Towards Hardware-Aware Tractable Learning of Probabilistic Models

Laura I. Galindez Olascoaga' Wannes Meert? Marian Verhelst! Guy Van den Broeck *

Abstract

Smart portable applications increasingly rely on
edge computing due to privacy and latency con-
cerns. But guaranteeing always-on functional-
ity comes with two major challenges: heavily
resource-constrained hardware; and dynamic ap-
plication conditions. Probabilistic models are
an ideal solution to the unstructured nature of
these applications: they are robust to missing data,
allow for joint predictions and have small data
needs. In addition, ongoing efforts in field of
tractable learning have resulted in probabilistic
models with strict inference efficiency guarantees.
However, the current notions of tractability are of-
ten limited to model complexity, disregarding the
hardware’s specifications and constraints. We pro-
pose a novel resource-aware cost metric that takes
into consideration the hardware’s properties in
determining whether the inference task can be ef-
ficiently deployed. We use this metric to evaluate
the performance versus resource trade-off relevant
to the application of interest, and we propose a
strategy that selects the device-settings that can
optimally meet users’ requirements. We showcase
our framework on a mobile activity recognition
scenario, and on a variety of benchmark datasets
representative of the field of tractable learning and
of the applications of interest.

1. Introduction

Tractable learning aims to balance the trade-off between
how well the resulting models fit the available data and how
efficiently queries are answered. Most implementations fo-
cus on maximizing model performance and only factor in
query efficiency by subjecting the learning stage to a fixed
tractability constraint (e.g. max treewidth). While recent
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notions of tractability consider the cost of probabilistic in-
ference as the number of arithmetic operations involved in a
query (Lowd and Domingos, 2012; Lowd and Rooshenas,
2013), they still disregard hardware implementation nuances
of the target application. This is of special concern for edge
computing on embedded applications, where the target al-
gorithm must run in resource constrained hardware, such
as a small ARM or RISC-V embedded processor, or a mi-
crocontroller. For such architectures running a lightweight
operating system, the overall compute cost is mostly deter-
mined by the cost of fundamental arithmetic operations, the
interaction with sensor interfaces and the exchanges with
the device’s memory (Kim et al., 2017).

Efforts towards hardware-efficient realizations of probabilis-
tic models are currently scarce (Tschiatschek and Pernkopf,
2015; Piatkowski et al., 2016; Sommer et al., 2018); in stark
contrast with the tremendous progress achieved by neural
network implementations (Tan et al., 2018; Howard et al.,
2017; Moons et al., 2018). We address these limitations of
the field of tractable learning by proposing a novel resource-
aware cost metric that takes into consideration the target
embedded device’s properties (e.g. energy consumption);
and system-level configuration (e.g. sensors used). We map
these hardware characteristics to the cost vs. performance
trade-off space, and propose a set of techniques to find the
optimal system-level configuration. Specifically, we address
the following points: (a) Section 3 discusses the relevant
hardware-aware tractability metrics, and Section 4 defines
the problem statement; (b) Section 5 discusses how to ex-
ploit the model’s properties to exchange task-performance
for hardware efficiency, and introduces techniques to find
the optimal set of system configurations in the cost vs. per-
formance trade-off space; and (c) Section 6 shows practical
examples of these optimal solutions. This work constitutes
one of the first efforts to introduce the field of probabilistic
reasoning to the emerging domain of edge computing. This
is motivated by probabilistic models’ traits, several of which
are ideal for portable applications that require reasoning
on the edge: robustness to missing information, small data
needs, joint predictions, and expert knowledge integration.
Moreover, unlike fixed neural architecture training, tractable
learning allows to explicitly vary the level of complexity of
the inference task, which allows to model resource tunabil-

ity.
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Figure 1. Arithmetic circuit and its mapping to hardware.

2. Background and motivation

We use standard notation: random variables are denoted by
upper case letters X and their instantiations by lower case
letters x. Sets of variables are denoted in bold upper case X
and their joint instantiations in bold lower case x. Sets of
variable sets are denoted with X'.

The model representation of choice in this paper is the Arith-
metic Circuit (AC), a state-of-the-art, compact representa-
tion for a variety of machine learning models such as proba-
bilistic graphical models (Darwiche, 2009) and probabilistic
programming (Fierens et al., 2015). Recent developments
show how the structure of ACs can also be learned from
data (Liang and Van den Broeck, 2019; Liang et al., 2017).
Furthermore, ACs can be complemented with deep learning
architectures (Xu et al., 2018; Manhaeve et al., 2018) to
achieve the best of both worlds. An alternative represen-
tation of ACs are Sum-Product Networks (SPNs), which
can also encode probability distributions as a computational
graph (Poon and Domingos, 2011; Gens and Pedro, 2013).
SPNs can be efficiently converted to ACs and vice versa
(Rooshenas and Lowd, 2014).

2.1. Probabilistic inference with Arithmetic Circuits

An AC is a directed acyclic graph where inner nodes repre-
sent addition or multiplication and leaf nodes are real-valued
variables. ACs constitute a standard representation for com-
puting polynomials, but they have proven to be efficient for
reasoning over knowledge bases and probabilistic models

when a number of additional properties are enforced on them
(Darwiche, 2009). Once the circuit is known, the complex-
ity of executing the encoded formula is also known, since
operations such as Weighted Model Counting are polyno-
mial in the size of the circuit (Chavira and Darwiche, 2008).
This makes ACs a well-suited representation for tractable
learning. When used to represent a joint probability distri-
bution over a set of random variables X, the leaf nodes of
an AC are either binary indicator variables A\ x—., where
X € X, or parameters 6. Figure 1 shows an example of
an AC that encodes the joint probability distribution of a
noisy-OR model (Heckerman, 1993).

This representation allows to perform inference to answer
a number of probabilistic queries. For example, given an
instantiation f of F C X, the marginal probability Pr(f)
can be computed by setting the indicator variables to 1
if they correspond to instantiations consistent with the ob-
served values, Ax—, < 1,~f, and subsequently performing
an upward pass on the AC. In a binary classification task,
one can define a class variable C, a feature set F and a
classification threshold 7". For a given instance f, the task
consists on selecting the class Cr for which the condition
Pr(C|f) > T is met. The conditional probability can be
calculated by performing two upward passes on the AC!
that encodes Pr(C, F), after setting the indicator variables
A in accordance to instance f. ACs’ straightforward map-
ping to embedded hardware and the fact that they readily
encode the algorithm necessary for inference, motivates our
choice for this probabilistic model representation. Moreover,
the process of learning them already entails a trade-off be-
tween their predictive performance and their computational
efficiency. The following section motivates our proposed
hardware-aware tractability metric.

2.2. Motivating example

Consider the mobile classification scenario in Figure 2,
where the feature set F={Fa1,F12,Fp1,Fp2,Fp1,Fp2} is
extracted from sensors A, B and D, and where the AC
is assumed to be the most compact model that maximizes
classification accuracy.

Suppose the feature subset F1={F 41, Fpa2, Fp1} provides
the maximum accuracy while incurring on the lowest feature
cost, a common solution for the problem of feature selection.
But when considering also the costs of the sensors, feature
set Fo={Fp1, Fp2, Fp1} turns out to be the better choice,
as sensor A is unused and can be turned off. This exam-
ple shows that trade-off opportunities can be missed when
failing to describe realistic hardware-aware system-level
COsts.

! Conditional probability can also be performed by an upward
and a downward pass (Darwiche, 2009).
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Figure 2. Sensory embedded classification example.

3. Hardware-aware cost

In this section we formalize the notion of hardware-aware
cost, the basis of our optimization framework. Let o =
(4, %, 0) be an AC that encodes a joint probability distri-
bution over variables F, extracted from the set of sensor
interfaces S. The hardware-aware cost (Cyp) is defined as:

Cua(a,F,S) = )+ Csr(S,F), (1)

Ses

Cac(a

where Cac are the computation costs, pertaining to infer-
ence on «, and Cgy are the sensor interfacing and feature
extraction costs.

Computation costs. At a high level, a typical embedded
hardware architecture entails two components: an off-chip
memory, which commonly houses the algorithm’s parameter
set, and a processing unit where operations are performed
and intermediate values are cached in a temporal memory.
Performing an upward pass on an AC involves the follow-
ing actions (see Figure 1): 1) fetching parameters from
the off-chip memory, 2) performing arithmetic operations,
consisting of additions and multiplications, 3) caching in-
termediate values in a local memory (e.g. register file or
low level cache) and 4) fetching intermediate values from
local memory, as needed.” Each action has a significantly
different hardware resource cost. For example, post synthe-

’Depending on the local memory size, one might need to store
intermediate values also in off-chip memory but we assume that
the local memory size is sufficiently large, but not large enough to
store parameters.

sis energy models of a simple embedded CPU show that
multiplications can require 4 times as much energy as ad-
ditions, and off-chip memory exchanges 5 times as much
energy as multiplications (Horowitz, 2014). When it comes
to the design of embedded hardware, energy efficiency is
indeed one of the main challenges to address (Kim et al.,
2017). Hence, we continue to focus on this resource as a
proof of concept without loss of generality; examples of
other relevant hardware resource metrics are throughput and
latency. It is evident that the total hardware cost of perform-
ing a pass on an AC must factor in all the aforementioned
exchanges. Let nb be the number of bits used to represents
parameters 6 and perform arithmetic operations + and X.
The computation cost (Cac) of AC « is defined as:

Cac(a,nb) = C4(nb) + Cx (nb) 2
+Cmem (nb) + Ceache (nb),

where the terms in Ca ¢ define the cost incurred by each type
of operation. Here, C and Cy are the costs of addition and
multiplication; Ciyep, is the cost from fetching parameter
leaf nodes from off-chip memory and C,cpe is the cost
from storing and fetching from local cache (as in Figure 1):

Cy(nb) =3 ,la=¢ +]- ¢4 (nb),
Crem(nb) = 3 [a #¢ + and a #;

Cx(nb) =3 ,[a =t x] - ¢x(nb),
Ccache(nb) Za[

] ¢mem (nb)v
=; +ora=; X] : ¢cache(nb)7

where a denotes a node in «, the equality =; holds when
node a matches the operation type on the right side and []
is equal to 1 when S is true. The function ¢(.) describes
the effective cost of the particular operation and can be
derived from empirical benchmarks,customized to the target
hardware (Horowitz, 2014). When expressing cost in terms
of energy consumption, computation costs scale with the
precision in number of bits used to represent parameters
and perform arithmetic operations (nb), which is typically
the same for all nodes in the AC. To conclude, the cost
incurred by each node in an AC is determined by its type
(whether addition, multiplication, local parameter fetch, or
remote memory access) and the resolution of the operation
or parameter (in nb).

Sensor interfacing costs The computational block de-
scribed above is often part of a larger system, which re-
peatedly performs a task based on external inputs or obser-
vations, such as classification. In this scenario, one must
factor in the costs incurred by interfacing with the environ-
ment or the user. A sensory interface consists of a set of
sensors S, which gather, process and digitize environmental
information (typically in the analog domain), and a (typi-
cally digital) feature extraction unit, which generates the
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feature set F to be used by the machine learning algorithm.
Let S be the set of available sensors and F the feature set
extracted from them. The sensor interfacing cost (Cgj) is:

Csi(S,F) = Cs(S) + > Cr(Fs), 3)

FseFs

where Cg describes the cost incurred by sensor S and Cg
the cost of extracting feature set F g C F. The sensing cost
function Cg can be customized to the target platform and
applications through measurements or data sheets. Note
that, if no features from a given sensor are used, it can be
shut down, and its cost dropped (see Figure 1). In most
systems , Cg can be defined from the type and number of
arithmetic and memory operations involved, in a similar
fashion to the computation cost estimation Cac;, as will be
illustrated in the experiments (Section 6.1).

4. Problem statement

We have seen so far that Cya depends on four system prop-
erties:1) the complexity of model «, determined by the
number and type of its operations; 2) the size and type of
the feature set F'; 3) the size and type of the available sensor
set S; and 4) the number of bits nb used within «e. We refer
to an instantiation of these four properties o ={«, F, S, nb}
as a system configuration. Clearly, the system configuration
also determines the algorithm’s performance, defined ac-
cording to the application of interest. The methods proposed
in this work can accommodate any performance metric or
miss-classification cost, but we will only consider accuracy,
due to its generality. Specifically, we set the classification
threshold to T' = 0.5, and we consider the accuracy of
the Bayes-optimal predictions (Acc) over a set of feature
instantiations {f, ..., f; }.

Section 2.2 asks to identify the system configuration that
incurs the lowest cost for a desired accuracy. Similarly, we
might be interested in the configuration that achieves the
highest accuracy for a given cost constraint. Thus, the prob-
lem we aim to address is how to select the system configu-
rations that map to the Pareto-frontier on the hardware-cost
vs. accuracy trade-off space. The inputs to our problem
are the class variable C, the available features F and sen-
sors S sets, and the set of available precisions nb. The
output is the set of Pareto-optimal system configurations
o* = {{a*, F*i, S*Z‘, nb;‘}izlzp}.

i

5. Trade-off space search

We propose to search the cost vs. accuracy trade-off space
by scaling four properties (see Section 4):

Model complexity scaling. We learn a set of ACs a of
increasing complexity. Each maps to a specific classification
accuracy and computation cost Cac (see Eq. 2). Although

discriminative AC learners have shown beyond state-of-
the-art classification accuracy (Liang and Van den Broeck,
2019), we have opted for a generative learning strategy,
the LearnPSDD algorithm taken from Liang et al. (2017).
The motivation for this choice is twofold: this algorithm
improves the model incrementally, but each iteration already
leads to a valid AC, that can be used to populate the set cx.
Moreover, the learner outputs a more robust model, which
is demanded by the application range of interest: it must
often deal with missing values, either due to malfunction
(e.g., a sensor is blocked in an autonomous driving system),
or to enforce hardware-cost efficiency (e.g., when energy
consumption is excessive, the driving system has the choice
to turn off an expensive sensor and the features extracted
from it).

Feature and sensor set scaling. We scale the feature set F
by sequentially pruning individual features (see Section 5.1).
The effect of feature pruning on classification accuracy has
been discussed in numerous works (Friedman et al., 1997,
Choi and Broeck, 2018) and the impact on the hardware-
aware cost is clear from Eq. 3. Pruning features can also
have an impact on the computation costs Cac: recall from
Section 2.1 that indicator variables A or non-observed values
are equal to 1 and allow pre-computing the arithmetic opera-
tions whose inputs are known (see Algorithm 2). In addition,
sensor S C S can be pruned when none of the features it
originates is used anymore; a strategy that has not been
explored by the state-of-the-art, but that is straightforward
with our approach, since it considers the full system.

Precision scaling. We consider four different standard
IEEE 754 floating point representations , as they can be
implemented in almost any embedded hardware platform.
Reducing the precision of arithmetic operations and numer-
ical representations entails information loss and results in
performance degradation (Hashemi et al., 2017). The effect
on computation costs Cac is clear from Eq. 2.

5.1. Search strategy

Finding the smallest possible AC that computes a given
function is E’Q’—hard (Buchfuhrer and Umans, 2008), thus
computationally even harder than NP. No single optimal
solution is known for this problem; it is a central question in
the field of knowledge compilation (Darwiche and Marquis,
2002). Optimizing for the lowest-cost/highest-accuracy AC,
further increases complexity. We therefore opt for a greedy
optimization algorithm. Specifically, we rely on a series
of heuristics to search the trade-off space. In each step,
we independently scale one of the available configuration
properties (v, F, S, nb), as described in the previous section,
and aim to find its locally optimal setting. The search begins
by learning the model set a={a, } —1.,,. Starting from each
model oy, we perform a greedy neighborhood search, that
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aims to maximize cost savings and minimize accuracy losses
by sequentially pruning the sets F and S , and modifying
ay . At each iteration of Algorithm 1, we evaluate the
accuracy and cost of m feature subset candidates, where
each considers the impact of removing feature j from the
user-defined prunable set F ;. nape © F . We then select
the feature and sensor subsets Foeject € F, Sgerect € S and
the pruned model avsejecr (Algorithm 2) that maximizes the
cost function CF = acc/costnorm, Where costyorm is the
evaluated hardware-aware cost Cya, normalized according
to the maximum achievable cost (from the most complex
model available «,). Note that the feature set selection
drives the sensor set selection S.jec:, as described before.

Algorithm 1: Feature selection heuristic

IHPUt: ag , F, Fprunablea S
Output: (F*) SK) AK))
Fselect < Fprunables Sselect ~ S
Qlgelect S U, M — |Fselect|
<I(k)a S(k)a A(k)> — <Fselect; Sselect> aselect>
while m > 1 do
for j =1tomdo
Fca,j — Fselect \ Fj
Sca,j — Sselect
for S € Sserect do
if chj ¢ FS then Sca,j — Sselect \ S
Qca,j <*IACpruning(O[select7 Fca,j)
aCCcq,; ACC(Olcq,j,Fca,j)
COStca,j <_CHA (aca,jy Fca,j7 Sca,j);
end
Olselect < argmaxey,, CF(acceq,costeq)
Frp < argmaxpgp,, CF(acceq,costcq)
Fselect <~ Fselect \ Frm, m < ‘Fselect|

end
for S € S,eiect do

‘ if Fselect ¢ FS then Sselect — Sselect \ S
end
]:(k) — ]:(k) U Fselecta S(k) < S(k) U Sselect
A(k) <~ A(k) U Qselect

end
return (F ) S() - AK))

The output of Algorithm 1, (F*) S AR)Y s a set of
system configurations of the form {{Fse; 1, Sser, 1, Xsel 1}
ooy {F sel,q» Ssel,q> ¥sel,q } }» Where ¢=|Fprunable|, and the
superscript (k) denotes the number of the input model ay,
taken from «. For each configuration resulting from Algo-
rithm 1, we can sweep the available precision configurations
nb, for a final space described by o=(F, S, A, N) of size
|| - |F prunabie| - ||, where N contains the selected preci-
sion. In the experiments section we show a work-around to
reduce search space size and the number of steps required
by the Pareto-optimal search. Regarding complexity, the

Algorithm 2: ACpruning
Input :o, F
Output : oy,
Qpyr —
foreach node a,  in oy, do
if factorl is 0 and factor2 is Ay and f ¢ F then
0’ = evaluate(ax )
replace (ax 1, factorl, factor2) < 6’
end
end
Return : o,

feature selection in Algorithm 1 is a greedy search, thus
its complexity is linear in the number of features times the
number of iterations needed for convergence to the desired
accuracy or cost. The AC pruning routine consists of an
upward pass on the AC and its complexity is therefore linear
in the number of AC nodes.

5.2. Pareto-optimal configuration selection

Algorithm 3 describes how we extract the Pareto-optimal
configuration subset, but any convex hull algorithm can be
used. The input is o=(F, S, A, N') with the accuracy Acc
and cost points cost evaluated at each configuration setting.
The output of this algorithm is the set of Pareto-optimal sys-
tem configurations o*={{a},F*;, S*;,nb} };=1.,}, each
guaranteed to achieve the largest reachable accuracy for
any given cost; or the lowest reachable cost for any given
accuracy (Acc*, cost™).

Algorithm 3: Pareto-optimal configuration selection.
Input :0,Acc, cost
Output: o*,Acc*, cost™*
(cost”, 0", Acc™) — ({}, [}, {});
(cost, o, Acc) + sorted({cost, o, Acc));
Acepin + 0,0+ |o|+1;
AcCmaz + 00;
while i > 0 do
i < arg max Accg.;;
if Accnae < Acc; then break;
o «— o*Uoy;
Acc* < Acc* U Acc;;
cost™ < cost* U cost,;
Acepmaz < Acc;
end
Return :0*, Acc*, cost*

The next section illustrates how can our methodology reap
the benefits of scalable embedded hardware.
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Table 1. Experimental datasets
t: Classification , x: Density est.

Dataset [F| | |Fprunabie] | ]
Banknote? | 15 15 11
HAR ¥ 28 28 11
Houses f 36 20 6

Jester * 99 20 5

Madelone T | 20 20 11
Nltcs * 15 15 11
wilt T 11 11 11

6. Experimental evaluation

We empirically evaluate the proposed techniques on a rel-
evant embedded sensing use case: the Human Activity
Recognition (HAR) benchmark (Anguita et al., 2013). Ad-
ditionally, we show our method’s general applicability on a
number of other publicly available datasets (Dua and Graff,
2017; Guyon and Gunn, 2003; Johnson et al., 2013; Lowd
and Davis, 2010), two of them commonly used for den-
sity estimation benchmarks and the rest commonly used for
classification (see Table 1).

Computational costs. The computation costs Cac are
based on the energy benchmarks discussed in Horowitz
(2014) and Shah et al. (2019). Table 2 shows the relative
costs of each term in C ¢ and how they scale with precision
nb. The baseline is 64 floating point bits because it is the
standard IEEE representation in software environments. For
the rest of the experiments, we consider three other standard
low precision representations: 32 bits (8 exponent and 24
mantissa), 16 bits (5 exponent and 11 mantissa) and 8 bits
(4 exponent and 4 mantissa) (IEEE, 2008).

Dataset pre-processing. For the classification bench-
marks, we discretized numerical features using the method
in Fayyad and Irani (1993). We then binarized them and
subjected them to a 75%-train, 10%-validation and 15%-
test random split. For the HAR benchmark, we preserved
the timeseries information by using the first 85% samples
for training and validation and the last for testing. For the
density estimation datasets, we used the splits provided in
Lowd and Davis (2010) and we assumed the last feature
in the set to be the class variable. On all datasets, we per-
formed wrapper feature selection (evaluating the features’
value on a Tree Augmented Naive Bayes classifier) before
going through the hardware-aware optimization process to
avoid over-fitting on the baseline model and ensure it is a
fair reference point. The number of effectively used fea-
tures | F'| is shown in Table 1. In addition, we consider all
the features to be in the prunable set F,,,nabie for datasets
with less than 30 features. For the rest, we consider the 20
with the highest correlation to the class variable. Within
the context of an application, the prunable set can be user-

defined. For instance, in a multi-sensor seizure detection
application, medical experts might advise against pruning
features extracted from an EEG monitor.

Table 2. Experiment computational costs.

Operation | 64 bit Operation cost
Crinem 1 (bmem = Ymem * nb
Ceache 0.2 Gcache = Yeache = Nb
Cx 0.6 | ¢x =~2 -nb?-log(nb)
C+ 0.1 ¢+ =Y+ - nb

Model learning We learned the models on the train and
validation sets with the LearnPSDD algorithm (Liang et al.,
2017), using the same settings reported therein, and fol-
lowing the bottom-up vtree induction strategy. To populate
the model set «, we retained a model after every N/10
iterations, where [V is the number of iterations needed for
convergence (in the algorithm this is until the log-likelihood
on validation data stagnates). Table 1 shows || for each
dataset.

6.1. Embedded Human Activity Recognition

The HAR dataset aims to recognize the activity a person is
performing based on 561 statistical and energy features ex-
tracted from smartphone accelerometer and gyroscope data.
We perform binary classification by discerning “walking
downstairs” from the other activities. For the experiments,
we use a total of 28 binary features, 10 of which are ex-
tracted from the gyroscope’s signal and the rest from the
accelerometer, as detailed in appendix D. All computation
costs for this dataset are normalized according to the energy
consumption trends of an embedded ARM M9 CPU, assum-
ing 0.1nJ per operation (Tarkoma et al., 2014). Sensors are
estimated to consume 2mWatt, while the costs of all features
is defined as 30 MAC operations (see appendix B for more
details).

Pareto optimal configuration. This experiment consisted
of three stages, as shown in Figure 3(a): 1) We first mapped
each model in « to the trade-off space, as shown in black.
2) Starting from each model, we scaled the feature and the
sensor sets F, S, as shown in blue. 3) We then scaled the
precision nb of each of these pruned configurations (shown
by the grey curves) and we finally extracted the Pareto front
shown in red. As shown by the Pareto configurations high-
lighted in green, our method preserves the highest baseline
accuracy by pruning 11 of the available 28 features, which
results in a reduced resource consumption of 55%. When
willing to tolerate 0.5% less accuracy, our method outputs a
configuration that consumes only 20% of the original cost
by using a smaller model (ay), pruning 18 features, turning
one sensor off and using a 32 bit representation. Figures
3(a,b) break down the computational cost Cs¢ and the sen-
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Figure 3. Experiments on the Human Activity Recognition bechmark.

sor costs Cgr. When considering only the costs of the AC
evaluation (graph (b)), our method results in savings of al-
most two orders of magnitude with accuracy losses lower
than 1%, and up to 3 orders of magnitude when tolerating
more losses. Sensor and feature costs, as shown in graph (c)
only scale up to 50%, since at least one of the sensors must
always be operating. This demonstrates the importance of
taking these costs into account: even though computation
costs savings are impressive, the system is still limited by
the sensing costs.

Robustness and online deployment. The red curve in Fig-
ure 3(d) shows that the evaluation of the selected Pareto
configurations against testing data stays within a range of
+1% with respect to Figure 3(a). We also assessed the ro-
bustness of our method by simulating, per configuration,
ten iterations of random failure of varying sizes of feature
sets (|F|/10,|F|/5,|F|/2). The green and magenta dotted
curves show the median of these experiments for the Pareto
configurations and for the original model set. We can see
that these trials stay within a range of —2% compared to the
fully functional results in red and black, which validates our
choice of a generative learner that can naturally cope with
missing features at prediction time.

In embedded sensing scenarios, environmental circum-
stances, power consumption requirements and accuracy
constraints commonly vary over time. For example, when
battery power is low, a small drop in accuracy to save power
might be acceptable. Or when no activity is observed, it
might be beneficial to periodically go to a lower power
consumption stand-by state. This calls for dynamic operat-
ing settings, where the system can switch between differ-
ent accuracy-cost operating points at run-time. Figure 3(f)
shows such a switching scenario with 9 operating-points,
which comply with hypothetical user needs: Acc > 95%,

cost < 40%. The implemented policy has two actions: an
energy efficient action whenever the classifier has identified
no changes in activity during a period of time, and a high
reliability action whenever the classifier has identified re-
cent changes in activity (see appendix C for more details).
Figure 3(f) contrasts the cost-accuracy performance attained
when always using the same model (in red), with the cost-
accuracy performance resulting from the implementation
of our model-switching policy (blue cross). Even with its
simplicity, the proposed policy attains accuracy vs. cost im-
provements that go beyond the static Pareto front. Figure
3(e) shows how this is achieved by making a balanced use
of the 9 available operating points.

6.2. Generality of the method: evaluation on
benchmark datasets

We now apply our optimization sequence to the datasets
in Table 1. For lack of information on the hardware that
originated these datasets, we only consider the computation
cost Cac, again evaluated on the cost model of the ARM
M9 CPU. Table 3 shows this cost along with the training and
testing accuracy (Accy,,Accye) at four operating points for
every dataset. We can see that all the benchmarks strongly
benefit from our proposed methodology and that they are all
robust when contrasted against the test dataset. Appendix A
shows a figure with the Pareto fronts for all the experiments
herewith.

7. Conclusions

We proposed a novel hardware-aware cost metric to deal
with the limitations of the efficiency vs. performance trade-
off considered by the field of tractable learning. Our method
obtains the Pareto-optimal system-configuration set in the
hardware-aware cost vs. accuracy space. The proposed so-
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Table 3. Results for benchmarking datasets [Cac,Acce:%,Accie%].

Dataset | Operating pt. 1 Operating pt.2 Operating pt. 3 Operating pt. 4
Banknote | [1,94.5,95.6] | [0.17,94.5,95.6] | [0.10,93.1,94.2] | [0.03, 84.5, 86.7]
Houses [1,97.6,97.4] | [0.09,97.1,96.6] | [0.03,96.1,95.7] | [0.01,94.3,94.0]
Jester [1,76.9,76.7] | [0.40,77.0,77.0] | [0.10,76.2,76.4] | [0.04,74.6,74.7]
Madelone | [1,68.1,68.4] | [0.12,68.6,69.0] | [0.07, 66.1,65.7] | [0.03,65.7, 66.7]
Nltcs [1,93.5,93.9] | [0.12,93.3,93.6] | [0.03,90.8,91.4] | [0.008, 89.5, 89.5]
Wilt [1,97.1,97.5] | [0.14,97.1,97.5] | [0.06,97.1 ,97.5] | [0.02,94.5,94.6]

lution consists of a sequential hardware-aware search and a

Darwiche, A. (2009).

Modeling and Reasoning with

Pareto-optimal configuration selection stage. Experiments
on a variety of benchmarks demonstrated the effectiveness
of the approach and sacrifice little to no accuracy for sig-
nificant cost savings. This opens up opportunities for the
efficient implementation of probabilistic models in resource-
constrained edge devices, operating in dynamic environ-
ments.

Future work includes learning comprehensive online-model-
tuning policies for applications that must perform under dy-
namic environments, such as autonomous robot navigation
and biomedical monitoring applications; and implementing
the techniques proposed herewith to trade-off accuracy for
time-based hardware resources such as latency and through-
put.
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A. Experiments on benchmarking datasets

Figure 4 shows the cost vs accuracy mapping for all datasets.
The Pareto curves obtained by the proposed method on the
left, and their evaluation on the test dataset on the right.

B. Cost estimation for experiment on HAR

Sensor costs We assume feature extraction and classifi-
cation take place in an ARM 9 CPU, which consumes, on
average 1 Watt to execute 10G operations per second. That
means it will consume approximately 0.1nJ per operation
(see https://developer.arm.com/products/processors/classic-
processors) and will thus require approximately 1 pJ per
instance classified (the largest AC requires has 5000 oper-
ations and at least two passes are necessary to classify an
instance). We assume both the gyroscope and the accelerom-
eter consume at least 2 mW when operating at 10KHz, and
that they thus consume roughly 0.2 pJ per operation of the
CPU. Note that gyroscopes can consume as much as 10
times more energy than accelerometers, but we can assume
that they are both part of a larger system, such as a Inertial
Measurement Unit, hence we assign the same cost to both.
Thus, we set the cost of the sensors relative to the computa-
tion costs, that is, each sensor has a cost 10% the total cost
of classifying a single instance in the most complex model
available.

Feature costs The features of this dataset are ex-
tracted by sampling the sensory signal, applying three
low-pass filters and calculating statistical quantities
(mean,maximum/minimum,correlation and standard devi-
ation) on the resulting signal. Sampling and extracting the
statistical features require a small number of operations in
comparison to filtering. For example, calculating the mean
of a sample requires a single MAC (Multiply-Accumulate,
consisting of a multiplication and an addition) operation,
whereas a 3rd order low pass filter will require, at least, 9.
Filtering thus takes the bulk of the computations, so we
assume a lower bound of 30 MAC operations per extracted
feature.

C. Model switching experiment

The Pareto-configuration model set used in this experiment
was selected according to hypotetical user’s needs: accu-
racy must be larger than 95% and cost lower than 40%”.
The implemented policy is the following:

e When the predictions at t — 5 to ¢ — 1 have been "no
activity”: 1) switch to a simpler model if prediction at
t is ”no activity”, 2) switch to a more complex model
when prediction at time ¢ is "activity”.

e When the predictions at t — 5 to ¢ — 1 have been “ac-
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tivity”: 1) switch to a simpler model if prediction at ¢
is ’no activity”, 2) switch to a more complex model
when prediction at time ¢ is “activity”.

D. Features used for experiments on HAR

1 tBodyAcc-mean()-X-valuel

2 tBodyAcc-mean()-X-value2

3 tBodyAcc-mean()-Y-valuel

4 tBodyAcc-mean()-Y-value2

5 tBodyAcc-max()-Y-valuel

6 tBodyAcc-max()-Y-value2

7 tBodyAcc-max()-Y-value3

8 tBodyAcclerk-entropy()-X-valuel

9 tBodyAcclerk-entropy()-Y-value2
10 tBodyAcclerk-entropy()-Y-valuel
11 tBodyAcclerk-entropy()-Y-value2
12 tBodyAcclJerk-entropy()-Z

13 tBodyAcclerk-arCoeff()-X,4

14 tBodyAcclerk-arCoeff()- Y, 1

15 tBodyAcc-max()-Z

16 tBodyAcclerk-arCoeff()-Z,1

17 tBodyAcclerk-arCoeff()-Z,2

18 tBodyAcclerk-arCoeff()-Z,3

19 tBodyGyrolerk-corr.()-X,Z-valuel
20 tBodyGyroJerk-corr.()-X,Z-value2
21 tBodyGyroJerk-corr.()-X,Z-value3
22 tBodyGyroJerk-corr.()-X,Z-value4
23 tBodyGyro-mean()-X

24 tBodyGyro-std()-Y

25 tBodyGyro-min()-Y

26 tBodyGyro-energy()-X

27 tBodyGyro-arCoeff()-X, 1

28 tBodyGyro-correlation()-X,Y



