
JUICE: A Julia Package for Logic and Probabilistic Circuits

Meihua Dang, Pasha Khosravi, Yitao Liang, Antonio Vergari, Guy Van den Broeck
Computer Science Department

University of California, Los Angeles
{mhdang, pashak, yliang, aver, guyvdb}@cs.ucla.edu

Abstract

JUICE is an open-source Julia package providing tools for
logic and probabilistic reasoning and learning based on logic
circuits (LCs) and probabilistic circuits (PCs). It provides a
range of efficient algorithms for probabilistic inference queries,
such as computing marginal probabilities (MAR), as well as
many more advanced queries. Certain structural circuit proper-
ties are needed to achieve this tractability, which JUICE helps
validate. Additionally, it supports several parameter and struc-
ture learning algorithms proposed in the recent literature. By
leveraging parallelism (on both CPU and GPU), JUICE pro-
vides a fast implementation of circuit-based algorithms, which
makes it suitable for tackling large-scale datasets and models.

Introduction
Decision making in the real world requires the ability to com-
pactly represent and easily learn complex models, such as
probability distributions and logical knowledge bases. It also
requires the ability to perform logic and probabilistic rea-
soning about complex models. Moreover, in many sensitive
domains, these computations need to be carried out exactly
and efficiently. Classical models like Bayesian and Markov
networks, and recent neural density estimators like variational
autoencoders (Kingma and Welling 2013) and normalizing
flows (Papamakarios et al. 2019) can capture complex distri-
butions, but at the cost of being highly intractable. They only
offer approximate answers to inference queries.

In contrast, probabilistic circuits (PCs) (Choi, Vergari, and
Van den Broeck 2020) are expressive, deep, yet tractable prob-
abilistic models that permit exact inference for many types of
queries, in time linear in the size of their representation. They
are increasingly used in downstream applications that require
efficient probabilistic inference: algorithmic fairness (Choi,
Dang, and Van den Broeck 2020), missing data (Khosravi
et al. 2019, 2020; Correia, Peharz, and de Campos 2020),
graphical model inference (Shih and Ermon 2020), proba-
bilistic programming (Holtzen, Van den Broeck, and Mill-
stein 2020; Skryagin et al. 2020), activity recognition (Galin-
dez Olascoaga et al. 2019), vision (Stelzner, Peharz, and Ker-
sting 2019), and explainability (Nourani et al. 2020; Wang,
Khosravi, and Van den Broeck 2020).

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

×

×

.3

.7

X1=1

X1=0

×

×

×

.2

.8

1.

X2=1

X2=0

X3=1

X3=0

.1

.9

.5

.5

X2=1

X2=0

X3=1

X3=0

.7

.3

.6

.4

1 X1,X2,X3=literals(ProbCircuit,3)
2 pc=.3*(X1[1]*
3 (.2*(X2[1]
4 *(.1X3[1]+.9X3[2]))
5 +.8*(X2[2]
6 *(.5X3[1]+.5X3[2]))))+
7 .7*(X1[2]*
8 +((.7X2[1]+.3X2[2])*
9 (.6X3[1]+.4X3[2])))

Figure 1: A smooth deterministic structured-decomposable
PC representing p(X1, X2, X3) and JUICE code to create it.

PCs are the probabilistic counterpart to tractable logic cir-
cuits (LCs) (Darwiche and Marquis 2002). They are compact
representations of Boolean functions that are successfully
employed in many knowledge representation and reasoning
scenarios, often as a target for compilation (Darwiche and
Marquis 2002; Van den Broeck and Suciu 2017).

We introduce JUICE,1 a Julia package that offers re-
searchers and practitioners efficient routines to construct,
compile, learn and reason with LCs and PCs. It provides a
wide range of functionality, while being easy to extend and
customize. Next, we give brief theoretical background, and
discuss the high-level design and implementation of JUICE.

Background on Tractable Circuits
Representation Circuits, including LCs and PCs, are com-
putational graphs where nodes are computation units and
edges define an order of execution. A LC G is a directed
acyclic graph encoding a logical formula where each inner
node represents either disjunction or conjunction, and each
input node is a logical literal, e.g., X = 1. Examples of
LCs are d-DNNF circuits, binary, and sentential decision
diagrams (Darwiche and Marquis 2002; Darwiche 2011).

A PC (G,θ) over random variables (RVs) X represents
a joint probability distribution p(X) with parameters θ.
PCs are a family of tractable probabilistic models that in-
cludes arithmetic circuits (Darwiche 2002), sum-product net-
works (Poon and Domingos 2011), and cutset networks (Rah-
man, Kothalkar, and Gogate 2014). A PC structure G is sim-
ilar to a LC structure, except that conjunction nodes are
written as products, disjunction nodes are written as sums,

1JUICE source code is available at https://github.com/Juice-jl



Models Logic Circuits Probabilistic Circuits Pairs of Circuits

Algorithms forward & backward traversal EVI, MAR, CON, MPE multiply
smooth, condition, split, merge, clone (conditional) sampling KL-divergence
(weighted) model counting MLE/ EM parameter learning expectations
compilation, SAT hill climbing structure learning moments

Table 1: The list of major functionalities that JUICE supports. Many routines benefit from SIMD/GPU parallelization.

and input nodes n are associated with some tractable distri-
bution fn – for example, an indicator function for discrete
variables, or a Gaussian for continuous variables. Parameters
θ are associated with each sum node and input distribution.

Concretely, let in(n) be the set of inputs of an inner node n.
Then p(X) is defined as follows:

pn(x) =


fn(x) if n is an input node∏

c∈in(n) pc(x) if n is a product node∑
c∈in(n) θn,c pc(x) if n is a sum node

Intuitively, a product node n defines a factorized distribu-
tion, and a sum node n defines a mixture model parameterized
by weights θn,c. See Figure 1 for an example of a PC.

Inference Given certain structural properties, PCs support
tractable probabilistic inference. JUICE makes it easy to test
for these properties and construct circuits that have them.

A circuit is said to be smooth if for every sum node all of
its inputs depend on the same set of RVs; it is decomposable
if for every product node its inputs depend on disjoint sets
of RVs (Darwiche and Marquis 2002). Given a smooth and
decomposable PC, computing marginal probabilities (MAR)
becomes tractable for any partial evidence. The computation
reduces a customized feed forward evaluations of the cir-
cuit. This also implies tractable computation of conditional
probabilities (CON), which are ratios of marginals.

A circuit is deterministic if for every complete input assign-
ment x, at most one input of every sum node has a non-zero
output. Decomposability and determinism enables tractable
exact inference of most-probable explanations (MPE) (Choi
and Darwiche 2017), also called MAP inference.

Another useful property is structured decomposability; it
means that product nodes with the same scope decompose
their variables in the same way (Kisa et al. 2014). Forms of
structured decomposability guarantee tractable inference for
advanced queries and manipulations: multiplying PCs (Shen,
Choi, and Darwiche 2016), or computing expectations (Choi,
Van den Broeck, and Darwiche 2015; Khosravi et al. 2019)
and KL divergences (Liang and Van den Broeck 2017).

An Overview of the JUICE Package
Table 1 summarizes the main compilation, reasoning and
learning functionality implemented in the JUICE package.

Learning JUICE supports highly efficient parameter learn-
ing given complete or incomplete data (Kisa et al. 2014;
Peharz et al. 2016). For example, the following code snip-
pet learns the parameters of a PC on GPU and evaluates the

likelihoods given training examples. We report runtimes for
the training set PLANTS (Lowd and Davis 2010) with 17,412
examples and a PC with around 150 thousand nodes.

1 estimate_parameters(pc, data) # MLE; 88 ms
2 EVI(pc, data) # Full Evidence; 83 ms

JUICE also implements several structure learners that adopt
hill-climbing strategies (Liang, Bekker, and Van den Broeck
2017; Dang, Vergari, and Van den Broeck 2020).

Design We model circuits as linked node structures. In-
ference routines iterate over the circuit forward or back-
ward, passing results from node to node. Arbitrary infer-
ence algorithms can be implemented by providing different
lambda functions, corresponding to different computations,
to a general-purpose, optimized circuit traversal and propa-
gation infrastructure. When modifying circuits, we leverage
Julia’s automatic garbage collection, and the fact that nodes
only link to their inputs, not the consumers of their output.

Parallel computing on CPU and GPU A linked node rep-
resentation is an intuitive data structure for circuits. However,
it has the drawback that it makes computations sparse, mak-
ing it harder to leverage parallelism to speed up computa-
tion. To optimize performance during inference and learning,
we translate the circuit’s DAG into a layered computational
graph, starting with the input layer, and each layer only de-
pending on the previous layers. Since the computations on
the nodes in the same layer can be cached in one large vector,
we can simultaneously parallelize our computation over the
nodes in the layer on the one hand, and training examples or
inference task data on the other hand. Additionally, we lever-
age Julia’s multiple dispatch to provide customized kernels
to accelerate computation on both CPUs and GPUs (using
SIMD and CUDA kernels respectively). Experiments show
that CPU parallelism gives significant speed-ups, which even
become an order of magnitude faster with GPU parallelism,
all using the same underlying data structures.

Other circuit types Finally, because JUICE separates struc-
tures (LCs and PCs) and algorithms (e.g., inference and learn-
ing), making custom circuit models with specific semantics
is relatively easy. For example, JUICE also provides an im-
plementation of logistic circuits (Liang and Van den Broeck
2019) which is a type of discriminative PC for classification.



Acknowledgments
This work is partially supported by NSF (IIS-1943641, IIS-
1633857, CCF-1837129), DARPA (N66001-17-2-4032), a
Sloan Fellowship, Intel & Facebook.

References
Choi, A.; and Darwiche, A. 2017. On Relaxing Determinism
in Arithmetic Circuits. In Proceedings of the Thirty-Fourth
International Conference on Machine Learning (ICML).
Choi, A.; Van den Broeck, G.; and Darwiche, A. 2015.
Tractable Learning for Structured Probability Spaces: A Case
Study in Learning Preference Distributions. In Proceedings
of 24th International Joint Conference on Artificial Intelli-
gence (IJCAI).
Choi, Y.; Dang, M.; and Van den Broeck, G. 2020. Group
Fairness by Probabilistic Modeling with Latent Fair Deci-
sions. In Algorithmic Fairness through the Lens of Causality
and Interpretability Workshop at NeurIPS (AFCI).
Choi, Y.; Vergari, A.; and Van den Broeck, G. 2020. Prob-
abilistic Circuits: A Unifying Framework for Tractable
Probabilistic Models URL http://starai.cs.ucla.edu/papers/
ProbCirc20.pdf.
Correia, A.; Peharz, R.; and de Campos, C. P. 2020. Joints in
Random Forests. Advances in Neural Information Processing
Systems 33 (NeurIPS) .
Dang, M.; Vergari, A.; and Van den Broeck, G. 2020. Strudel:
Learning Structured-Decomposable Probabilistic Circuits. In
Proceedings of the 10th International Conference on Proba-
bilistic Graphical Models (PGM).
Darwiche, A. 2002. A Logical Approach to Factoring Belief
Networks. In Proceedings of the 8th International Con-
ference on Principles and Knowledge Representation and
Reasoning (KR), 409–420.
Darwiche, A. 2011. SDD: A new canonical representation of
propositional knowledge bases. In Twenty-Second Interna-
tional Joint Conference on Artificial Intelligence.
Darwiche, A.; and Marquis, P. 2002. A knowledge compila-
tion map. Journal of Artificial Intelligence Research 17(1):
229–264.
Galindez Olascoaga, L. I.; Meert, W.; Shah, N.; Verhelst, M.;
and Van den Broeck, G. 2019. Towards Hardware-Aware
Tractable Learning of Probabilistic Models. In Advances in
Neural Information Processing Systems 32 (NeurIPS).
Holtzen, S.; Van den Broeck, G.; and Millstein, T. 2020.
Scaling Exact Inference for Discrete Probabilistic Programs.
Proc. ACM Program. Lang. (OOPSLA) doi:https://doi.org/10.
1145/342820.
Khosravi, P.; Choi, Y.; Liang, Y.; Vergari, A.; and Van den
Broeck, G. 2019. On Tractable Computation of Expected
Predictions. In Advances in Neural Information Processing
Systems 32 (NeurIPS).
Khosravi, P.; Vergari, A.; Choi, Y.; Liang, Y.; and Van den
Broeck, G. 2020. Handling Missing Data in Decision Trees:
A Probabilistic Approach. In The Art of Learning with Miss-
ing Values Workshop at ICML (Artemiss).

Kingma, D. P.; and Welling, M. 2013. Auto-Encoding Varia-
tional Bayes. In Proceedings of the 2nd International Con-
ference on Learning Representations (ICLR), 2014.

Kisa, D.; Van den Broeck, G.; Choi, A.; and Darwiche, A.
2014. Probabilistic sentential decision diagrams. In Proceed-
ings of the 14th International Conference on Principles of
Knowledge Representation and Reasoning (KR).

Liang, Y.; Bekker, J.; and Van den Broeck, G. 2017. Learning
the structure of probabilistic sentential decision diagrams.
In Proceedings of the 33rd Conference on Uncertainty in
Artificial Intelligence (UAI).

Liang, Y.; and Van den Broeck, G. 2017. Towards Com-
pact Interpretable Models: Shrinking of Learned Probabilistic
Sentential Decision Diagrams. In IJCAI 2017 Workshop on
Explainable Artificial Intelligence (XAI).

Liang, Y.; and Van den Broeck, G. 2019. Learning Logistic
Circuits. In Proceedings of the 33rd Conference on Artificial
Intelligence (AAAI).

Lowd, D.; and Davis, J. 2010. Learning Markov Network
Structure with Decision Trees. In Proceedings of the 10th
IEEE International Conference on Data Mining, 334–343.
IEEE Computer Society Press.

Nourani, M.; Roy, C.; Rahman, T.; Ragan, E. D.; Ruozzi, N.;
and Gogate, V. 2020. Don’t Explain without Verifying Ve-
racity: An Evaluation of Explainable AI with Video Activity
Recognition.

Papamakarios, G.; Nalisnick, E.; Rezende, D. J.; Mohamed,
S.; and Lakshminarayanan, B. 2019. Normalizing Flows
for Probabilistic Modeling and Inference. arXiv preprint
1912.02762 .

Peharz, R.; Gens, R.; Pernkopf, F.; and Domingos, P. 2016.
On the latent variable interpretation in sum-product networks.
IEEE transactions on pattern analysis and machine intelli-
gence .

Poon, H.; and Domingos, P. 2011. Sum-product networks:
A new deep architecture. In 2011 IEEE International Con-
ference on Computer Vision Workshops (ICCV Workshops),
689–690. IEEE.

Rahman, T.; Kothalkar, P.; and Gogate, V. 2014. Cutset
networks: A simple, tractable, and scalable approach for
improving the accuracy of Chow-Liu trees. In Joint European
conference on machine learning and knowledge discovery in
databases, 630–645. Springer.

Shen, Y.; Choi, A.; and Darwiche, A. 2016. Tractable Op-
erations for Arithmetic Circuits of Probabilistic Models. In
Advances in Neural Information Processing Systems 29: An-
nual Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain, 3936–3944.

Shih, A.; and Ermon, S. 2020. Probabilistic Circuits for Vari-
ational Inference in Discrete Graphical Models. Advances in
Neural Information Processing Systems 33 (NeurIPS) .

Skryagin, A.; Stelzner, K.; Molina, A.; Ventola, F.; Yu, Z.;
and Kersting, K. 2020. Sum-Product Logic: Integrating Prob-
abilistic Circuits into DeepProbLog. In Working Notes of



the ICML 2020 Workshop on Bridge Between Perception and
Reasoning: Graph Neural Networks and Beyond.
Stelzner, K.; Peharz, R.; and Kersting, K. 2019. Faster Attend-
Infer-Repeat with Tractable Probabilistic Models. Proceed-
ings of Machine Learning Research. Long Beach, California,
USA: PMLR.
Van den Broeck, G.; and Suciu, D. 2017. Query Processing
on Probabilistic Data: A Survey. Foundations and Trends in
Databases. Now Publishers. doi:10.1561/1900000052.
Wang, E.; Khosravi, P.; and Van den Broeck, G. 2020. To-
wards Probabilistic Sufficient Explanations. In Extending
Explainable AI Beyond Deep Models and Classifiers Work-
shop at ICML (XXAI).


