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Abstract. Population genetic studies often rely on artificial genomes (AGs) simulated by generative
models of genetic data. In recent years, unsupervised learning models, based on hidden Markov models,
deep generative adversarial networks, restricted Boltzmann machines, and variational autoencoders,
have gained popularity due to their ability to generate AGs closely resembling empirical data. These
models, however, present a tradeoff between expressivity and tractability. Here, we propose to use hidden
Chow-Liu trees (HCLTs) and their representation as probabilistic circuits (PCs) as a solution to this
tradeoff. We first learn an HCLT structure that captures the long-range dependencies among SNPs in
the training data set. We then convert the HCLT to its equivalent PC as a means of supporting tractable
and efficient probabilistic inference. The parameters in these PCs are inferred with an expectation-
maximization algorithm using the training data. Compared to other models for generating AGs, HCLT
obtains the largest log-likelihood on test genomes across SNPs chosen across the genome and from a
contiguous genomic region. Moreover, the AGs generated by HCLT more accurately resemble the source
data set in their patterns of allele frequencies, linkage disequilibrium, pairwise haplotype distances, and
population structure. This work not only presents a new and robust AG simulator but also manifests
the potential of PCs in population genetics.

1 Introduction

Generative models of genetic sequence data play a central role in population genomics [1, 2]. By modeling
dependencies across individuals and sites, these models have empowered genomic analyses such as genotype
imputation [3], haplotype phasing [4], and ancestry inference [5]. Such models also form the basis for programs
that simulate artificial genomes (AGs) [6, 7, 8, 9, 10] that, in turn, have played a critical role in testing
evolutionary hypothesis, inferring population genetic models, validating empirical results, and benchmarking
methods. The ability to accurately and efficiently simulate AGs has been important to foster reproducibility
and equity in research: trained models (or data simulated under the models) can be made available without
restriction thereby side-stepping privacy restrictions associated with sharing primary genetic data.

There are generally two classes of models that can simulate AGs: the traditional and widely used popu-
lation genetic approach such as the coalescent model [11] which simulates AG given a demographic history,
and the latter unsupervised learning approach which produces “new data from old”. The first approach
has the benefit of producing AGs independent of the existing genetic data, but the simulated AGs do not
necessarily mimic real genomes and history. The second approach has the advantage of closely mimicking
the history and genomic properties of existing data at finer scale [12].

The coalescent with recombination [13] describes the probability of genetic variation in chromosomes
sampled across individuals to population genetic parameters (population size, rates of mutation, and recom-
bination) through latent gene genealogies along the genome (with the genealogies varying along the genome
due to recombination) [14]. While expressive, inference under this model is computationally challenging due
to the non-Markovian dependence induced among the latent genealogies. As a result, exact computation of
the likelihood function under the coalescent with recombination is intractable. This difficulty has motivated
investigation into tractable approximations to the coalescent. One class of approaches improve tractability
by approximating the coalescent as a Markovian process along the genome [15, 12]. These approximations
are the cornerstones of population coalescent-based simulators [9, 10]. An alternate class of approximations,
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exemplified by the product of approximate conditionals (PAC) model and its extensions [16], aim to directly
model the distribution of genetic variation without invoking a well-defined genealogical process. These mod-
els improve tractability by imposing a Markovian assumption which leads naturally to a hidden Markov
model (HMM) [17] (while tractable, these models can still be computationally intensive leading to addi-
tional approximations [18]). The move away from an explicit connection to a genealogical process can limit
the evolutionary inferences from such a model. Nevertheless, the PAC models and their variants are used in
settings where the goal is to obtain an accurate probability model for the data distribution and have been
widely used in applications such as haplotype phasing [18, 19], genotype imputation [20, 3], and ancestry
inference [21, 22].

Recent advances in deep learning have led to the application of deep generative models to genetic varia-
tion [23, 24]. While these models are more expressive than a HMM, current deep models proposed for this
task (based on GANSs [25], variational autoencoders VAEs [26], and RBMs [27, 28]) are limited in important
ways. First, these models do not permit exact probabilistic queries. As a result, it is not possible to compute
likelihoods on held-out data for GANs or RBMs while VAEs only allow computation of a lower bound).
More importantly, this difficulty precludes the application of these models to the missing data setting and
to the tasks such as genotype imputation (all of which involve marginalizing over the joint probability dis-
tribution to be able to compute the probability of the observed variables or the conditional probability of
the missing variables given the observed variables). Finally, these models are challenging to learn due to the
complicated cost functions that need to be optimized as a means of learning parameters or hyperparame-
ters. For example, training GANs involve a minimax objective whose optimization can lead to degenerate
distributions (termed mode collapse [29]). Learning VAEs requires approximately maximizing a lower bound
on the marginal likelihood while learning RBMs involves approximating the gradient of the log-likelihood
which is typically achieved by running a Markov Chain Monte Carlo sampling algorithm [28].

1.1 Contributions

We propose a class of probabilistic models that can still give us those tractability advantages while fitting
the data extremely well. To model the distribution over a sequence of variants, we propose a class of latent
variable models where each hidden variable is associated with a SNP and the hidden variables are related by
a tree-structured graphical model. This model, termed the hidden Chow-Liu tree [30], generalizes previously
proposed HMMs. HMMs also associate a hidden random variable with each SNP. The hidden variables are
related by a chain (a special type of tree) with the restriction that the only edges are present between vari-
ables associated with consecutive SNPs along the genome. By allowing for more general tree structures, the
HCLT model is more general and can potentially capture long-range correlations or linkage-disequilibrium
(LD) among SNPs [31]. While the HCLT model is more expressive than HMMs, it is unclear if such a
model can be efficiently learned from data. A second contribution of our work is an affirmative answer to
this question by representing HCLTs as Probabilistic Circuits (PCs) [32, 33], a large class of probabilistic
models encoded using circuit representations. PCs have been shown to permit tractable inference tasks (e.g.,
marginal likelihood computation) which are beyond the reach of most deep generative models. The represen-
tation of HCLTs as PCs enables us to leverage recent advances in deep learning such as stochastic learning
algorithms and the use of GPUs to enable efficient parameter estimation and inference. We also leverage
the framework of PCs to explore more restrictive models including fully factorized models (that assume all
SNPs are independent) and Markov models. Finally, we perform extensive experiments to show that HCLT
generates more accurate AGs relative to more restrictive models (fully factorized models and Markov mod-
els) suggesting that the structure encoded by the HCLT captures dependencies in genetic variation data.
More interestingly, we find that HCLT as well as deep generative models (generative adversarial networks
GAN and restricted Boltzmann machines RBM) preserve LD structure among SNPs. When trained on a
subset of individuals from the 1000 Genomes Project (IKGP) across 805 SNPs that are distributed across
the genome (and chosen to capture global population structure) as well as a second dataset of 10K SNPs
from a contiguous region on chromosome 15, PCs learn distributions with improved log-likelihoods on a
distinct set of individuals not used in training. We also evaluate the AGs generated by different models by
comparing the PCA plots, allele frequencies, and LD patterns and observe that the AGs generated by the
PCs are substantially closer to the patterns observed in real data. Our results suggest that the increased
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Fig. 1: Generating HCLT structures given genetic data. The hidden variables (Z;) corresponding to SNPs
with high pairwise correlations (X;) are connected with each other in the HCLT graphical model.

expressivity of HCLTs leads to more accurate models of genetic variation. Furthermore, recent advances in
learning and inference enabled by PCs allows us to fully exploit this increased capacity.

2 Methods

We first describe the class of probabilistic models that forms the basis for our work (Section 2.1). We then
provide background on probabilistic circuits (PCs), a class of probabilistic models that include HCLTs and
form the basis for efficient inference and learning (Section 2.2). Finally, we describe the details of the PC
algorithms that we use to enable efficient learning and inference (Section 2.3).

2.1 Hidden Chow-Liu Trees (HCLT)

Hidden Chow-Liu Trees (HCLTS) [30] represent a distribution over a collection of random variables (RVs)
(Z = (Z1,...,ZNn), X = (X1,...,X})). Z denote hidden or latent RVs while X denote observed RVs. The
joint distribution is described by a graphical model (G) where nodes in the graph represents the RVs and lack
of edges among the nodes represent conditional independence assumptions. In HCLTs, we have edges from
each hidden variable to its corresponding observed random variable (Z,, — X,,) while the edges among the
hidden variables form a tree. When the graph over the hidden variables is a chain (Z; — Z5 — ... ZN), we
obtain a hidden Markov model (HMM). By permitting tree-structured graphs, HCLTs generalize HMMs and
can provide a better representation of the data to capture long-range dependence, e.g., RV X; and X5 are
highly correlated without being correlated with X5, X3, X4. To accurately model dependencies among input
variables with a tree, we use the Chow-Liu algorithm [34], which can capture major pairwise correlations
between variables.

For genetic variation data over N single nucleotide polymorphisms (SNPs), each X,, denotes the genotype
value at SNP n € {1,...,N} (X,, € {0,1} when we model haploid genomes while X,, € {0,1,2} when we
model diploid genomes. Each Z,, is a discrete RV that can take one of L values (Z, € {0,...,L — 1}).
Figure 1 demonstrates how to construct an HCLT using genetic data. Given a dataset D that contains 6
SNPs (Figure 1(a)), we first invoke the Chow-Liu algorithm to generate a tree over the SNPs’ latent variables
(Figure 1(b)). The tree encodes strong variable dependencies by placing highly correlated SNPs (e.g., X7 and
X3) closer in the generated tree. Finally, HCLT is constructed by adding an edge from every latent variable
Z; to its corresponding observed variable X; (Figure 1c).

The parameters of the HCLT are those associated with the discrete conditional probability distributions
P(Xn|Zy,) and P(Zp|Zpa(n)), where Pa(n) denotes the parent of node n in the tree. Further, the hyper-
parameters include the range L of hidden RVs. Learning HCLTs that accurately represent the distribution
of genetic variation requires learning its parameters efficiently. To enable this, we show that HCLTs can be
represented as a class of tractable probabilistic models termed probabilistic circuits (PCs). This represen-
tation allows us to leverage recent advances in efficient learning and inference in PCs [35] to the problem
of learning HCLTs. HCLTS are a special class of smooth and decomposable (see Section 2.2 for their defini-
tion) PCs that support efficient (i.e., linear in the size of the PC which, in turn, is linear in the number of
SNPs) computation of marginal probabilities. Details of the HCLT learning and inference algorithms will be
introduced in Section 2.3.



2.2 Probabilistic Circuits

Probabilistic Circuits (PCs) [32, 33] are a class of probabilistic models that support tractable probabilistic
inference. These capabilities have allowed PCs to perform various probabilistic reasoning tasks that are out
of reach for most deep generative models [25, 26]. For example, the tractability of PCs helps solve problems
in explainable AT [36, 37, 38|, algorithmic fairness [39, 40], and missing data robustness [41, 38, 42].

PCs are furthermore appealing for their expressive power and suitability for density estimation. Recent
advances in structure learning [43] and parameter estimations [40, 30] allow PCs to accurately capture useful
correlations in the data. Here we show that the learning and reasoning capabilities of PCs can achieve state-
of-the-art results in artificial genomes generation. In the following, we first define the syntax and semantics
of PCs and describe key assumptions that unlock their capabilities.

Representation PCs are an umbrella term for a wide family of tractable probabilistic models [44], including
arithmetic circuits [45], sum-product networks [46], and cutset networks [47]. A PC (G, 0) represents a
joint probability distribution Pr(X) over random variables X through a directed acyclic graph (DAG) G
parametrized by 6. The DAG G consists of three types of nodes — input, sum, and product. Each leaf node
is an input node; each inner node n (i.e., sum or product) receives inputs from its children ch(n). Each node
n € G encodes a probability distribution Pr,,, which is defined recursively as follows:

frn(x) if n is an input node,
Pr,(x) = ¢ [eecn(n) Pre(x) if n is a product node, (1)

2 cech(n) On,e Pre(x) if m is a sum node,

where f,,(x) is a univariate input distribution (e.g., Binomial, Gaussian), and 6, . denotes the parameter
that corresponds to edge (n,c). Intuitively, a product node defines a factorized distribution over its inputs,
and a sum node represents a mixture over its input distributions weighted by 6. Finally, the probability
distribution of a PC is defined as the distribution represented by its root node. The size of a PC (G, 0) is
defined as the number of parameterized edges in its DAG G.

Inference In contrast to many other generative models, PCs support efficient reasoning over its encoded
distribution. One can compute likelihoods by evaluating the PCs feed-forward as in Equation 1. Many
common reasoning tasks such as marginal probabilities and maximum a posterior probability (MAP) are
also supported by PCs. To guarantee the efficiency for computing these queries, the DAG of the PC should
satisfy certain structural constraints. In the following, we introduce the constraints that are necessary for
computing marginals and MAP, respectively. Please refer to [48] for a more detailed summary of various
inference scenarios for PCs.

To support linear-time computation (with respect to the size of the PC) of arbitrary marginal queries,
PCs need to satisfy two structural properties — smoothness and decomposability. Both are properties of the
scope ¢(n) of PC units n, that is, the collection of variables defined by all its input nodes.

Definition 1 (Smoothness) A PC (G, 0) is smooth if for any sum node n € G, its children have identical
scope: Veq, e € ch(n) : ¢(cr) = d(ca).

Definition 2 (Decomposability) A PC (G, 8) is decomposable if for any produce node n € G, its children
have disjoint scopes: ¥c1,ca € ch(n),c1 # ca = ¢p(e1) N@p(e2) = 0.

Given a smooth and decomposable PC, querying an arbitrary marginal probability boils down to a
feedforward evaluation of its DAG, thus the computation time is linear with respect to the size of the PC.

To compute MAP queries in linear time, a PC should additionally satisfy a structural constraint termed
determinism [49], which is a property of the PC nodes’ support: for any PC node n, its support supp(n) is
the set of complete assignments for which the output of n is non-zero: supp(n) := {x € val(X)| Pr,(x) # 0}.
Intuitively, the support of a node n is the set of assignments x that activate it. Note that although the support
sizes could be exponential with respect to the number of input variables, we never explicitly materialize them
during training and inference, so it will not harm the efficiency of these algorithms.



Definition 3 (Determinism) A PC (G,0) is deterministic if for any sum node n € G, its children have
disjoint support: Ve, ca € ch(n)(c1 # c2), supp(c1) N supp(cz) = 0.

HCLTSs can be represented as smooth and decomposable PCs, meaning that they support efficient com-
putation of marginal queries. This also implies that the likelihoods of HCLTs can be computed efficiently.
When considering both the observed and hidden variables, HCLTs are also deterministic, meaning that the
MAP instance arg max,¢x ,ez Prn(X,2) can be evaluated in linear time. However, note that HCLTs are not
deterministic with respect to the observed variables X, hence we need approximation algorithms to compute
arg max, cx Prn(x).

Parameter Estimation Depending on the structural constraints possessed by a PC, different parameter
learning techniques can be applied. First, if a PC is smooth, decomposable, and deterministic, its maximum-
likelihood estimation (MLE) parameters can be efficiently learned in closed form [50]. To formalize the
MLE parameters, we define the context 7, of any node n as follows. The context of the root node n, is
its support supp(n,). The context of any other node is the intersection of its support and the union of its
parents’ contexts:

S U ~e N supp(n).

cepa(n)
For any sum node n and its child ¢, the associated MLE parameter ¢}, . on a dataset D = {xi}N, is

N

On,c = Fp(n,c)/ Z Fp(n,c), where Fp(n,c) = Z 1[x; € Yo N e (2)
cech(n) =1

The quantity Fp(n,c) is called the circuit flow of edge (n,c). Intuitively, circuit flows count the number of
samples in D that “activate” an edge.

If determinism is not satisfied, which is the case for HCLTs, the MLE solution will not have a closed-form
expression. Instead, we resort to iterative algorithms such as Expectation-Maximization (EM). Since every
non-deterministic PC can be augmented as a deterministic PC with additional hidden variables [51], the
parameter learning problem of non-deterministic PCs can be equivalently viewed as learning the parameters
of deterministic PCs given incomplete data. Specifically, an HCLT can be viewed as a deterministic PC
considering both the observed variables X and the hidden ones Z; and the dataset over X can be viewed
as a dataset over X, Z but values for Z are all missing. This leads to the EM algorithm where we compute
the expected circuit flow given incomplete data in the E step and estimate the closed-form MLE parameters
given the expected circuit flows in the M step [52, 40].

Concretely, given a deterministic PC (G, ) with root node r and an incomplete dataset D = {x;}
the parameters for the next EM iteration are given by [40]:

N
=1

N
E);r:gw) =EFpg(n,c)/ Z EFp.g(n,c), where EFpg(n,c) = ZEZNprT(,‘xi) [1[zx; € v Nel] (3)
c&ch(n) =1

defines an expected version of circuit flow for edge (n,c¢) given samples with missing values in D.

2.3 Fitting PCs to data

Any PGM can be transformed into a PC that encodes the same probability distribution. We demonstrate
the high-level idea of this transformation, and refer interested readers to [33] for more details. To transform
a HCLT into an equivalent PC, we iteratively encode every conditional probabilities Pr(X,|Xp.mn)) by
representing each possible value of X,, as a sum node. Thus, the probability of Pr(X,, = x,|Xpan) = Xpa(n))
can be represented by the weight of an edge connecting x,, and xpg(y). Take the HCLT in Figure 1 as an
example. The conditional probabilities are encoded into a single PC in a bottom-up manner: we first encode
Pr(X5|Z5) and then followed by Pr(X4|Zs) and Pr(Z5|Z,4), and so on.

Using their equivalent PC representations, HCLTs can be trained efficiently using the PC package
Juice.jl [35]. Compared to classic parameter learning implementations for graphical models, We make param-
eter estimation more accurate and efficient by the following three main improvements. First, by representing



Table 1: Density estimation results in 805 and 10K SNPs data. Averaged training and test log-
likelihoods and models sizes (number of parameters, edges and nodes in the PCs) for INDEP, MARKOV
(order is 10), HMM, CLT, STRUDEL, and HCLT. The bold values highlight the best averaged test set
log-likelihoods.

Dataset| Category | INDEP  MARKOV HMM CLT  STRUDEL HCLT
train LL | -490.73 -433.57 -402.45 -414.68 -402.02 -387.97

805 test LL -491.10 -438.64 -402.50 -415.83 -407.26 -389.20
#£params 1.61k 51.26k 231.10k 4.55k 77.80k 61.12k

train LL |-2389.69 -626.18  -1192.78 -444.06 -444.03 -282.07

10K test LL  |-2390.09 -633.14  -1194.72 -456.39 -459.61 -310.93
#tparams 20.0k  20461.57k  2879.26k 49.0k  2194.32k  5661.95k

graphical models (e.g., HCLTs) as PCs, we exploit the structure of the model to extensively parallelize the
computation required by EM updates (Equation 3). We develop specialized GPU kernels to significantly
speedup the EM algorithm. As a result, despite the model having more than a million parameters, a single
EM epoch on the 805 SNP dataset (Section 3.1) can be done in 5 seconds.

Next, we benefit from the stochastic optimization algorithms that were popularized for deep learning by
using a stochastic version of EM. Specifically, we use mini-batches of data to compute 8®") (Equation 3)
and update the parameters toward this target with a step size n: 0F+1) (1- n)O(k) + @MW) In practice,
we run stochastic EM for 400 epochs with batch size 1024. The step size 7 is annealed linearly from 0.05
to 0.01.

Finally, Juice.jl provides effective parameter regularization algorithms to combat overfitting, which is
a major problem, as in some datasets we used, the number of variables is much larger than the number
of training samples. Therefore, we utilize classic methods such as adding pseudocounts, as well as recently
proposed data softening and entropy regularization methods to mitigate overfitting [30]. As we will show in
the experiments, despite the expressiveness of HCLTs, they are not prone to overfitting by virtue of these
regularization methods.

3 Results

In this section, we empirically demonstrate the effectiveness of PCs in terms of modeling genome sequencing
data. In order to show the generality of PC structures, in addition to HCLT (Section 2.1), we also evaluate
another PC learner named STRUDEL [43]. STRUDEL learns a deterministic PC by first transforming a CLT
into a PC and then performing a heuristic search guided by log-likelihoods to edit PC structures. We show
the benefits of both structures in the following sections.

3.1 Data

We use 2504 genomes from the 1000 Genomes Project [53] to evaluate our models and generate artificial
genomes (AGs). When analyzing global structure (Section 3.3), we use a set of 805 highly differentiated SNPs
from across the genome that are a subet of the SNP set identified from Colonna et al [54]. When analyzing
local structure (Section 3.4), we use a set of 10K SNPs drawn from a single genomic locus on chromosome
15. For all the experiments, we apply a 0.8/0.2 train/test split to phased data. Models are trained on the
training set and evaluated on the test set. For every model, we simulate 5000 AGs and compare them to the
test set genomes.

3.2 Evaluation

Baselines To benchmark our model performance in estimating density and simulating artificial genomes, we
first compare it to three popular probabilistic graphical models (PGMs) that support tractable likelihood
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Fig.2: Principal components analysis for models trained on the 805 dataset. The first six axes
of a single PCA applied to the test set of the 805 dataset (gray) and AGs generated via INDEP (green),
MARKOV (brown), HMM (orange), GAN (blue), RBM (red), STRUDEL (pink), and HCLT (purple). The
test set contains 961 haplotypes, and each model generate 5000 haplotypes as AGs. The top three panels
plot the samples while the bottom three panels show the density plot of these samples.

computation: fully-factorized distributions (INDEP), higher-order Markov chain models (MARKOV) and non-
homogeneous hidden Markov models (HMM). In order to estimate the parameters of these models, INDEP
and MARKOV have closed-form MLE solutions; while for HMM, we perform EM algorithm with random
initialization. To facilitate the implementation benefits discussed in Section 2.3, we transform all these PGMs
as equivalent PCs for efficient parameter estimation. We also compare against existing neural networks
methods: (1) generative adversarial networks (GAN) and (2) Restricted Boltzmann machines (RBM) as
implemented in [23]. For both neural network baselines, we use the samples generated by the corresponding
authors for comparison.?

FEvaluation criteria We evaluate these models using the following metrics: (1) log-likelihood on test data
to assess the capability of each model as a density estimator; (2) summaries of AGs sampled from each
model that include the top principal components that summarize the dominant axes of variation in the
samples; (3) allele frequencies at individual SNPs, which calculate marginal probabilities and act as a one-
point estimation; (4) linkage disequilibrium at pairs of SNPs, which calculate pairwise probabilities and act
as a two-point estimation.

4 Note that [23] did not do train/test splits so GAN and RBM are actually trained on train-test.



Table 2: Evaluating the performance in preserving population structure using principal com-
ponent analysis: Wasserstein 2D distances between the PCA representations of real versus generated
individuals. within, between: Wasserstein distance between the pairwise Euclidean distances of haploid
genomes within a single dataset or between the real and generated individuals. r%: Squared Pearson corre-
lations between real and generated LD across all pairs of samples. We denote REAL for the testset. Bolded
values indicate the best among all compared models.

Dataset \ \ REAL INDEP MARKOV HMM GAN RBM STRUDEL HCLT

PCA1-2 0.0010 0.2272 0.1666 0.0758 0.0040 0.0089 0.0065 0.0015
PCA3-4 0.0015 0.0082 0.0280 0.0588 0.0175 0.0045 0.0107 0.0020

805 PCA5-6 0.0013 0.0019 0.0213 0.0270 0.0043 0.0017 0.0017 0.0013
within 0.98 43.92 42.10 24.99 4.96 6.96 9.25 2.41
between 0.49 37.17 35.96 20.27 2.34 3.28 5.90 1.26

r? 0.99 0.67 0.76 0.73 0.95 0.98 0.96 0.99

PCA1-2 0.0012 0.1905 0.0881 0.0946 0.0065 0.0144 0.0056 0.0029
PCA3-4 0.0014 0.1655 0.0148 0.0572 0.0018 0.0107 0.0037 0.0022

10K PCA5-6 0.0013 0.0889 0.0091 0.0169 0.0014 0.0063 0.0036 0.0020
within 1.41 177.86 1223.19 148.65 107.84 29.88 36.69 21.28
between 0.81 128.95 678.85 115.65 44.77 47.61 36.74 24.51

r? 0.99 0.38 0.66 0.50 0.95 0.94 0.94 0.96

ooun = 4\ - P S A/ S N -
(a) within each dataset (b) between datasets and ground truth

Fig. 3: Distribution of haplotypic pairwise Euclidean distances within (3a) datasets and between (3b) AG
datasets and test set from 805 dataset using different models.

3.3 Reconstructing Global Population Structure

We first compared the ability of different models to represent genetic variation across 805 SNPs sparsely
sampled from across the genome. We simulate AGs with STRUDEL, HCLT and all five baselines (INDEP,
Markov, HMM, GAN, and RBM) for comparison. We use 2504 diploid genomes (5008 haploid genomes)
from the 1000 Genomes Project [53] as our dataset, and all models are learned on 805 SNPs which are
sparsely sampled from across the genome. We tune hyper-parameters on a small split of training data as
validation: we use the order of 5 for higher-order Markov chain, and hidden states of 16 for HCLT and
HMM.

Table 1 shows that STRUDEL and HCLT learn more accurate probabilistic models than fully-factorized
distributions, Markov chains and HMMs as measured by their log likelihood on the test set. Additionally,
the PC models are relatively lightweight: they have similar sizes compared to the adopted Markov chains.
Note that we do not compare with GAN and RBM since they do not support tractable exact likelihood
computation.
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We then analyze the quality of AGs generated by all models. Figure 2 shows that the AGs generated
by INDEP and MARKOV fall within the center of the variation seen in the test samples. The AGs generated
by the HMM cover some spaces of PC1 and PC2, whereas GAN and RBM can capture most of the global
structure. Regardless, AGs generated by the GAN tend to cover a larger space than the real test data. In
contrast, STRUDEL and HCLT are able to capture more details: the PC1 and PC2 plots of HCLT is almost
identical to the ground truth, and the PC3 and PC4 are also well captured. To quantify the accuracy of the
PCs computed from the AGs, we computed Wasserstein distances between the 2D PCA representations of
test data versus simulated data (Table 2). Wasserstein distances between the 2D PCA representations of test
data versus simulated data are lower (closer to 0) for HCLT than for RBM and GAN along every pair of
dimensions. We additionally compute the pairwise differences of haploid genomes within a single dataset or
between the test dataset and AG datasets. Figure 3 shows the pairwise differences distribution while Table 2
rows 4-5 shows the Wasserstein distances between these distribution. GAN, RBM, STRUDEL and HCLT
all capture the three modes in the distribution while the histogram of GAN and RBM are more uniform.

Next, we examined the allele frequencies in the AGs relative to the allele frequencies in the test data. As
shown in Figure 4, the allele frequencieis of STRUDEL and HCLT are more centered around the diagonal,
which indicates that they yield better calibrated probabilities.

3.4 Reconstructing Local Population Structure

To evaluate the ability of PCs to generate genome sequences across a dense set of SNPs from a single genomic
region, we applied the STRUDEL and HCLT learner to a region with 10K SNPs from chromosomel5 in the
1000 Genomes data. The log-likelihoods in Table 1 show that STRUDEL and HCLT can still deliver expressive
PC models with moderate sizes. This suggests that these PC learners can handle high-dimensional genetic
datasets and accurately capture long-range correlations. Note that although HMM has similar likelihoods
as STRUDEL in 805 SNPs dataset, the performance is much worse in the 10K SNPs dataset, which shows
that HMM is hard to capture long-range correlations for it is a linear model. PCA results and comparison
of pairwise distances of AGs (Table 2) show that the AGs generated by HCLT are most similar to the test
data on the most important principal components and in terms of pairwise distances.

Allele frequency analysis in Figure 5 shows that RBM and GAN perform poorly especially for low
frequency alleles while STRUDEL and HCLT still show well-calibrated correlations. Allele frequency analysis
can be seen as a first dimension correlation analysis of AGs. Since SNPs from a given genomic region tend
to be correlated, we examined patterns of linkage disequilibrium (LD) to assess how the pairwise short and
long-range correlations of SNPs can be captured by AGs. The pairwise LD matrix in Figure 6b shows that
HCLTs accurately capture patterns of LD in this region. Plotting LD as a function of SNP distance in
Figure 6a demonstrates that HCLT, STRUDEL and HMM better capture better correlation across shorter
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Fig. 7: Linkage disequilibrium comparison. The first row plots the pairwise LD between pairs of points
from AGs vs. real test set for all models on 10K dataset. The second row shows the respective QQ-plots,
which illustrate the corresponding quantiles.

length scales while all models, expect for HMM are accurate at longer length scales. On the other hand,
while the HMMaccurate captures LD at shorter length scales, it performs poorly across longer length scales.
Correlations between real and AGs shown in the last row of Table 2 and in Figure 7 comes to a similar
conclusion that HCLT more accurately captures the distribution of LD across SNPs within the region.
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4 Conclusion

We present HCLT, a new simulator for AGs based on PCs, which has comparable or better performance
than the current state-of-the-art AG simulators in capturing key population genetic statistics such as al-
lele frequencies, linkage disequilibrium, pairwise haplotype distances, and population structure, while being
tractable and expressive. By capturing long-range correlations and offers probabilistic inference, HCLT is
particularly suitable for modeling genetic data. This work presents the first population genetic method based
on PC and exemplifies its potential for population genetic simulations. We outline limitations of our study
and directions for future work. First, while the HCLT shows great performance in simulating 10K SNPs, nei-
ther HCLT nor other highly expressive methods can simulate whole artificial genomes (containing millions
of SNPs). However, HCLT is significantly faster to train compared to GAN and RBM. Future improvements
are needed for making our proposed models scale to these settings. Second, in our current study, we applied
all methods to haploid genomes. This process ignores the uncertainty that arises due to phasing diploid
genomes. Due to PC’s ability to handle missing data easily, we expect the extension of HCLT to unphased
diploid genomes to be straightforward and would lead to the simulation of diploid AGs. Third, our current
experiments pool individuals from multiple distinct populations genotyped in the 1000 Genomes project as a
way to obtain large sample sizes to train our models. It is plausible that the accuracy of simulating AGs will
vary across populations (with distinct demographic histories that will, in turn, lead to distinct distributions
of allele frequencies and LD). Admixed populations, with long-range LD due to admixture, are expected
to have different patterns of LD [55] relative to homogeneous populations. Ongoing attempts to genotype
large numbers of individuals across diverse populations will lead to large numbers of samples needed to train
population-specific models based on HCLT.
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Fig. 8: Principal component analysis. The first six axes of a single PCA applied to test set real (gray) and
AGs generated via INDEP (green), MARKOV (brown), HMM (orange), GAN (blue), RBM (red), STRUDEL
(pink), and HCLT (purple).There are 5000 haplotypes for each AG dataset and 961 in the test set of 10K
dataset.
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