On hardware-aware probabilistic frameworks for
resource constrained embedded applications

Laura I. Galindez Olascoaga™ , Wannes Meert', Nimish ShahT, Guy Van den Broeck?!
and Marian VerhelstT

¥ Electrical Engineering Department, KU Leuven , T Computer Science Department, KU Leuven
¥ Computer Science Department, University of California, Los Angeles

Abstract

Edge reasoning attempts to mitigate latency and privacy shortcomings of cloud
computing paradigms. However, it introduces additional challenges linked to the
devices’ resource constraints and the applications’ dynamic conditions. To address
these challenges, we have proposed a hardware-aware probabilistic framework that
optimizes the target machine learning model under actual hardware constraints.
This framework relies on tractable probabilistic models, as they facilitate efficient
inference, while exhibiting a number of traits relevant to the application range of
interest: robustness to missing data, joint prediction capabilities, explainability,
and small data needs. In this work, we expand on this framework by introducing a
discriminative-generative approach to model learning, which retains the robustness
of a generative model under missing data but can potentially improve its discrim-
inative performance. In addition, we demonstrate how the applicability of this
framework goes beyond classification tasks, and can be used for density estimation
tasks, relevant to applications such as mobile speaker verification.

1 Introduction

Deep Learning (DL) has recently shown great success in a variety of tasks ranging from computer
vision to natural language processing. But constraints inherent to embedded applications call for a
unique set of attributes that DL approaches are often not equipped with, such as the ability to handle
uncertainty and missing data, and the capability of encoding domain knowledge. Probabilistic models
are capable of addressing many of these challenges and can therefore constitute a complementary
approach to DL. Yet, their deployment has not been as widespread since traditional exact inference
techniques on them can be inefficient or even intractable. Current efforts in the field of Tractable
Probabilistic Modeling have been making great strides towards balancing the trade-off between
model expressiveness and inference efficiency, while achieving state of the art performance on par
with DL approaches [13]]. However, these efficiency notions are often given in abstract terms such
as time and space and disregard implementation nuances of the target applications and hardware
devices. To address such application-driven limitations, recent works have proposed to infuse
probabilistic reasoning frameworks with hardware-awareness [3| 4]]. Such paradigms enable the
exploitation of scalable system properties (such as sensor quality, the number of extracted features,
the model complexity, or the precision used for computations) to smartly balance the trade-off
between task performance and device resource availability. In particular, these works have focused
on the trade-off between accuracy of a classification task and total system-level energy cost of the
involved embedded device. This paper builds upon the work in [4] and adds two contributions:
1) a discriminative approach to the model-learning step that capitalizes on the model’s ability to
encode domain knowledge; and 2) how the framework can be deployed with alternative tasks and
performance metrics.

5thWorkshop on Energy Efficient Machine Learning and Cognitive Computing (EMC? at NeurIPS 2019).

2 Background

Variables are denoted by upper case letters X and their instantiations by lower case letters z. Sets
of variables are denoted in bold upper case X and their joint instantiations in bold lower case x.
The tractable model representation used in this work is the Arithmetic Circui (AQ) [2], a directed
acyclic graph where inner nodes represent addition (logical OR gate) or multiplication (logical AND
gate) and leaf nodes are real valued. When ACs are used to represent joint probability distributions
over a set of random variables X, their leaves encode binary evidence-indicator variables A x—,, or
probabilistic parameters 6. As such, ACs already encode the formula required to perform inference,
and are therefore a well-suited representation for tractable learning. Given an instantiation f of
F C X, the marginal probability Pr(f) can be computed by setting the indicator variables to 1 if they
correspond to instantiations consistent with the observed values, Ax—, < 1,.f, and subsequently
performing an upward pass on the AC. In a binary classification task, one defines a class variable C, a
feature set F' and a classification threshold 7' = 0.5, and selects the class C'; for which the condition
Pr(CIf) > T is met, where Pr(C|f) = Pr(C.f)/pr(f) is calculated wih two upward passes in the AC.

The type of AC used in this work is the Probabilistic Sentential Decision Diagram (PSDD) [6]. The
inner nodes of a PSDD alternate between AND gates with two inputs and OR gates with arbitrary
number of inputs. A decision node is the combination of an OR gate with its AND gate inputs,
where the left input of the AND gate is referred to as prime (p), and the right referred to as sub
(s). PSDDs possess a number of syntactic restrictions: 1) Each AND node must be decomposable,
meaning that their input variables must be disjoint. This property is enforced by a variable tree (vtree),
a binary tree whose leaves are the random variables (see Fig[3). In each internal node, variables
appearing in the left subtree X are the primes and the ones appearing in the right subtree Y are
the subs. 2) Each decision node must be deterministic, meaning that only one of its inputs can be
true. Thus, a decision node encodes a joint distribution over disjoint variables X and Y given by
Pr(X,Y) =", 6; Pr(X) Pr(Y), where the parameter 6; is a maximum-likelihood estimate.

3 Hardware-Aware probabilistic framework

Fig. [T]depicts the building blocks of the embedded system considered in this work: 1) sensor interface
block, marked in green, where the incoming signals are processed for feature generation; and 2) a
computational block, marked in blue, where the AC («)) computes marginal probabilities.

----- Pr(A)=)_ Pr(A|B,C) Pr(B) Pr(C)=

e
(Sensor 1HFeature extraction 1} A

B

Sensor 2 Feature extraction 2

P(-B)

‘\
\\\\ [Pcais-o] [Paso][ro

CAC(aa nb) = C+(7’Lb) + Cx (’Vlb) + Cmem(nb) + C(:m:lle(nb)~

Cua(S,F,a,nb)=Y Csi(S,Fs)

Ses

memory fetch

Csi(S.F) = Cs(S)+ 3 Cr(Fs)

Fs€Fs

Figure 1: Block diagram of an embedded sensing system and the definition of hardware-aware cost.

3.1 Hardware-aware cost

The hardware-aware cost Cyp introduced in [4] describes the total system’s hardware-resource
consumption during real time data collection and probabilistic inference, and can be expressed in
terms of a measurable property, such as energy consumption, throughput or area. Fig. [I] breaks
the Cya down when considering relative energy consumption: sensor interfacing costs Cgy are a
function of the sensor and feature sets S, F, and inference-computation costs Ca¢ are a function
of elementary operation costs (multiplication, addition and memory exchanges); and precision in
number of bits nb.

! An alternative representation of ACs are Sum-Product Networks (SPNs) [9].

3.2 Trade-off search

The trade-off between hardware-aware cost and task-performance is thus determined by four system
properties: inference model complexity «, the type and number of sensors and features (F',S) and
the number of bits used for computations nb. The goal is to find the system configuration that
incurs the lowest cost for a desired inference quality, or the best inference quality for a given
hardware cost constraint. In other words, the pareto-optimal set of system configurations: o* =
{{of,F*;,8%;,nb} }i=1.p }.The top of Fig. illustrates the proposed technique, which takes places
over two main stages: 1) the trade-off space is first searched by tuning scalable system properties;
2) the Pareto-optimal configuration set o* is then extracted from the search space. This search
takes places over several consecutive stages determined by the desired task (classification or density
estimation), the type of input to the model learning strategy (data or a probabilistic model), and the
capabilities of the hardware (whether e.g. it supports low precision arithmetic or not).

Density estimation No HW support

o Scale HW Get
Classification Sensor support b Scale Optimal
Interfaces :Ireusmn Configurations
x =

Scale AC Complexity

PGM..BP. Compile to AC!
Density estimation

~~~~~~

¥l earn ACs |

Algorithm 1: ScaleSIar F oo Soron).

‘Algorithm 2: PruneAC(o,F):

Input: ay: the kth model in o, Fprun,Sprun: set of

prunable features and sensors.

Output: (F* S* M*), acc, cost: kth collection of
pruned features, sensors and model sets, their
accuracy and cost.

1 Foer < Fprun, Sset < Sprun, Qsel +— o

2 (F*, 8% MFY « (Foer, Sset, avser)

3 accsa=Acc(asel, Foet), costsear=Cra (aset, Foet, Sset)
4 (acc, cost)  (accser, costsel)

s while |F,.| > 1do

6 0baz < 0 // Initialize objective value
7 foreach F' € F .., do

8 Fou < Foa \ F

9 Sco < See

10 foreach S € Sy, do

11 if F.,, NFs = @ then

12 L L Sca < S \ S // Prune sensor
13 Qeq PruneAC(acser,Fea)

14 acceq  Acc(acaFea)

15 costea < Cral@ca,FeasSca)

16 0beq <+ OF (accea, costea)

17 if 0bco > 0bpas then

18 0bmag < 0bea

19 Fier < Fea, Sset < Sca, Qsel ¢ Qea

20 ACCse] $— ACCrq,COStse] — COStcq

21 FF* insert(F ), S* insert(S o1 ), M" insert(auser)

22 acc.insert(accse;), cost.insert(costse;)

Input: «: the input AC, F: the observed feature set used
to guide the pruning of «.

Output: oy, the pruned AC.
1 Oy 4 copy(a)

/* Loop through AC, children before parents */
2 foreach a in «,, do
3 if a is an indicator variable Ap—s and F ¢ F then
4 \ replace a in o, by a constant 1
5 else if a is + or X with constant children then
6 L replace a in o, by an equivalent constant

7 return ap,

Input: o, acc, cost: Configuration set, their accuracy
and cost.
Output: o*, acc™, cost™: Pareto optimal
configurations, their accuracy and cost.
1 (cost”, 0", acc’) ({1 {}{}) :
/* Sort according to ascending cost */
2 (cost, o, acc) < sorted({cost, o, acc));
3i+ |o|+1;
4 while ; > 0 do
5 i 4— argmax accy;;
o insert(o;)
acc”.insert(acc;)
cost™.insert(cost;)
i—i—1

6
7
8
9

23 return (F*, S* M*), acc, cost 10 return o*, acc”, cost™

Figure 2: Hardware-aware probabilistic framework and its algorithms.

Model scaling The first step consists of learning a set of models a of increasing complexity by
either compiling them from a Probabilistic Graphical Model (PGM) or a Probabilistic Program (PP)
[2,15]], or by learning their structure [7,[11]]. The work in [4]] focuses on a classification task, performed
on a set of increasingly complex PSDDs. These models are generated by the PSDDlearn algorithm
from [7]], which incrementally improves the structure of an existing PSDD to better fit the data (by
maximizing model log-likelihood). A generative learner was selected since it guarantees robustness
against missing data, which in our framework is a natural consequence of feature and sensor pruning.
However, generative learning disregards the correlation between the class variable C' and the feature
variables F. For the framework in [4]], the learning algorithm is driven by a vtree generated by
minimizing the pairwise mutual information [[7] among the input variables {Fy, Fb, F3, Fy, C'} (left
side of Fig. Eka)), and is initialized on a fully factorized PSDD (right side of Fig. Eka)).



In this work, we propose to initialize the algorithm on a PSDD that encodes the discriminative
relationship between the class variable C' and the feature variables F (see Fig[3(b)). This will initially
put more weight on learning the (discriminative) relationship between the class and the features
before learning the (generative) relationships between features. Specifically. we force the prime of
the root node (in red), to be the class variable C. The sub of this root node is a vtree learned on the
feature variable set { Fy, Fy, F5, F4} (in blue). We then initialize the algorithm on the shown PSDD,
where feature variables are independent from each other, but conditioned on the class variable.

Figure 3: Initial model for learning algorithm. a) Vtree learned from dataset and corresponding fully
factorized PSDD. b) The root node prime in this vtree is the class variable. In the corresponding
PSDD, features are independent from each other but conditioned on the class.

Sensor interface and precision scaling Subsequent scaling stages within the framework of Fig.
[2 are determined by the task of interest and by the hardware’s capabilities. When the task is
classification, the Scale AC Complexity stage can be followed by the Scale Sensor Interfaces stage,
where features and sensors are pruned (see Algorithms 1 and 2), as discussed in detail in [4]. Note that
Algorithm 1 includes a step that facilitates model pruning (Algorithm 2), by pre-computing operations
corresponding to non-observed variables, whose indicators A will always be equal to 1. Since pruned
features are removed from the model, this stage might not suitable for density estimation, and can
be bypassed. The last scalability stage Scale Precision, consists on scaling down the number of bits
used for representation and arithmetic. We consider standard IEEE representations of (64,32,16 and
8 bits). This stage can also be bypassed if the hardware does not support such representations.

Pareto configuration extraction The final stage in Fig. 2]extracts the Pareto optimal configurations
from the trade-off space explored in the previous steps (see Algorithm 3). Note that accuracy terms
acc can be replaced with other performance metric of interest, such as e.g. log-likelihood for density
estimation tasks, or F-score for classification tasks that are sensitive to precision-recall trade-offs.

4 Experimental results

We showcase the proposed framework on a binary classification task on a Human Activity Recognition
dataset [1]. In particular, we consider the task of identifying "walking downstairs" from other
activities. We binarize the available features and show the results on a 70 binary-feature subset
(from correlation-based feature selection) that has undergone a 75% , 10%, 15% train-validation-test
random split. Moreover, we consider 20 features for the pruning stage of the framework. We estimate
the hardware-aware cost in terms of normalized energy consumption based on post-synthesis energy
estimations in 65 nm CMOS technology. Energy consumption scaling in function of number of bits
is based on [10]]. Figs[{a),(b) and (c) show the Scale AC Complexity, Scale Sensor Interfaces and
Scale Precision steps of the framework, respectively. Lines with circular markers denote the results
from initializing the PSDD learner with a fully factorized model (gen. PSDD as in Fig[3|(a)), and
lines with cross markers denote the learner initialized with the constrained model (discr.-gen. PSDD)
as in Fig[3(b). Note that the discr.-gen. PSDD learning approach results in overall higher accuracy,
as the discriminative relation is explicitly taken into consideration in the model. However, since the
purely generative approach results in cheap but "useful" (accuracy>90%) models, we propose to
consider the combination of both Pareto curves: in the final Pareto set, the first three models come



from the generative case and the rest from the discriminative-generative case. Fig. [(d) shows the
resulting accuracy on the test set, as well as robustness tests (in magenta and green), where sets of
features of sizes |F|/10,|F|/5,|F|/2, randomly fail. This shows that our framework remains robust,
regardless of the learning initialization style. Finally, Figsd]e) and (f) show the cost vs. test-set
log-likelihood trade-off on the “plants” and “accidents” datasets, used commonly for benchmarking
density estimation tasks [8,[12]. These results utilize the Scale AC Complexity and Scale Precision
steps of the proposed framework, and demonstrate that density estimation tasks can also benefit from
our framework. In both cases, log-likelihood is preserved with savings of more than 50% on Cyza.

100 100 100
98 98 98
K 96 X 96 K o6
z 04 zoo o o4
5o 5 o g o Scale model + Scale SI
3] > 131 cale o cale model + Scale
S 90 —6— Scale model gen.PSDD S 90 g . S 90 N . ks
= Seale model gon—discrPSDD| | <4 > SLgen.PSDD Z —o&— Final ParctogenPSDD
88 88 —%— Scale ST gen—discr.PSDD 88 ——x»— Final Pareto gen—discr.PSDD
86 86 o] 86
0.2 0.4 06 08 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Normalized Cyy [-] Normalized Cyy [-] Normalized Cyy [-]
(a) (b) (c)
100 “14 -32
%
] + - o
X 96} ) 3 -34
By (;43( ] -16 E]
Q = =
T e 2 < -36
g 92 Model scaling fail f—" - i -
S 90 Final Pareto fail gp -18 ——— Final Pareto 40 —— Final Pareto
< 88 % TAN classifier 3 Scale model+Scale precision| 3 -38 Scale model+Scale precision|
(0]
86 -20 _
02 04 06 081 0o 02 04 06 08 1 Oy 0T o5 oz 1
Normalized Cyy [-] Normalized Cya [-] for plants Normalized Cyy [-] for accidents

(d) () ()

Figure 4: Experimental results: (a,b,c,d) from classification and (e,f) from density estimation tasks.

5 Conclusions and future work

This work discusses recent developments on hardware-awareness for probabilistic frameworks. It
also offers insight into newly developed and in-progress techniques that extend their applicability
range and improve their performance. In the future, we plan to benchmark the techniques introduced
herewith to other datasets and applications, as well as comparing the results with other baselines.

Acknowledgements This work is partially supported by the EU ERC Project Re-SENSE under Grant
ERC-2016-STG-71503; NSF grants #I1S-1633857, #CCF-1837129, DARPA XAI grant #N66001-17-2-4032,
NEC Research, and gifts from Intel and Facebook Research.

References

[1] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz. A public domain dataset for human activity recognition using smartphones.
In Proceedings of the 21st ESANN, 2013.
[2] A.Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge University Press, 2009.
[3] L. Galindez, K. Badami, J. Vlasselaer, W. Meert, and M. Verhelst. Dynamic sensor-frontend tuning for resource efficient embedded
classification. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 8(4):858-872, 2018.
[4] L. I Galindez Olascoaga, W. Meert, N. Shah, M. Verhelst, and G. Van den Broeck. Towards hardware-aware tractable learning of
probabilistic models. In Advances in Neural Information Processing Systems 32 (NeurIPS), Dec. 2019.
S. Holtzen, T. Millstein, and G. Van den Broeck. Symbolic exact inference for discrete probabilistic programs. In Proceedings of the
ICML Workshop on Tractable Probabilistic Modeling (TPM), jun 2019.
[6] D.Kisa, G. V. den Broeck, A. Choi, and A. Darwiche. Probabilistic sentential decision diagrams. In Fourteenth International Conference
on the Principles of Knowledge Representation and Reasoning, 2014.
[7] Y. Liang, J. Bekker, and G. Van den Broeck. Learning the structure of probabilistic sentential decision diagrams. In Proceedings of the
Conference on Uncertainty in Artificial Intelligence (UAI), 2017.
[8] D.Lowd and J. Davis. Learning markov network structure with decision trees. In 2010 IEEE International Conference on Data Mining,
pages 334-343. IEEE, 2010.
[9] H.Poon and P. Domingos. Sum-product networks: A new deep architecture. In 2011 IEEE International Conference on Computer Vision
Workshops (ICCV Workshops), pages 689-690. IEEE, 2011.
[10] N. Shah, L. I. G. Olascoaga, W. Meert, and M. Verhelst. Problp: A framework for low-precision probabilistic inference. In Proceedings
of the 56th Annual Design Automation Conference 2019, 2019.
[11] M. Trapp, R. Pehraz, H. Ge, F. Pernkopf, and Z. Ghahramani. Bayesian learning of sum-product networks. In Advances in Neural
Information Processing Systems 32 (NeurIPS), Dec. 2019.
[12] J. Van Haaren and J. Davis. Markov network structure learning: A randomized feature generation approach. In Twenty-Sixth AAAI
Conference on Artificial Intelligence, 2012.
[13] A. Vergari, N. Di Mauro, and G. Van den Broek. Tutorial slides on tractable probabilistic models. Conference on Uncertainty in Artificial
Intelligence (UAI 2019). Tel Aviv, Israel., July 2019.

[5



	Introduction
	Background
	Hardware-Aware probabilistic framework
	Hardware-aware cost
	Trade-off search

	Experimental results
	Conclusions and future work

