss in the pixel
space, imposed in a curriculum manner, to further
refine the latent space predictions. Experiments in
multiple different settings demonstrate that while
Kipf et al. model is effective at capturing object in-
teractions, our model can be significantly more ef-
fective at localising objects, resulting in improved
performance in 3 out of 4 domains that we ex-
periment with. Additionally, our model can learn
highly intrepretable feature maps, resembling ac-
tual object positions.

1 Introduction
We are interested in the task of future frame prediction
in a video given the knowledge about past frames. This
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task, being important in its own right [Srivastava et al.,
2015] [Denton and Birodkar, 2017] [Hou et al., 2019] [Jin
et al., 2020] [Shouno, 2020] [Oprea et al., 2020], also has
a lot of application in Model-Based Reinforcement Learn-
ing [Oh et al., 2015; Chiappa et al., 2017; Henaff et al., 2017;
Ha and Schmidhuber, 2018; Kaiser et al., 2020]. A large
number of existing work in this direction takes a black-box
approach, i.e., given a set of training samples in the form of
past and future frame(s), when provided to a neural archi-
tecture treated as a black box, the learning algorithm results
in a trained network, which can predict the next frame(s)
in a video when supplied with preceding frame(s) at infer-
ence time. While this approach has met with reasonable suc-
cess in the literature [Oh et al., 2015] [Ha and Schmidhuber,
2018] [Kaiser et al., 2020], it is faced by limitations such as
learning non-intrepretable models, and inability to effectively
incorporate domain knowledge in the form of motion based
constraints. These approaches are typically trained using a
loss in the pixel space, which may not always work well when
dealing with objects of varying sizes, such as in Atari-Pong1

where the ball is smaller than the paddles.
These limitation have resulted in another line of work

which takes an object-centric view of the world, i.e., world
is composed of objects, which interact with other, gov-
erned by physical laws [Chen et al., 2017] [Kosiorek et al.,
2018] [Hsieh et al., 2018]. Though promising, the research
is still in its initial stage with several questions still unan-
swered. Most existing approaches in this line of work assume
some kind of supervised data about objects and relationships
between them [Sun et al., 2018]. This severely limits their
applicability to real-life settings when such supervised data
may not be easily available. There have also been a set of
approaches, which take an unsupervised view of the prob-
lem, and directly try to infer the object positions, and their
motions, but most of these are trained using the pixel loss in
the decoded space. Recent work by Kipf et al. [Kipf et al.,
2020] argued that explicitly learning the model by optimizing
the loss in latent space has certain advantages of being able
to discover smaller objects, and accordingly proposed Con-
strastive Learning of Structured World Models (CSWM), a
technique which exploits contrastive loss in the latent space,
and models object interactions using a Graph Neural Network

1https://gym.openai.com/envs/#atari



(GNN) [Scarselli et al., 2009].
We argue in this paper, that injecting even simple knowl-

edge of the facts, such as objects having positions, and ve-
locities, which are related by Newtonian laws, can not only
make the object-centric approaches more interpretable, but
also improve the overall prediction. We build our model on
top of the core CSWM [Kipf et al., 2020] architecture. We
propose a novel unsupervised method to estimate the position
and velocity of objects, while back-propagating the loss com-
puted in the encoded latent space. Our work is different from
Physics as Inverse Graphics (PAIG) [Jaques et al., 2020], that
learns an encoder-decoder architecture capable of estimating
physical parameters given the knowledge of motion dynam-
ics. PAIG relies on explicit access to differential equations
about environment dynamics to estimate physical parameters
and coefficients of these equations. This very assumption lim-
its the applicability of the approach since in many settings,
such a complete physical description of the motion dynamics
may not be available for training. Unlike PAIG, we do not
assume the availability of a (complete) physical engine repre-
senting motion dynamics but only the generic physical laws
governing motion. Our method is unsupervised in the sense
that, we do not assume any knowledge of what the actual ob-
jects are, or about their actual positions or velocities.

Our contributions in this paper can be summarized as fol-
lows 1) we introduce a novel unsupervised position loss to es-
timate position and a set of position constraints that encour-
age the output channels of (CNN based) extractor to detect
one object per channel, 2) we introduce a velocity estima-
tor module guided by an unsupervised velocity loss that en-
courages the model to satisfy basic relation between position
and velocity of objects and, 3) we experiment with using an
additional decoder loss in conjunction with the latent space
loss, trained in a curriculum manner, to improve the predic-
tions made only using the latent loss. While in this paper
we have added constraints based only on the basic relations
among various physical parameters, our long term goal is to
propose a method to add various forms of domain knowledge
like constraints on velocity of objects or constraints on object
interactions.

We evaluate our approach on 4 different environments (i)
two different grid-world environments with bouncing shapes
but no collision between objects (ii) collision between objects
in a grid world, and (iii) 3-body physics. We use Hits@k
and Mean Reciprocal Rank (MRR) as evaluation metrics for
predictions in the latent space. For Hits@k and MRR, we
compare our approach with CSWM, and show that our model
is effective at capturing localization of objects, significantly
improving the performance of the baseline on 3 out of 4 do-
mains. In our qualitative experiments, we show that our fea-
ture maps are much more interpretable, and closely resemble
actual object positions in the image, compared to the baseline.
The remaining part of the paper is organized as follows, Sec-
tion 2 discusses the related work, followed by a discussion
of the required background in Section 3. Next, we provide
description of our approach in Section 4. In Section 5, we
explain our experimental setting and present the current re-
sults. Section 6 concludes the paper and discusses the future
directions.

2 Related Work

There is a lot work in the Computer Vision community which
focuses on the task of video prediction [Srivastava et al.,
2015] [Denton and Birodkar, 2017] [Hou et al., 2019] [Jin et
al., 2020] [Shouno, 2020] [Oprea et al., 2020]. Although re-
lated, these works fall along a different line of research since
almost all of them use the neural network as a black-box, and
propagate loss in the pixel space. This is different from our
motivation in this work, where we want to take an object-
centric approach, and optimize loss in the latent space, due to
various potential advantages, such as ease of interpretation,
and better discovery of smaller sized objects.

Model Based Reinforcement Learning community has
built on top of ideas proposed in the vision community, for
learning transition models, when the state space is repre-
sented by an image [Oh et al., 2015] [Kaiser et al., 2020].
There is some recent work, which deviates from this ap-
proach, and takes an object-centric view, i.e., has an explicit
representation of objects, and their attributes such as position.
However, many of these works need some kind of supervi-
sion about objects, and their features [Sun et al., 2018], in the
absence of which it is difficult to learn. These assumptions
limit the applicability of these approaches, since getting such
training data may not always be practically possible. Ideally,
we would like to be able to learn the model based purely on
the input-output images with no supervision on position and
velocity.

Some recent works have proposed methods which relax the
assumption of supervised data about objects and their fea-
tures, and work only with input-output image pairs. Though
they often work in the latent space representing objects and
their properties, in most such cases, the training is based on
back-propagation over a loss in the pixel space.This has the
potential of giving disproportionate attention to various ob-
jects, based on their sizes, which may not always be desir-
able. For example, in Pong, it may make more sense to de-
tect a ball correctly, although the actual number of pixels that
it occupies can be very small. Physics-as-Inverse-Graphics
(PAIG) [Jaques et al., 2020] assumes access to a fully dif-
ferentiable motion dynamics engine, which may be a strong
assumption to take for many practical applications.

The closest related work to ours is the Contrastive Learn-
ing of Structured World Models (CSWM) [Kipf et al., 2020]
which works in an unsupervised setting (i.e., no assumption
about knowledge of objects during training), has an explicit
representation of objects in terms of feature maps, and fully
trains the model using a contrastive loss in the latent space,
where object interactions are modeled using a Graph Neural
Network [Scarselli et al., 2009]. The key idea is to back-
propagate a loss which measures how similar the next state
latent representation is to the one predicted using GNN, while
also ensuring that the latent representation of a randomly
picked image (negative sample) is far away from the latent
representation of the current state. We build on top of this,
introducing additional modules, for position and velocity pre-
diction, using knowledge of generic physical laws such as ob-
jects exist, and have positions and velocities related by New-
tonian laws of motion. Addition of this simple knowledge



through our architecture not only makes the model more in-
terpretable by learning feature maps which resemble object
positions, but also helps improve overall prediction accuracy
in the latent space.

3 Notations and Background
We start by defining the notation used in the paper. We as-
sume there are K objects in the scene. The input state at
time t is denoted by st. The corresponding object masks and
factorized latent space are denoted by mt = (mk

t )Kk=1 and
zt = (zkt )Kk=1 respectively. For actuated environments, we
denote the action by at. T (zt) denotes the transition model
(T (zt, at) for actuated environments) that predicts the trans-
lation in the latent space (denoted by (∆zkt )Kk=1). The pre-
dicted next step latent space is denoted by ẑkt+1 = (zkt +

∆zkt )Kk=1. The K 2D Gaussian distributions corresponding
to K object masks are denoted by (gkt )Kk=1. The mean of the
Gaussian distribution corresponds to position of each object
in the mask and is denoted by pt = (pkt )Kk=1. The velocities
of objects are denoted by vt = (vkt )Kk=1. The image predicted
by the decoder for time step t is denoted by ŝt.

3.1 Contrastive Learning of Structured World
Models

The Contrastive Learning of Structured World Models
(CSWM) [Kipf et al., 2020] model consists of three parts:
1) CNN based extractor, 2) an object encoder, and 3) Graph
Neural Network based transition model. The object extrac-
tor takes the current state st (or a sequence of previous states
in case of environments with inherent velocity) as input and
generates K object masks (mk

t )Kk=1, each for an object. The
encoder is an MLP (shared among all objects) that takes ob-
ject mask mk

t as input and creates corresponding object en-
coding zkt . The (zkt )Kk=1 form the factorized latent space of
the environment. The action space is also assumed to be fac-
torized and for each object the action is represented as a one-
hot vector (and all zeros for objects on which no action is
applied). Next, a fully connected graph with k nodes (repre-
senting k objects) is created, which is later processed using a
Graph Neural Network (GNN) For each node, the GNN takes
as input zkt as initial node features along with akt as the cor-
responding action. The GNN represents the Transition model
T (zt, at) and its output represents the translation on the latent
encoding of each object denoted by ∆zt = (∆zkt )Kk=1.

LCSWM = d(zt + T (zt, at), zt+1) +max(0, γ − d(z̃, zt+1))
(1)

The model is trained end-to-end using a contrastive loss be-
tween zt + ∆zt and zt+1 (equation 1). Here, γ is a hyperpa-
rameter for the Hinge-loss. The loss comprises of two parts,
1) positive part (d(zt + T (zt, at), zt+1)) encourages the en-
codings zt + ∆zt and zt+1 to be close to each other, and 2)
negative part (max(0, γ − d(z̃, zt+1))) forces the encoding
zt+1 to be away from encoding of a random negative sample
z̃. The distance metric d(·) used is squared Euclidean dis-
tance.

4 Learning Physical Parameters in
Structured Latent Space

As discussed in earlier sections, though object masks
(mk

t )Kk=1 learned by CSWM can be interpreted to represent
locations of objects, there is no explicit estimation of the
physical parameters in the model. Our goal in this section
is to describe how we learn a position and a velocity estima-
tor in order to make the latent space interpretable. We start by
defining goals for our model, followed by details on various
modules in our architecture.

Given the current state st and the previous state st−1,
the goal of our model is to learn 1) a set of object masks
((mk

t )Kk=1) each representing an object, 2) a factorized latent
space, denoted by (zkt )Kk=1 that encodes each object, 3) a set
of 2D Gaussian distributions ((gkt )Kk=1) such that the mean of
each gkt gives the position of the corresponding object, 4) a
set of velocity values (vkt )Kk=1 of each object, 5) a transition
model T (zt) that can predict the encoded next state from the
current encoded state and velocity, and 6) an image decoder
that is capable of refining the latent space by generating full
image of the state from the encoded latent space.

To achieve this, we introduce our model, Interpretable and
Contrastive Learning of Structured World Models (ICSWM)
that learns a factored latent space transition model and es-
timates position and velocity. Our model is trained in an
end-to-end unsupervised learning fashion such that we do not
need any supervision on the positions and velocities of the ob-
jects. Figure 1 shows the block diagram of our model. There
are 5 basic blocks in the pipeline, 1) Object Extractor and En-
coder, 2) Position Estimator, 3) Velocity Estimator, 4) Transi-
tion Model, and 5) Image Decoder. Correspondingly, we de-
fine various loss functions targeted to facilitate each module’s
learning. As our model is motivated from CSWM, we explic-
itly mention wherever we use or adapt any of the CSWM’s
modules.

4.1 Object Extractor and Encoder
The job of this module is to generate object masks and ob-
ject encodings. An input state st is processed using a CNN
module, called the Object Extractor, that generates K output
channels each corresponding to the K objects in our environ-
ment. Next, we apply background subtraction to these chan-
nels by subtracting a learnable parameter θ shared among all
channels. We call the resulting channels object masks de-
noted by (mk

t )Kk=1, where K is the number of objects in the
environment. In comparison to this CSWM does not do any
background subtraction.

Similar to CSWM, we use an MLP to generate object en-
codings (zkt )Kk=1 from object masks (mk

t )Kk=1. These encod-
ings form our factorized latent space. The parameters of the
object encoder are shared among all objects. Figure 2 shows
the detailed architecture and process of Object Extractor and
Encoder.

4.2 Position Constraints
In this section, we propose a novel method to estimate po-
sition of objects in an unsupervised fashion. Intuitively, we
want to enforce three conditions, 1) we want each object mask



Figure 1: Block diagram for learning an Interpretable Latent Space in Structured Models. Lower part of the figure is inspired from CSWM
[Kipf. et al., 2020]

to show a blob of pixels at the object’s location (with every-
thing else as black), 2) no two objects should overlap each
other and 3) we want each object mask should contain only
one such blob.

For enforcing the first condition, we encourage each ob-
ject mask to look like a 2D Gaussian distribution such that
the mean of the distribution will give us the position of the
object. Details of the position estimator are shown in Fig-
ure 3. First, we clamp each object mask (mk

t ) by a small
positive value (10−8). Next, we normalize each mask in-
dependently by dividing it by

∑
i,j m

k
t (i, j). For each ob-

ject mask, we calculate the mean position of the pixels as
(
∑

i i ∗
∑

j m
k
t (i, j),

∑
j ∗

∑
im

k
t (i, j)). We use this mean

position and a fixed variance σ2 (σ2 = 0.6 in our experi-
ments) to create a Gaussian distribution denoted by (gkt )Kk=1.
Furthermore, the mean of gkt gives the position of kth object
and is denoted by pkt . To ensure object masks look like Gaus-
sian distributions, we add a position loss between each mk

t
and gkt :

Lpgauss =
1

K

K∑
k=1

MSE(mk
t , g

k
t ). (2)

To enforce the second and third conditions, we add three
constraints on the object masks. We add these constraints in

the form of loss functions given in equation 3. The first loss
encourages each object mask to represent at least one object.
The second loss coupled with the first one encourages each
mask to detect at most one object. The third loss minimizes
dot product between all object mask pairs to make sure object
masks are mutually exclusive. Combining these three con-
straints encourages each objects mask to represent only one
object.

Lpos max =
1

K

K∑
k=1

(1−max
i,j

mk
t (i, j))

Lpos sum =
1

K

K∑
k=1

|1−
∑
i,j

mk
t (i, j)|

Lpos dot =

K∑
k=1

K∑
l=k+1

mk
t ·ml

t

(3)

The combined position loss becomes,

Lpos = Lpos gauss + Lpos sum + Lpos max + Lpos dot (4)

4.3 Velocity Constraint
To make the model interpretable we want to estimate the ve-
locity of the objects by adding simple domain knowledge. For



Figure 2: Detailed diagram showing Object Extractor and Encoder

Figure 3: Detailed diagram showing Position Estimator

this, we want to ”tell” ICSWM+D the general relation be-
tween the position and velocity of an object. To this end, we
train an MLP, called velocity estimator, that takes as input a
permutation of both the current and previous state encodings,
i.e. zt and zt−1, and estimates the velocity of objects.

Let us denote the concatenation of object encodings at
time t and t − 1 by zkt,t−1 = [zkt ||zkt−1]. For predict-
ing the velocity of the kth object, we give the permutation
[zkt,t−1||zk+1

t,t−1|| . . . ||zKt,t−1||z1t,t−1||z2t,t−1|| . . . ||zk−1
t,t−1] as

input to the velocity MLP (for environments with no object
interactions we provide only [zkt,t−1] as input). To establish
and enforce a relation between positions of object at time t
and t + 1 and velocity of an object at time t, we encour-
age the predicted velocity to satisfy the constraint given by
pt+1 = pt + vt. The corresponding loss function is given by,

Lvel =
1

K

K∑
k=1

MSE(pkt+1, p
k
t + vkt ) (5)

Note that the parameters of the Velocity MLP are shared
among all objects. As CSWM does not predict the velocity
so it does not have this module.

4.4 Learning Transition Model using Graph
Neural Network

Similar to CSWM, we use a Graph Neural Network
(GNN) [Scarselli et al., 2009] to learn the transition model.
The GNN predicts the translation vector ∆zt representing
change in the current latent space zt. The predicted latent rep-
resentation of the next state is then given by ẑt+1 = zt+∆zt.

We first create a fully connected graph withK nodes repre-
senting theK objects. Next, we use a concatenation of zt and
vt as input features to the GNN (this is in contrast to CSWM
that uses only zt as the input node features). The transition
model T (zt||vt) is given as,

∆zt = T (zt, vt) = GNN((zkt ||vkt )Kk=1)

ẑt+1 = (zkt + ∆zkt )Kk=1

(6)

Here, (·||·) represents the concatenation operation. We first
compute the edge embeddings of all edges using fedge and
then compute node embeddings of all nodes using fnode.
Since, we use a fully connected graph of objects, we do not
do multiple iterations of the embedding computation as each
node already has access to all other nodes. We use the same
node update function fnode and an edge update function fedge
as used in CSWM. fnode and fedge are implemented using an
MLP and message passing is given by,

e
(i,j)
t = fedge(z

i
t, z

j
t )

∆zjt = fnode(z
j
t ||v

j
t ,
∑
i,j

e
(i,j)
t ) (7)

Next, we randomly sample a tuple of (s̃t, ˜st+1) from the
experience buffer and get corresponding latent encoding as
(z̃t, z̃t+1). The encodings of the predicted next state and neg-
ative sample are then used in the contrastive loss given by,

Lcon = d(zt + T (zt, at), zt+1)

+max(0, γ − d(z̃t, zt))

+max(0, γ − d(z̃t+1, ẑt+1))

(8)

Here γ is a hyper parameter and we keep its value to be 1
for all our experiments. There are three terms in the con-
trastive loss, the first term encourages zt to be close to the
correct target and the last two terms encourage it to be differ-
ent from the negative sample. We want to point out that our
contrastive loss (Equation 8) adds a third term to the original
loss of CSWM (Equation 1) to encourage the gradient of the
negative term to pass through the GNN.

4.5 Image Decoder and pixel-based loss
We define a two-phase curriculum of training. In the first
phase, we focus on learning a good latent space using the po-
sition and contrastive loss. Next, for phase 2 of the training
we do two variations, 1) we add a velocity loss, and 2) we
add velocity and a pixel-based loss. In our experiments vari-
ation 1 by ICSWM and variation 2 by ICSWM+D. In both
variations we also add position and contrastive loss in the
phase 2 of the training process. For our second variation,
we use an image decoder that takes the latent space encoding
zt as input and generates an image ŝt that represents it. Our
goal of adding an image decoder is to refine the latent space
that has already been trained using position and contrastive
loss. The decoder we use is the same as used in CSWM. The
pixel-based loss calculates the regeneration error of the input
images. In particular we calculate losses as Ldec(st, ŝt) and
Ldec(st+1, ŝt+1), where

Ldec(s, ŝ) = BCE(s, ŝ) (9)

Where BCE is the Binary Cross Entropy loss as used in
CSWN [Kipf et al., 2020]. The final loss for both phases of
variation 2 is given by equation 10 (for variation 1, we do not
include Ldec in Lphase2 ). Here λ1 and λ2 are hyperparamters
and in our experiments we keep λ1 = 10−1 and λ2 = 10−3.

Lphase1 = Lpos + Lcon

Lphase2 = Lpos + Lcon + λ1Lvel + λ2Ldec
(10)



5 Experiments
We would like to answer the following questions in our ex-
periments (a) Does the use of an interpretable latent space
help improve quality of predictions? (b) What is the impact
of curriculum based training for incorporating decoder loss
on the quality of predictions? (c) How accurately can our
model predict the object positions and velocities? To answer
these questions, we experimented with a variety of domains
which include (a) Objects moving in a grid-world bouncing
against the walls (b) bouncing objects which are also allowed
to collide with each other resulting in object level interac-
tions. We compare variations of ICSWM model, with varia-
tions of CSWM baseline. We describe details of our experi-
ments next.

5.1 Datasets
We experiment with two different kinds of datasets.
Bouncing Shapes: Here, we model objects of different col-
ors and shapes in a Grid environment, which can bounce
along the wall. The objects do not collide with each other,
so their motion is independent of other objects. Within this
setting, we experiment with two different varations (a) five by
five sized grid with two objects moving along columns. We
refer to this as 2-BouncingShapes (2-BS) domain. (b) Five by
five sized grid with three objects moving along columns. We
refer to this as 3-BouncingShapes (3-BS) domain. To avoid
collision, objects are placed in different columns in any given
episode, and can only move along the column. Objects are
initialized with with random position within the column, and
start moving up or down with a constant (1-step) velocity un-
known to the model. Once they hit the wall, they bounce back
and start moving the same velocity but in the opposite direc-
tion. The goal is to be able to model the bouncing dynamics,
and also predict the actual position and velocity (magnitude
and sign) of every object in a future frame. See Figure 4
((a),(b)) for example images from the two domains, respec-
tively.

In the 2-BS domain, we created a dataset with (a) 1000
training episodes (b) 100 validation episodes (c) 100 test
episodes, using a simulator. 2 Shapes were used : Red Circle,
and Blue Triangle. In the 3-BS domain, we created a dataset
with (a) 1000 training episodes (b) 100 validation episodes
(c) 100 test episodes, using a simulator. The 3 Shapes were:
Red Circle, Green cube, and Blue Triangle. All episodes for
2-BS and 3-BS have 100 steps each.
Bouncing Shapes with Collision: Here, we model objects
of different colors and shapes as before, but now they are al-
lowed to collide with each other. In the first variation, referred
to as 3-Bouncing Shapes with Collision (3-BSC) objects are
placed in a five by five grid as before, and move along the
columns. But now, one of the columns has more than one
object in it, such that when they start moving, they will col-
lide with each other. Two objects are said to collide with each
other, if there next state position based on the current velocity
happens to the be in the same grid cell. After collision, ob-
jects start moving in the opposite direction but with the same
magnitude of velocity. Initial positions and velocity direc-
tions are determined randomly, for each object.

Our final domain is 3-body Physics (3-BP) used earlier in
the literature [Kipf et al., 2020]. The domain consists of 3
balls, moving in an environment, under the effect of gravity,
and colliding with each other. The motion dynamics are not
provided to the model. See Figure 4 ((c),(d)) for example
images from 3-BSC, and 3-BP, respectively.

In the 3-BSC domain, we created a dataset with (a) 1000
training episodes (b) 100 validation episodes (c) 100 test
episodes, using a simulator (All episodes have 100 steps
each). The 3 Shapes were: Red Circle, Green cube, and
Blue Triangle. For 3-BP, we created a dataset with (a) 5000
training episodes (b) 100 validation episodes (c) 1000 test
episodes, using a simulator provided by [Kipf et al., 2020]
(All episodes have 10 steps each).

(a) 2-BS (b) 3-BS

(c) 3-BSC (d) 3-BP

Figure 4: Sample observations of our test environments. a-b belong
to the Non-Collision environments and c-d belong to Collision En-
vironments. Arrows in c indicate the velocity directions of colliding
objects

5.2 Models Compared
We experiment with the following variations of our model:

ICSWM Variations:

• ICSWM: This is our model with an Interpretable Con-
trastive Loss in the latent Space as describe in Section 4.

• ICSWM+D: This refers to the ICSWM model with an
additional decoder/pixel based loss imposed using cur-
riculum training.

• ICSWM+D-C: This refers to the ICSWM model with an
additional decoder/pixel based loss imposed using cur-
riculum training, but without any contrastive loss in the
latent space.

In all our models, we use the additional negative term in
the contrastive loss. We next explain the variations of the
Baseline model.

CSWM (Baseline) Variations:



• CSWM: This is the contrastive loss based model as pro-
posed by Kipf et al. [Kipf et al., 2020].

• CSWM+N: This refers to the CSWM model with an ad-
ditional negative term in contrastive loss as explained in
Section 4.4.

• CSWM+D: This refers to the CSWM model with an ad-
ditional decoder/pixel based loss imposed using curricu-
lum training as explained in Section 4.

• CSWM+N+D: This is the combination of CSWM+N
and CSWM+D models, with both additional negative
loss term, as well as, decoder based loss incorporated
during training.

It is important to note that we tried variations of the CSWM
model, such as adding Decoder based loss in the pixel space,
or having additional negative loss term, to examine if the
gains in the ICSWM model are because of these small en-
hancements, or primarily due to our interpretable latent space
model. This was important to separate out the impact of var-
ious architectural changes proposed in this paper.

5.3 Evaluation Metrics
We use the following evaluation metrics.

• Hits@k: This is a ranking-based metric which evalu-
ates the performance of the model directly in the latent
space. Hits @ k measures what fraction of times the
predicted latent state, i.e., ẑt+1, is ranked top amongst
the k-ranked latent state representations, where the ref-
erence states are chosen randomly from the experience
buffer, and the ranking is based on inverse distance from
the latent space representation of st+1 i.e. zt+1.

• MRR (Mean Reciprocal Rank) This is another
ranking-based metric that operates directly on latent
state representations. MRR is the mean of the reciprocal
of rank of the predicted next state encoded representa-
tion, ẑt+1, where the reference states are the latent space
representations of randomly chosen states from experi-
ence buffer, and the ranking is computed using inverse
distance from the latent space representation of st+1 i.e.
zt+1, as in Hits@k.

5.4 Training Methodology
We trained all the models for 275 epochs, and picked up the
best using a validation set. For models which exploit a two-
phase training using decoder loss, we trained the first phase
for a set of 125 epochs, and then trained for second phase
for maximum of 150 epochs. For CSWM and ICSWM, we
trained the decoder after 275 epochs, freezing the rest of the
pipeline for another 150 epochs to report the reconstructions
as in figure 17. The other hyper-parameters such as learn-
ing algorithm and the learning rate, were kept the same as in
the CSWM paper [Kipf et al., 2020]. All our experiments
were run on a high performance facility having NVIDIA K-
40 GPU. Training time of models varied between 3 to 9 hours.
The reported numbers are averaged over 3 different training
runs.

Figure 5: On 2-BouncingShapes. Comparison between performance
of variants of CSWM on Hits@1 and MRR. Higher is better.

Figure 6: On 3-BouncingShapes. Comparison between performance
of variants of CSWM on Hits@1 and MRR. Higher is better.

5.5 Quantitative Results
Baseline Models
We first wanted to compare which variants of the baseline are
most robust for further comparison with our ICSWM model,
and its variations. To examine this, we compared the 4 base-
line variations on the BouncingShapes domains, i.e., 2-BS
and 3-BS. Results are presented in Figures 5, and 6, respec-
tively. We measure both Hits@1 and MRR, as number of
prediction steps is varied from 1 to 50. Clearly, we can see
the models using an additional decoder loss, i.e., CSWM+D
and CSWM+N+D, perform significantly worse compared to
non-decoder based models for both Hits@1 and MRR, for
prediction at all future steps. This means that CSWM model
is not able to exploit the additional decoder based curriculum
training to its advantage. Further, performance of CSWM
and CSWM+N, is comparable to each other in both the ex-
periments. We therefore, decided to only use CSWM as our
primary baseline for our future set of experiments.

Bouncing Shapes
Figures 7, 8 compare the performance of ICSWM variants
with CSWM baseline, for 2-BS and 3-BS domains, respec-
tively. We compare on both Hits@1 and MRR, as the num-
ber of future steps is varied from 1 to 50. We see that both
ICSWM and ICSWM+D perform better than CSWM base-
line, at all steps 1 , for both the metrics, in both the domains.

1ICSWM+D performs marginally worse than CSWM on 3-BS in
MRR for last few steps but this may be simply due to variance



Figure 7: Comparison between ICSWM variants and CSWM base-
line using Hits @ 1 and MRR. For both metrics, higher is better.
Domain: 2-BS

Figure 8: Comparison between ICSWM variants and CSWM base-
line using Hits @ 1 and MRR. For both metrics, higher is better.
Domain: 3-BS

This clearly points to the power of having an interpretable
latent space model. The gain is significantly more at initial
prediction steps, and the difference decreases as we increase
the number of steps. We hypothesise that as the number of
steps is increased to 50, all the models gradually approach
random behavior, which is also confirmed by the flattening
nature of the curves towards the end. The comparison be-
tween ICSWM and ICSWM+D is interesting. Where the for-
mer does better on 2-BS, the latter does somewhat better on
3-BS. ICSWM+D-C performs the worst which points to the
importance of having a contrastive loss.

Bouncing Shapes with Collision
Figure 9 compares the performance of ICSWM variants with
CSWM baseline for 3-BSC domain. We compare on both
Hits@1 and MRR, as the number of future steps is varied
from 1 to 50. On 2-BSC, ICSWM beats CSWM baseline at
all time steps for both the metrics. Interestingly, while IC-
SWM+D does best for first few steps, its performance de-
grades quickly, and it becomes worse than both ICSWM and
CSWM by the end of 50 steps. Understanding this behaviour
of our model, when used with decoder loss, is a direction for
future investigation. ICSWM+D-C performs worse than all
since it is not able to exploit the contrastive loss.

Figure 10 compares the performance of ICSWM variants
with CSWM baseline for 3-BP domain, on both Hits@1

Figure 9: Comparison between ICSWM variants and CSWM base-
line using Hits @ 1 and MRR. For both metrics, higher is better.
Domain: 3-BSC

and MRR. Here, CSWM is the best performing model, fol-
lowed by ICSWM and ICSWM+D respectively. While all the
models perform equally well for 1-step prediction, our mod-
els start performing worse (compared to baseline) for future
steps. This was quite intriguing result given the superior per-
formance of ICSWM variants on other 3 domains. Further
investigation revealed that, while 2-BS, 3-BS and 3-BSC do-
mains are heavily dependent on localization of objects with
respect to the image frame, the dynamics in 3-BP are purely
governed by inter-object interactions due to forces of gravi-
tational pull. While our models are good at localizing due to
interpretable position and velocity constraints, the results in
3-BP points that though effective, they may not be as good
as CSWM in terms of capturing inter-object interactions. We
believe this may be due to a relatively simple velocity mod-
ule in our case, which is key to capturing object interactions;
GNN simply acts on the position based feature maps, and the
velocity output by the velocity module in our models. Any
error in velocity prediction step is going to make GNN less
effective in ICSWM models.

On the other hand, CSWM fails quite badly when predict-
ing motion dynamics requires localization of objects in the
frame, as demonstrated by results on 2-BS, 3-BS and 3-BSC.
This is also evident in our qualitative results, where we show
that our object feature maps are much more interpretable and
can localize the objects fairly well, whereas CSWM fails to
do so, except for some very simple domains. Capturing local-
ization behaviour may be important in Atari games, such as
pong, where our model is expected to do well on this aspect 2

Improving the object interaction component of our model,
while still keeping intact its localization capability is a di-
rection for future work.

Qualitative Results
Figure 15 shows the feature maps constructed by ICSWM
variants and the CWSM for all the domains. The feature maps
constructed by ICSWM and its variants are much sharper, and
can separate the object much better, compared to CSWM. In-
terestingly, this is also true for 3-BP where the performance
of CSWM is better than ICSWM variants. None of the al-
gorithms can achieve perfect feature maps in this case, but

2Performing these experiments is a part of future work.



Figure 10: Comparison between ICSWM variants and CSWM base-
line using Hits @ 1 and MRR. For both metrics, higher is better.
Domain: 3-BP

ours are much closer to what they should be in a disentangled
representation compared to the CSWM baseline.

Figure 16 depicts the comparison with 2D Gaussian distri-
bution for the 3-BS domain for ICSWM. Clearly, there is a
close resemblance between the Gaussian distribution and the
actual object feature map detected by the algorithm. Finally,
for illustration, we also trained a separate decoder network for
ICSWM and CSWM, for maximum 150 epochs, after freez-
ing the parameters of the latent model. Reconstructions were
made using the decoder trained in this manner for 3-BS do-
main. Looking at the Figure 17, it is clear that ICSWM can
do a much finer task of re-construction even at 50 steps, com-
pared to CSWM baseline, which is quite ineffective in this
task.

6 Conclusion and Future Work
In this paper we presented a novel approach to learn an in-
terpretable latent space in structured models for video predic-
tion. Our model builds on earlier work by Kipf et al. which
uses a contrastive loss to train the model. We introduce novel
position and velocity based constraints, inspired from generic
physical laws, to enhance their latent space model. As an im-
portant step in this direction, our model can learn highly lo-
calized feature maps (compared to the base model), but faces
some difficulty in capturing complex interactions (like in 3-
body physics). We outperform the baseline in 3 out of 4 do-
mains that we experiment with in terms of latent space pre-
dictions. Our learned feature maps are highly interpretable
and closely resemble actual object positions.

In terms of future work, one line of research is to develop
a model that combines the strengths of both the models. An-
other future direction is to enhance our model to learn posi-
tion and velocities in environments with objects of varying
sizes (like that in OpenAI-Atari Pong and Breakout).
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A Appendix
A.1 Architecture

1. Object Extractor and Encoder:
• Object Extractor: Object Extractor is a CNN

based network that takes input as a single RGB im-
age of size 50 x 50 x 3 and returns K feature maps.
There are two types of extractors viz. small and
medium. In small extractor, input RGB image is
passed through a convolutional layer with kernel
size 10, stride 10 and 64 filters, followed by a 2D
batch norm layer, relu activation function, another
convolutional layer with kernel size 1, stride 1 and
K filters where K is the number of object feature
maps and sigmoid activation function. Medium ex-
tractor differs only in convolutional layer specifica-
tions, however the overall flow remains same. First
convolutional layer of medium extractor has a ker-
nel size 9, padding of 4 and 64 filters and the sec-
ond convolutional layer has kernel size 5, stride 5
and K filters where K is the number of object fea-
ture maps. For our experiments on 2-BS, 3-BS and
3-BSC, we use small eactor. However, for 3-BP we
use medium extractor.

• Background Subtractor: It is a single parameter
that is subtracted from the outputs of the object ex-
tractor. Note that the parameter is tied across all the
output channels of object extractor.

• Object Encoder: It is a MLP network that takes in-
put as flattened feature maps, one at a time and con-
verts it into its latent space representation. The flat-
tened feature map is passed through fully connected
layer 1 followed by relu activation, fully connected
layer 2, layer norm, relu activation, fully connected
layer 3 with 2 units. We use the same embedding
dimension of 2 for all experiments.

2. Position Estimator: Position extractor is a non-neural
architecture and details can be found in section 4.

3. Velocity Estimator We use a three layer MLP with 4
units in layer 1 followed by relu activation function, 2
units in layer 2, relu activation and 1 unit in final layer
of velocity module. This setting is used for experiments
on 2-BS and 3-BS. For 3-BSC and 3-BP, we use a three
layer MLP with 8 units in layer 1 followed by relu ac-
tivation function, 4 units in layer 2, relu activation and
1 unit in final layer of velocity module for 3-BSC and 2
unit in final layer for 3-BP.

4. Transition Model We use GNN for capturing interac-
tions among objects. The message passing formulation
is given in section 4. The architecture of MLP for fnode
and fedge is same as that in CSWM [Kipf et al., 2020].
The only change we do is to substitute the action in the
case of CSWM with our velocity as predicted by the ve-
locity module.

5. Image Decoder We use same decoder as used in
CSWM [Kipf et al., 2020].



Table 1: Mean Value

2-BS
Num Steps ICSWM+D-C ICSWM ICSWM + D CSWM

Hits @ 1 MRR Hits@1 MRR Hits @ 1 MRR Hits @ 1 MRR

1 0.07 0.14 0.73 0.83 0.8 0.89 0.29 0.51

5 0.01 0.05 0.54 0.68 0.66 0.78 0.18 0.4

10 0.01 0.06 0.48 0.62 0.62 0.76 0.21 0.42

15 0.02 0.06 0.5 0.62 0.62 0.75 0.23 0.46

20 0.02 0.06 0.48 0.6 0.57 0.7 0.2 0.43

25 0 0.05 0.46 0.58 0.52 0.66 0.21 0.44

50 0.02 0.06 0.28 0.43 0.44 0.56 0.2 0.43

3-BS
Num Steps ICSWM +D - C ICSWM ICSWM + D CSWM

Hits @ 1 MRR Hits@1 MRR Hits @ 1 MRR Hits @ 1 MRR

1 0.21 0.26 0.1 0.05 0.03 0.02 0.5 0.71

5 0.09 0.12 0.09 0.04 0.14 0.08 0.45 0.67

10 0.05 0.06 0.09 0.05 0.22 0.14 0.39 0.63

15 0.03 0.03 0.09 0.05 0.26 0.19 0.49 0.7

20 0.01 0.02 0.07 0.04 0.27 0.21 0.51 0.71

25 0 0.01 0.05 0.05 0.32 0.25 0.47 0.69

50 0.01 0 0.16 0.16 0.4 0.32 0.42 0.65

3-BSC
Num Steps ICSWM +D - C ICSWM ICSWM + D CSWM

Hits @ 1 MRR Hits@1 MRR Hits @ 1 MRR Hits @ 1 MRR

1 0.12 0.26 0.79 0.89 0.94 0.97 0.51 0.7

5 0.09 0.19 0.73 0.85 0.82 0.91 0.44 0.66

10 0.07 0.16 0.74 0.84 0.64 0.79 0.43 0.65

15 0.05 0.14 0.66 0.8 0.58 0.73 0.48 0.68

20 0.05 0.12 0.62 0.77 0.48 0.65 0.44 0.65

25 0.04 0.12 0.62 0.76 0.42 0.6 0.47 0.67

50 0.04 0.1 0.54 0.7 0.31 0.47 0.44 0.65

3-BP
Num Steps ICSWM +D - C ICSWM ICSWM + D CSWM

Hits @ 1 MRR Hits@1 MRR Hits @ 1 MRR Hits @ 1 MRR

1 0.48 0.6 0.99 1 0.99 0.99 0.99 0.99

5 0.05 0.11 0.83 0.9 0.65 0.77 0.95 0.97

10 0.01 0.02 0.4 0.56 0.27 0.41 0.79 0.87



Table 2: Standard Error

2-BS
Num Steps ICSWM +D - C ICSWM ICSWM + D CSWM

Hits @ 1 MRR Hits@1 MRR Hits @ 1 MRR Hits @ 1 MRR

1 0.033 0.047 0.165 0.115 0.075 0.046 0.033 0.031

5 0.006 0.01 0.177 0.134 0.153 0.108 0.012 0.015

10 0.003 0.005 0.222 0.192 0.144 0.097 0.015 0.013

15 0.007 0.006 0.23 0.2 0.163 0.111 0.01 0.007

20 0.009 0.009 0.223 0.207 0.183 0.134 0.01 0.009

25 0 0.002 0.214 0.214 0.189 0.145 0.003 0.003

50 0.003 0.002 0.13 0.163 0.23 0.192 0.015 0.009

3-BS
Num Steps ICSWM +D - C ICSWM ICSWM + D CSWM

Hits @ 1 MRR Hits@1 MRR Hits @ 1 MRR Hits @ 1 MRR

1 0.118 0.151 0.058 0.03 0.019 0.01 0.039 0.027

5 0.05 0.071 0.049 0.025 0.079 0.047 0.033 0.02

10 0.027 0.036 0.054 0.029 0.125 0.081 0.049 0.033

15 0.017 0.019 0.05 0.031 0.15 0.109 0.009 0.004

20 0.003 0.01 0.04 0.024 0.156 0.119 0.059 0.039

25 0 0.008 0.03 0.027 0.186 0.143 0.009 0.006

50 0.003 0.001 0.094 0.094 0.23 0.187 0.037 0.024

3-BSC
Num Steps ICSWM +D - C ICSWM ICSWM + D CSWM

Hits @ 1 MRR Hits@1 MRR Hits @ 1 MRR Hits @ 1 MRR

1 0.062 0.116 0.081 0.042 0.003 0.002 0.05 0.038

5 0.064 0.086 0.062 0.026 0.02 0.01 0.088 0.062

10 0.033 0.055 0.038 0.036 0.007 0.007 0.035 0.031

15 0.038 0.067 0.069 0.057 0.043 0.038 0.038 0.035

20 0.027 0.051 0.11 0.085 0.017 0.018 0.074 0.052

25 0.02 0.041 0.128 0.103 0.053 0.045 0.064 0.049

50 0.018 0.035 0.163 0.14 0.043 0.05 0.062 0.05

3-BP
Num Steps ICSWM +D - C ICSWM ICSWM + D CSWM

Hits @ 1 MRR Hits@1 MRR Hits @ 1 MRR Hits @ 1 MRR

1 0.11 0.1 0 0 0.01 0.01 0.01 0

5 0.02 0.04 0 0 0.11 0.08 0.02 0.01

10 0 0 0 0 0.07 0.07 0.02 0.02
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