
Bit-Blasting Probabilistic Programs

Poorva Garg 1 Steven Holtzen 2 Guy Van den Broeck 1 Todd Millstein 1

Probabilistic programming languages (PPLs) have emerged
as a prominent area of research in recent years due to their
ability to democratize probabilistic modeling. PPLs are
domain specific languages which have probability distri-
butions as first class members and enable conditioning on
available information. One of the key tasks of a PPL is to
perform inference on a given probabilistic model. These
probabilistic models are often a representation of real-life
applications having instances of both discrete and continu-
ous distributions and are referred to as hybrid probabilistic
models. Some common examples include modeling skill of
the players in tournaments [10] or modeling supply chain
variables with gaussian distributions [11].

Current PPLs can be divided into two broad classes which
either do not support or do not scale well on hybrid prob-
abilistic programs. On one hand, we have special purpose
PPLs which are fast for probabilistic programs they support
but impose non-trivial constraints. For example, Dice only
supports discrete probabilistic programs [6], Psi only sup-
ports exact inference on probabilistic programs with closed
form algebraic representations [3] and Stan only supports
continuous latent random variables [2]. On the other hand,
there are universal Turing-complete PPLs like WebPPL and
Anglican that can model any computable distribution, but
this generality comes at a cost [4, 14]. Their sampling-
based inference algorithms come with the risk of not scal-
ing, obtaining not enough samples in limited time. These
limitations make it non-trivial to use these probabilistic pro-
gramming languages for hybrid probabilistic models.

We present HyBit, an approximate inference algorithm that
provides better support and scalability for hybrid proba-
bilistic programs and expand the class of programs that a
special-purpose PPL can support. Through HyBit, we intro-
duce bit blasting [16, 13] in the world of PPLs and enable
the discrete probabilistic programming system Dice to be
used for hybrid probabilistic models. HyBit first obtains
a relaxed discrete abstraction of the hybrid probabilistic
program. The continuous distributions in the program are
limited to a finite range and discretized using a finite number
of bits, leading to a discrete distribution over fixed point

1University of California, Los Angeles
2Northeastern University. Correspondence to: Poorva
Garg <poorvagarg@cs.ucla.edu>, Steven Holtzen
<s.holtzen@northeastern.edu>, Guy Van den Broeck
<guyvdb@cs.ucla.edu>, Todd Millstein <todd@cs.ucla.edu>.

numbers. We represent these distributions over fixed point
numbers as distributions over their binary encoding and
further as distributions over Boolean random variables (or
bits). This is referred to as bit blasting. Bit blasting enables
use of traditional binary arithmetic operations and is par-
ticularly natural on top of recent knowledge compilation
approaches to discrete inference. These approaches reduce
probabilistic inference to weighted model counting over a
weighted boolean formula represented using compact data
structures like binary decision diagrams [6]. Once we have
this relaxed discrete abstraction, we harness the power of
these existing discrete PPLs to perform exact inference.

The bit blasting approach poses its own set of challenges.
A naive approach to discretizing a continuous distribution
using b bits would be to associate 2b probabilities with their
fixed point number represented by the bits. But as you
increase the number of bits to achieve higher accuracy, it
would not always be possible to enumerate the exponentially
increasing number of values. To counter this problem, we
present an efficient way to approximate a discrete distribu-
tion using linear piece-wise distributions. Such approxima-
tions can be written down compactly, using a number of
independent Boolean random variables (or flips) that is only
linear in the number of bits and pieces. Figure 1 shows dif-
ferent approximations possible for a normal distribution for
different number of bits and linear pieces. It can be clearly
seen that as we increase the number of linear pieces for a
fixed bitwidth, the discretized approximation gets closer to
the continuous normal distribution. Figure 1(c) shows an
approximation of a normal distribution using 7 bits and 128
linear pieces which seems visually indistinguishable from
a continuous normal distribution. It is important to note
here that the discretized approximation corresponds to the
discretized cumulative probability. That is, the probability
of a point, say xi in the approximation is the integration
of density with limits xi and xi+1 where xi+1 is the next
representable number using b bits. If there are enough lin-
ear pieces, i.e. 2b−1, we would be representing the exact
discretization using b bits leaving discretization error as the
only source of approximation.

In this work, we prove theoretically that as we increase the
number of bits, the bit blasted representation converges to
the continuous distribution. We further provide empirical
evidence to show that bit blasting probabilistic programs
can handle a broader class of programs and is more accurate
than existing approaches within a given threshold of time.



Bit-Blasting Probabilistic Programs

(a) b = 4 (b) b = 5 (c) b = 7, p = 128

Figure 1. Discretizations of normal distribution for different bits and pieces

1 xs = [1.0, 2.0, 3.0, 4.0, 5.0]
2 ys = [2.023, 2.542, 3.001, 1.919, 0.712]
3 z1 = flip(0.5)
4 z2 = flip(0.5)
5 b1 = if z1 0 else N(0, 1) end
6 b2 = if z2 0 else N(0, 1) end
7 for (x, y) in zip(xs, ys)
8 mean = x*b1 + b2
9 observe(N(mean, 1) == y)

10 end
11 return z1

Figure 2. Spike and Slab Regression Figure 3. Output of HyBit

Table 1. Comparison of HyBit with existing PPLs. We report the least absolute error achieved by each approach within a time limit of 2
hours. A bold denotes the least absolute error among the systems compared.

Benchmark HyBit AQUA [8] WebPPL(rejection) [4] WebPPL(MCMC) [4] Psi (Exact) [3]
zeroone [1] 4.51E-04 3.69E+00 1.39E+00 1.44E+00 Timeout
spacex [7] 6.94E-04 Not supported 2.00E-03 3.15E-03 Not supported
GPA [15] 2.22E-16 3.62E-01 1.95E-03 5.42E-03 0.00E+00

tug [8] 4.47E-08 Not supported 8.63E-05 6.99E-04 Not supported

Example Figure 2 shows an example which represents a
linear regression model with two features having discrete-
continuous mixtures as priors. These distributions are
known as spike and slab priors where spike refers to the
discrete distribution and slab refers to the continuous dis-
tribution. These distributions are used to induce sparsity in
regression models to select relevant features from a large
set of features [9]. Discrete-continuous mixtures also have
other applications, like modeling quantities with threshold
limits and the GPA problem is one such widely known ex-
ample in the probabilistic programming literature [15].

Current PPLs do not cater well to discrete-continuous mix-
tures; their inference algorithms do not provide support for
such distributions. For example, HMC and NUTS sampling
impose requirements of almost-everywhere differentiability
of posterior distribution [5]. To make models amenable
to such sampling algorithms, spike-and-slab priors are re-
placed with horseshoe priors making models more compli-
cated [12]. HyBit does not suffer from these limitations, it

naturally supports discrete-continuous mixtures as an infer-
ence algorithm by replacing continuous density functions
with bit-blasted probability mass functions.

HyBit needs three elements, 1) the hybrid probabilistic pro-
gram 2) the number of bits (b) and 3) the number of linear
pieces (p) to obtain the relaxed discrete abstraction. We
need the number of bits as a specification of the precision
of the discrete abstraction and the number of linear pieces
to avoid enumerating all the values of the discretized distri-
bution and come up with an efficient approximation. Using
these parameters, continuous distributions are replaced with
their bit blasted linear piece-wise approximation. Now we
perform exact inference on the relaxed discrete abstraction,
using weighted model counting supported by Dice, to ob-
tain an approximate of the inference query. Figure 3 shows
the output of using HyBit on the example of spike and slab
regression with different number of bits and linear pieces.
Table 1 shows some preliminary experimental results.



Bit-Blasting Probabilistic Programs

References
[1] P. G. Bissiri, C. C. Holmes, and S. G. Walker. A

general framework for updating belief distributions.
Journal of the Royal Statistical Society: Series B (Sta-
tistical Methodology), 78(5):1103–1130, feb 2016. doi:
10.1111/rssb.12158. URL https://doi.org/10.
1111%2Frssb.12158.

[2] B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee,
B. Goodrich, M. Betancourt, M. Brubaker, J. Guo,
P. Li, and A. Riddell. Stan: A probabilistic pro-
gramming language. Journal of Statistical Soft-
ware, 76(1):1–32, 2017. doi: 10.18637/jss.v076.i01.
URL https://www.jstatsoft.org/index.
php/jss/article/view/v076i01.

[3] T. Gehr, S. Misailovic, and M. Vechev. Psi: Exact sym-
bolic inference for probabilistic programs. In Inter-
national Conference on Computer Aided Verification,
pages 62–83. Springer, 2016.

[4] N. D. Goodman and A. Stuhlmüller. The Design and
Implementation of Probabilistic Programming Lan-
guages. http://dippl.org, 2014. Accessed:
2022-10-26.

[5] M. D. Hoffman and A. Gelman. The no-u-turn sampler:
Adaptively setting path lengths in hamiltonian monte
carlo, 2011. URL https://arxiv.org/abs/
1111.4246.

[6] S. Holtzen, G. Van den Broeck, and T. Millstein. Scal-
ing exact inference for discrete probabilistic programs.
Proc. ACM Program. Lang. (OOPSLA), 2020. doi:
https://doi.org/10.1145/342820.

[7] https://gist.github.com/canyon289. URL
https://gist.github.com/canyon289/
73890bab211c5cbaea41ad6f32df01a5.

[8] Z. Huang, S. Dutta, and S. Misailovic. Aqua: Auto-
mated quantized inference for probabilistic programs.
In International Symposium on Automated Technology
for Verification and Analysis, pages 229–246. Springer,
2021.

[9] G. Malsiner-Walli and H. Wagner. Comparing spike
and slab priors for bayesian variable selection. 2018.
doi: 10.48550/ARXIV.1812.07259. URL https:
//arxiv.org/abs/1812.07259.

[10] T. Minka, J. Winn, J. Guiver, Y. Zaykov, D. Fabian,
and J. Bronskill. /Infer.NET 0.3, 2018. Microsoft
Research Cambridge. http://dotnet.github.io/infer.

[11] E. Moradi, M. R. Ghezel Arsalan, A. Naimi Sadigh,
and H. Ghalb. Quantitative models in supply

chain management. Supply Chain Sustainability
and Raw Material Management: Concepts and Pro-
cesses, pages 285–312, 01 2011. doi: 10.4018/
978-1-61350-504-5.ch016.

[12] J. Piironen and A. Vehtari. Sparsity information and
regularization in the horseshoe and other shrinkage
priors. Electronic Journal of Statistics, 11(2), jan
2017. doi: 10.1214/17-ejs1337si. URL https://
doi.org/10.1214%2F17-ejs1337si.

[13] C. Smith, J. Hsu, and A. Albarghouthi. Trace abstrac-
tion modulo probability. Proc. ACM Program. Lang.,
3(POPL), jan 2019. doi: 10.1145/3290352. URL
https://doi.org/10.1145/3290352.

[14] D. Tolpin, J. W. van de Meent, H. Yang, and
F. Wood. Design and implementation of probabilis-
tic programming language anglican. arXiv preprint
arXiv:1608.05263, 2016.

[15] Y. Wu, S. Srivastava, N. Hay, S. Du, and S. Russell.
Discrete-continuous mixtures in probabilistic program-
ming: Generalized semantics and inference algorithms,
2018. URL https://arxiv.org/abs/1806.
02027.

[16] Y. Zohar, A. Irfan, M. Mann, A. Niemetz, A. Nötzli,
M. Preiner, A. Reynolds, C. W. Barrett, and
C. Tinelli. Bit-precise reasoning via int-blasting.
In B. Finkbeiner and T. Wies, editors, Verification,
Model Checking, and Abstract Interpretation - 23rd
International Conference, VMCAI 2022, Philadel-
phia, PA, USA, January 16-18, 2022, Proceedings,
volume 13182 of Lecture Notes in Computer Sci-
ence, pages 496–518. Springer, 2022. doi: 10.
1007/978-3-030-94583-1\ 24. URL https://doi.
org/10.1007/978-3-030-94583-1_24.

https://doi.org/10.1111%2Frssb.12158
https://doi.org/10.1111%2Frssb.12158
https://www.jstatsoft.org/index.php/jss/article/view/v076i01
https://www.jstatsoft.org/index.php/jss/article/view/v076i01
http://dippl.org
https://arxiv.org/abs/1111.4246
https://arxiv.org/abs/1111.4246
https://gist.github.com/canyon289/73890bab211c5cbaea41ad6f32df01a5
https://gist.github.com/canyon289/73890bab211c5cbaea41ad6f32df01a5
https://arxiv.org/abs/1812.07259
https://arxiv.org/abs/1812.07259
https://doi.org/10.1214%2F17-ejs1337si
https://doi.org/10.1214%2F17-ejs1337si
https://doi.org/10.1145/3290352
https://arxiv.org/abs/1806.02027
https://arxiv.org/abs/1806.02027
https://doi.org/10.1007/978-3-030-94583-1_24
https://doi.org/10.1007/978-3-030-94583-1_24

