
Constraints for Probabilistic Logic Programming

Daan Fierens Guy Van den Broeck Maurice Bruynooghe Luc De Raedt
Department of Computer Science, KU Leuven, Belgium

firstname.lastname@cs.kuleuven.be

Abstract

In knowledge representation, one commonly distinguishes definitions of predi-
cates from constraints. This distinction is also useful for probabilistic program-
ming and statistical relational learning as it explains the key differences between
probabilistic programming languages such as ICL, ProbLog and Prism (which are
based on definitions) and statistical relational learning languages such as Markov
Logic (based on constraints). This motivates us to extend ProbLog with con-
straints; the resulting cProbLog in a sense unifies ProbLog and Markov Logic and
is strictly more expressive than either of them.

1 Introduction

Popular formalisms for representing probability distributions over relational models include proba-
bilistic logic programming languages (PLP) such as PRISM [9], ProbLog [2] and ICL [8], as well
as statistical relational modelling languages such as Markov Logic [4]. Inspired by Answer Set Pro-
gramming (ASP) [1] we explain the differences between these two types of approaches based on
the notions of (inductive) definitions and constraints. Basically, the PLP approaches use (inductive)
definitions to define predicates while Markov Logic uses first-order logic to define (soft) constraints
on possible worlds.

To explain the concept of an inductive definition, consider the example of the transitive closure of a
relation in a graph. In logic programming, one would typically use two Horn-clauses to define the
transitive closure, one specifying the base case and the other the recursive case; cf. the reachable
predicate below as the transitive closure of open road. The meaning of this definition is inductive
[3]: whenever the condition of the rule is in a partial possible world (i.e., partial Herbrand interpre-
tation), the conclusion part should be added to the possible world as well. In logic programming,
this process continues until a fix point (of the well-known TP operator) is reached and the transitive
closure is obtained. It is well-known in the knowledge representation and database literature that
it is impossible to define transitive closures in first-order logic [6] .Concretely, while it is of course
possible to express in first-order logic that a given relation should be transitive, it is not possible to
express the closure.

PLP is based on logic programming and hence, employs (inductive) definitions to define predicates,
while Markov Logic is based on first-order logic, which explains why it is impossible to define
transitive closures in Markov Logic. On the other hand, Markov Logic uses first-order logic as soft
constraints on the possible worlds, a feature not supported by current PLP approaches.

Motivated by these differences and by ASP (which supports both inductive definitions and con-
straints), we will now introduce the language cProbLog, an extension of ProbLog, which supports
constraints specified in first-order logic. So, cProbLog in a sense unifies the Markov Logic and PLP
paradigms and offers the ‘best of both worlds’.

1

2 The cProbLog language

We illustrate cProbLog with a simple example. NIPS workshop participants have to travel to Lake
Tahoe via a network of snowy roads. Every road has a prior probability of actually being open.
However, the NIPS organizers ensure us that Lake Tahoe will be reachable from at least one of the
two airports in the region (Reno or Sacramento). A location Y is defined to be ‘reachable’ from
another location X if there is a path of open roads connecting X to Y , cf. the following cProbLog
model.

%% 1) Probabilistic facts:
0.4::open_road(’Reno’,’town1’).
0.3::open_road(’town1’,’town3’).
...
0.5::open_road(’town6’,’Tahoe’).

%% 2) Logic programming rules / inductive definition:
reachable(X,Y) :- open_road(X,Y).
reachable(X,Y) :- open_road(X,Z), reachable(Z,Y).

%% 3) Constraints:
reachable(’Reno’,’Tahoe’) v reachable(’Sacramento’,’Tahoe’).

Syntax and informal semantics. Like any cProbLog program, our example program consists of
three layers. The first two layers are the same as in the regular ProbLog language [2], the third layer
is new in cProbLog.

The first layer consists of a set of probabilistic facts. Below, we assume that all probabilistic facts
are ground (this is to simplify the presentation; in principle, we can add syntactic sugar for non-
ground probabilistic facts as in regular ProbLog). A probabilistic fact specifies the prior probability
of the involved atom being true or not: for example, open road(’Reno’,’town1’) is true
with probability 0.4 and false with probability 0.6. Intuitively, each probabilistic fact can be seen as
a ‘switch’ that is either on or off, with the indicated probability.

The second layer consists of a logic program (with the syntactic restriction that no head of a rule in
the program unifies with a probabilistic fact). Intuitively, the rules in this program should be read
as (inductive) definitions which define new predicates in terms of the predicates in the probabilistic
facts. In our example, the rules define the concept ‘reachable’ in terms of the concept ‘open road’: Y
is reachable from X if and only if there is an open road from X to Y , or there is an open road from
X to an intermediate location Z and Y is reachable from Z. It is known from the knowledge rep-
resentation literature [3] that logic programs (and their least Herbrand model semantics) are indeed
suitable for expressing this kind of definitional knowledge.

The third layer is not present in the regular ProbLog language but is new to cProbLog. This layer
consists of a set of First-Order Logic (FOL) formulas. Syntactically, one can write any set of FOL
formulas involving the predicates introduced in the previous two layers of the cProbLog program.
Intuitively, each FOL formula should be seen as a constraint on the possible worlds allowed by the
cProbLog program: a world that violates a constraint is considered impossible (and will get zero
probability mass). In our example, the constraint says that Lake Tahoe is reachable from Reno or
Sacramento (the connective ‘v’ stands for disjunction as in FOL, so non-exclusive). Any world in
which this constraint does not hold, is ruled out. Such integrity constraints cannot be expressed
directly in the regular ProbLog language, though they are often useful for modelling.

The constraints (third layer) and the logic programming rules (second layer) are each suited for
expressing a different kind of knowledge. The logic programming rules define new predicates on top
of the predicates occurring in the probabilistic facts. This does not alter the set of worlds considered
to be possible, it only extends the vocabulary with which these worlds are described. The constraints,
on the other hand, allow us to prune the set of worlds, eliminating any worlds that do not satisfy the
necessary conditions.

Formal semantics. A cProbLog program defines a probability distribution over possible worlds
(in our example, each world is an interpretation of the open road and reachable predicates).
While this formal semantics can be defined in a self-contained way, space restrictions prevent us
from doing so here. Instead, we restrict ourselves to defining the cProbLog semantics relative to the

2

regular ProbLog semantics. For cProbLog programs without constraints, the semantics coincides
with that of ProbLog. We now discuss the case of cProbLog programs with constraints.

We use P (.) for the distribution according to cProbLog semantics and P ∗(.) for regular ProbLog
semantics [7]. Given a cProbLog program π, we use πcon to denote the set of all constraints in π
and we use πreg to denote the regular ProbLog program obtained by dropping all these constraints
from π (so syntactically, π = πreg ∪πcon). The probability of a world ω given a cProbLog program

π, denoted Pπ(ω), is
P∗πreg (ω)∑

ω′|=πcon
P∗πreg (ω

′)
if ω |= πcon, and is zero otherwise. Here ω |= πcon means

that ω satisfies all constraints in π. In words: we start from the distribution P ∗
πreg (ω) as defined by

regular ProbLog semantics (ignoring the constraints in π), we set the probability of all worlds that
violate a constraint in π to zero, and we re-normalize the resulting distribution. This is equivalent
to conditioning the distribution P ∗

πreg (ω) on the evidence that all constraints in πcon are true. The
point is that conditioning cannot be expressed within the regular ProbLog language (and hence is
typically pushed inside the inference process), while it can be expressed in cProbLog.

Operational view. The semantics implies that a cProbLog program specifies a rejection sampling
process. The sampling process follows the order of the program layers. In the first step, we indepen-
dently sample a truth value for each probabilistic fact (we ‘set the switches’). The result is a world
ω0 described in terms of the probabilistic predicates (e.g., the open road predicate). In the second
step, we apply the logic programming rules to determine the truth values of all derived atoms (e.g.,
the reachable atoms) given the truth values of the probabilistic facts. The result is still a single
world ω, but one that is now described in terms of a larger vocabulary than ω0 . In the third step, we
retain ω as a sample if it satisfies all constraints, and reject it otherwise. It is this rejection step that
can be expressed in cProbLog but not in regular ProbLog.

3 Inference and learning in cProbLog

To do inference and learning in cProbLog, we can extend ProbLog2, the system for the regular
ProbLog language. ProbLog2 works in two steps [5]: first it converts the given program (probabilis-
tic facts and rules) to an equivalent weighted Boolean formula, next inference and learning operate
on this formula. The inference and learning algorithms do not ‘see’ the given program directly, only
through the formula. Hence, to extend this approach to cProbLog, we only need to adapt the first
step such that it takes into account the constraints when building the formula; the inference and
learning algorithms are then unaffected.

The most naive way of converting a cProbLog program to an equivalent weighted Boolean formula
is very simple: we separately build the formula for the probabilistic facts and rules, and the for-
mula for the FOL constraints. For the former, we can use the current ProbLog techniques; for the
latter, we can simply apply a FOL grounder to the constraints, yielding an essentially propositional
Boolean formula. While this simple approach is in principle sufficient, it might also be possible to
jointly, rather than separately, convert rules and FOL constraints. The constraints restrict the pos-
sible worlds, which could provide information that allows us to prune the encoding of the rules,
resulting in a possibly more compact formula. Such optimizations are used in some ASP systems
and other related systems [10]. Using them in a probabilistic context is an interesting direction for
future research.

4 cProbLog and Markov Logic

Let us now compare cProbLog and Markov Logic as representation languages. We can show that
cProbLog strictly subsumes Markov Logic: for every Markov Logic Network (MLN) an equivalent
cProbLog program exists, but not vice versa.

From MLNs to cProbLog. Every MLN can be mapped to an equivalent cProbLog program, pro-
vided that we introduce some auxiliary predicates in the vocabulary. As a very simple example,
consider the MLN consisting of a single formula a → b with weight w. The resulting cProbLog
program consists of three probabilistic facts 0.5::a, 0.5::b and p::c, with c an auxiliary atom
and with the probability p being ew/(ew + 1), and one constraint, c ↔ (a → b). This program is
equivalent to the MLN in the sense that, if we marginalize out the auxiliary atom c from the specified

3

probability distribution, the resulting distribution is identical to that of the MLN. The strategy shown
in this simple example can be generalized (introduce one auxiliary atom per weighted formula, etc)
and works for any MLN, including non-ground MLNs.

From cProbLog to MLNs. As already mentioned in Section 1, not every cProbLog program can be
mapped to an equivalent MLN. This is in particular the case for programs including inductive defi-
nitions that define the transitive closure of a given relationship, such as the definition of reachable
in our above example. It is well-known in the knowledge representation community that first-order
logic is not expressive enough to describe the transitive closure [6]. Hence neither is Markov Logic.
This makes Markov Logic unsuitable for certain kinds of applications, like the typical ProbLog ap-
plications with probabilistic graphs [2, 7]. On the other hand, the regular ProbLog language is not
sufficient when we want to impose certain constraints on the possible worlds. From a representation
point of view, cProbLog is in a sense the ‘best of both worlds’, integrating logic programming and
first-order logic.

Acknowledgments

DF and GVdB are supported by are supported by the Research Foundation-Flanders (FWO-
Vlaanderen).

References

[1] G. Brewka, T. Eiter, and M. Truszczyński. Answer set programming at a glance. Communica-
tions of the ACM, 54(12):92–103, 2011.

[2] L. De Raedt, A. Kimmig, and H. Toivonen. ProbLog: A probabilistic Prolog and its applica-
tion in link discovery. In Proceedings of the 20th International Joint Conference on Artificial
Intelligence, pages 2462–2467, 2007.

[3] M. Denecker, M. Bruynooghe, and V. W. Marek. Logic programming revisited: Logic pro-
grams as inductive definitions. ACM Transactions on Computational Logic, 2(4):623–654,
2001.

[4] P. Domingos, S. Kok, D. Lowd, H. Poon, M. Richardson, and P. Singla. Probabilistic Inductive
Logic Programming - Theory and Applications, chapter ‘Markov Logic’. Lecture Notes in
Computer Science. Springer, 2008.

[5] D. Fierens, G. Van den Broeck, I. Thon, B. Gutmann, and L. De Raedt. Inference in Prob-
abilistic Logic Programs using Weighted CNFs. In Proceedings of the 27th Conference on
Uncertainty in Artificial Intelligence, pages 211–220, 2011.

[6] E. Grädel. On Transitive Closure Logic. In Proceedings of the 5th Workshop on Computer
Science Logic, volume 626 of Lecture Notes in Computer Science, pages 149–163. Springer,
1992.

[7] A. Kimmig, B. Demoen, L. De Raedt, V. Santos Costa, and R. Rocha. On the Implementation
of the Probabilistic Logic Programming Language ProbLog. Theory and Practice of Logic
Programming, 11:235–262, 2010.

[8] D. Poole. The Independent Choice Logic for modelling multiple agents under uncertainty.
Artificial Intelligence, 94(1–2):5–56, 1997.

[9] T. Sato and Y. Kameya. PRISM: A language for symbolic-statistical modeling. In Proceedings
of the 15th International Joint Conference on Artificial Intelligence, pages 1330–1335, 1997.

[10] J. Wittocx, M. Mariën, and M. Denecker. Grounding FO and FO(ID) with Bounds. Journal of
Artificial Intelligence Research, 38:223–269, 2010.

4

