Learning Fair Naive Bayes Classifiers by
Discovering and Eliminating Discrimination Patterns

YooJung Choi* Golnoosh Farnadi*
University of California, Los Angeles Mila & Université de Montréal
yjchoi@cs.ucla.edu farnadig@mila.quebec
Behrouz Babaki* Guy Van den Broeck
Polytechnique Montréal University of California, Los Angeles
behrouz.babaki@polymtl.ca guyvdb@cs.ucla.edu
Abstract

As machine learning is increasingly used to make real-world decisions, recent
research efforts aim to define and ensure fairness in algorithmic decision making.
Existing methods often assume a fixed set of observable features to define individu-
als, but lack a discussion of certain features not being observed at test time. In this
paper, we study fairness of naive Bayes classifiers, which allow partial observations.
In particular, we introduce the notion of a discrimination pattern, which refers to an
individual receiving different classifications depending on whether some sensitive
attributes were observed. Then a model is considered fair if it has no such pattern.
We propose an algorithm to discover and mine for discrimination patterns in a naive
Bayes classifier, and show how to learn maximum-likelihood parameters subject
to these fairness constraints. Our approach iteratively discovers and eliminates
discrimination patterns until a fair model is learned. An empirical evaluation on
three real-world datasets demonstrates that we can remove exponentially many
discrimination patterns by only adding a small fraction of them as constraints.

1 Introduction

With the increasing societal impact of machine learning come increasing concerns about the fairness
properties of machine learning models and how they affect decision making. For example, concerns
about fairness come up in policing [[11], recidivism prediction [2]], insurance pricing [[10]], hiring [3],
and credit rating [8]. The algorithmic fairness literature has proposed various solutions, including
individual fairness [4}[13]], statistical parity and group fairness [2. 16, 9], counterfactual fairness [[10],
preference-based fairness [[12]], and equality of opportunity [7]. The goal in these works is usually to
assure the fair treatment of individuals or groups that are identified by sensitive attributes.

In this paper, we study fairness properties of probabilistic classifiers that represent joint distributions
over the features and a decision variable. In particular, Bayesian network classifiers treat the classifica-
tion task as a probabilistic inference problem: given observed features, compute the probability of the
decision variable. Such models can effectively handle missing features at prediction time by simply
marginalizing the unobserved variables out of the distribution. Hence, a Bayesian network classifier
effectively embeds exponentially many classifiers, one for each subset of observable features. We ask
whether such classifiers exhibit patterns of discrimination where similar individuals receive markedly
different outcomes purely because they disclosed a sensitive attribute.

The first key contribution of this paper is an algorithm to verify whether a Bayesian classifier is fair,
or else to mine the classifier for discrimination patterns, with two proposed criteria for identifying
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the most important discrimination patterns. We specialize our pattern miner to effectively discover
discrimination patterns in naive Bayes models using branch-and-bound search, exploiting the naive
Bayes assumption for efficient computation of bounds during search. The second key contribution of
this paper is a parameter learning algorithm for naive Bayes classifiers that eliminates discrimination
patterns from the learned distribution. We propose a signomial programming approach to eliminate
discrimination patterns during maximum-likelihood learning. Moreover, to efficiently eliminate an
exponential number of possible patterns, we propose a cutting-plane approach that iteratively finds
and eliminates discrimination patterns until the entire learned model is fair. Our empirical evaluation
shows that naive Bayes models indeed exhibit vast numbers of discrimination patterns, and that our
pattern mining algorithm is able to find them by traversing only a small fraction of the search space.
Also, we empirically demonstrate that our iterative learning converges in a small number of iterations,
while effectively removing millions of discrimination patterns. Moreover, the learned fair models are
of high quality, achieving likelihoods that are close to that of unfair max-likelihood models, as well
as accuracy higher than other methods of learning fair naive Bayes models.

2 Problem formalization

We use uppercase letters for random variables and lowercase letters for their assignments. Sets of
variables and their joint assignments are written in bold. Negation of a binary assignment x is denoted
Z, and x =y means that x logically implies y. Concatenation of sets XY denotes their union.

Each individual is characterized by an assignment to a set of discrete variables Z, called attributes or
features. Assignment d to a binary decision variable D represents a decision made in favor of the
individual (e.g., a loan approval). A set of sensitive attributes S C Z specifies a group of entities
protected often by law, such as gender and race. We now define the notion of a discrimination pattern.

Definition 1. Let P be a distribution over D U Z. Let x and 'y be joint assignments to X CS and
Y CZ\X, respectively. The degree of discrimination of Xy is: Ap4(x,y) = P(d|xy) — P(d|y).

The assignment y identifies a group of similar individuals, and the degree of discrimination quantifies
how disclosing sensitive information x affects the decision for this group.

Definition 2. Let P be a distribution over DUZ, and § € [0, 1] a threshold. Joint assignments x and
y form a discrimination pattern w.r.t. P and § if: (1) XCS and Y CZ\X; and (2) |Apq(x,y)| > 0.

Intuitively, we do not want information about the sensitive attributes to significantly affect the
probability of getting a favorable decision, for all individuals and subgroups. Hence, We wish to
ensure that there exists no discrimination pattern across all subsets of observable features.

Definition 3. A distribution P is §-fair if there exists no discrimination pattern w.r.t P and 6.

Although our notion of fairness applies to any distribution, finding discrimination patterns can
be computationally challenging: computing the degree of discrimination involves probabilistic
inference, which is hard in general, and a given distribution may have exponentially many patterns.
In this paper, we demonstrate how to discover and eliminate discrimination patterns of a naive Bayes
classifier effectively by exploiting its independence assumptions. Concretely, we answer the following
questions: (1) Can we certify that a classifier is -fair?; (2) If not, can we find the most important
discrimination patterns?; (3) Can we learn a naive Bayes classifier that is entirely §-fair?

3 Discovering discrimination patterns

Verifying J-fairness A naive way to check d-fairness is to enumerate all possible patterns and
compute their degrees of discrimination. However, this would be very inefficient as there are
exponentially many subsets and assignments to consider. Instead, we use branch-and-bound search to
more efficiently decide if a model is fair. Our algorithm recursively adds variable instantiations and
checks the discrimination score at each step. If the input distribution is d-fair, it returns no pattern;
otherwise, it returns the set of all discriminating patterns. Furthermore, we propose the following
bound for the discrimination score to prune the search tree and avoid enumerating all patterns.

Proposition 1. Let P be a naive Bayes distribution over DUZ, and let x and y be joint assignments to
X CSandY CZ\X. Let x, (resp. x;) be an assignment to X' = S\X that maximizes (resp. minimizes)
P(d|xx'). Suppose l,u € [0,1] such thatl < P(d|yy’) < u for all possible assignments y’ to

Y'=Z\(XY). Let A(a, B,7) = W&—w) — . Then the degrees of discrimination for all patterns



xx'yy’ that extend Xy are bounded as follows:
in A (P(xx|d), P(xx;|d),7) < Apa(xx',yy’) < max A (P(xx, |d), P(xx, | d),7) -

Here, A : [0,1] — [0, 1] is introduced to relax the discrete problem of minimizing or maximizing
the degree of discrimination into a continuous one, allowing us to efficiently compute the bounds as
closed-form solutions. We refer to the Appendix for full proofs and details of the algorithm.

Searching for top-k ranked patterns If a distribution is significantly unfair, our verification
algorithm may return exponentially many patterns. This is not only very expensive but also difficult
to interpret. Instead, we would like to return a smaller set of “interesting” discrimination patterns,
thus calling for a ranking among patterns. An obvious choice is to look at those with the highest
discrimination scores. Searching for the & most discriminating patterns can be done by simply
modifying the verification algorithm to keep track of only the top-k patterns at each point in search.

Nevertheless, ranking patterns by their discrimination score may return those of extremely low
probability, which may be of lesser interest as the probability of a discrimination pattern denotes the
proportion of the population (according to the distribution) that could be affected unfairly. To address
this, we propose a more sophisticated ranking that also takes into account the probabilities of patterns.

Definition 4. Let P be a distribution over D U Z. Let x and y be joint instantiations to subsets
X CSand¥Y C Z\ X, respectively. The divergence score of Xy is:

Divpas(x,y) £ Hgn KL(P || Q) s.t. |Ag.a(x,y)| <6 and P(dz) = Q(dz), Vdz [~ xy (1)

The divergence score assigns to a pattern xy the minimum Kullback-Leibler divergence between
current distribution P and a hypothetical distribution () that is fair on the pattern xy and differs from
P only on the assignments that satisfy the pattern (namely dxy and dxy). Informally, the divergence
score approximates how much the current distribution P needs to be changed in order for xy to no
longer be a discrimination pattern. Hence, patterns with higher divergence score will tend to have
not only higher discrimination score but also higher probabilities. To find the top-k patterns with the
divergence score, we need to be able to compute the score and its upper bound efficiently. They can
in fact be computed in linear time for naive Bayes classifiers; we refer to the appendix for details.

4 Learning fair naive Bayes classifiers

We now describe our approach to learning the maximum-likelihood parameters of a naive Bayes
model from data while eliminating discrimination patterns. It is based on formulating the learning
subject to fairness constraints as a signomial program, an optimization problem that minimizes a
signomial objective function subject to signomial inequality and monomial equality constraints [JS].

Parameter learning with fairness constraints Given data D, we learn the maximum-likelihood
parameters by minimizing the inverse of the likelihood [ [, 6; """ where n; is the number of examples
in D that satisfy the assignment corresponding to parameter ¢;. The parameters of a naive Bayes
network with binary class consist of 64,07, and 0| 4,0, | ¢ for all z. To learn a valid distribution, we

add constraints to ensure that probabilities are non-negative and sum to oneE] Lastly, to ensure that a
pattern xy is non-discriminating, we add the following constraints to our optimization problem.

Proposition 2. Let Py be a naive Bayes distribution over DUZ, and let X and y be joint assignments
10X CSandY CZ\X. Then |Ap, 4(x,y)| < § for a threshold § € [0, 1] iff the following holds:

. _ 1L ba1a . _ 0all, 94
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Note that above equalities and inequalities are valid signomial program constraints. Thus, we can
learn the maximum-likelihood parameters of a naive Bayes network while ensuring a certain pattern
is fair by solving a signomial program. Furthermore, we can eliminate multiple patterns by adding the
constraints in Proposition [2]for each of them. We use GPkir to find local solutions to these problems.

>The former is inherent to signomial programs; to enforce the latter, for each d and feature Z we add
signomial inequality constraints: > 6,4 < land2 -3 0.4 < 1.



Table 1: Log-likelihood of models learned with- Table 2: Accuracy of §-fair models, two-naive-Bayes
out fairness constraints, with the §-fair learner, and method, and naive Bayes models trained on repaired,

with decision-independent sensitive variables. discrimination-free data.
Dataset Unconstrained 0-Fair  Independent Dataset ~ Unconstrained 2NB  Repaired d-fair
COMPAS -207,055 -207,395 -208,639 COMPAS 0.880 0.875 0.878 0.879
Adult -226,375  -228,763 -232,180 Adult 0.811 0.759 0.325 0.827
German -12,630  -12,635 -12,649 German 0.690 0.679 0.688 0.696

Iterative learning Learning a model that is entirely fair with this approach will introduce an
exponential number of constraints. To address this challenge, we propose an approach based on
the cutting plane method. That is, we iterate between parameter learning and constraint extraction,
gradually adding fairness constraints to the optimization. At each iteration, we learn the maximum-
likelihood parameters subject to fairness constraints and find £ more patterns using the updated
parameters to add to the set of constraints in the next iteration. This process is repeated until the
search algorithm finds no more discrimination pattern. While our algorithm could in the worst case
add exponentially many constraints, we will later show empirically that we can learn a J-fair model
by explicitly enforcing only a small fraction of fairness constraints.

5 Empirical evaluation

We empirically evaluate our discrimination pattern miner and J-fair learning on COMPAS, Adult
and German datasets, used for predicting recidivism, income level, and credit risk respectivelyE] A
summary of the datasets and the full set of results can be found in the Appendix.

Discrimination pattern miner To see the efficiency of our pattern miner, we inspect the fraction
of all possible patterns that our algorithm visits during search. We evaluate on three datasets, using
two rank heuristics (discrimination and divergence), three ¢ values (0.01, 0.05, and 0.1), and three k
values (1, 10, and 100). When mining for the top-k patterns, our algorithm visited as few as 7.5e-8 of
all possible patterns, indicating that it prunes large parts of the search space. It explored more than
10% of the search space in only 9 out of 54 instances, and only for the COMPAS dataset which has a
much smaller search space (15K as opposed to 23B for German dataset).

o-fair learner Next, we evaluate the effectiveness of our iterative J-fair learner, again on three
datasets, two ranking heuristics, and varying k£ and  values. We observed that enforcing a small
number of (even a single) fairness constraints can eliminate a large number of remaining discrim-
ination patterns. In particular, on COMPAS dataset with k=1 and § = 0.1, adding only the most
discriminating pattern as a constraint at each iteration produced an entirely J-fair model with only
three iterations, eliminating all 2695 discrimination patterns of the unconstrained naive Bayes model.
On the other datasets, more than a million discrimination patterns were eliminated using a few dozen
to, even in the worst case, a few thousand fairness constraints. Furthermore, stricter fairness require-
ments (smaller §) tended to require more iterations, as would be expected. Interestingly, neither of
the rankings consistently dominated the other in terms of the number of iterations to converge.

Lastly, we compare the quality of naive Bayes models from our fair learner in terms of log-likelihoods
as well as accuracy. We first compare against (1) a maximum-likelihood model with no fairness
constraints (unconstrained) and (2) a model in which the sensitive variables are independent of the
decision variable, with max-likelihood learning for the remaining parameters (independent). These
models lie at two opposite ends of the spectrum of the trade-off between fairness and predictive
power, and the -fair model falls between these extremes. As shown in Table[l} the J-fair models
achieve likelihoods that are much closer to those of the unconstrained models than the independent
ones, demonstrating that it is possible to enforce fairness without a major reduction in model quality.
Table 2] reports the 10-fold CV accuracy of our method (d-fair) compared to the unconstrained NB
model and two other methods of learning fair classifiers: the two-naive-Bayes method (2NB) [1]], and
a naive Bayes model trained on discrimination-free data using the repair algorithm of Feldman et al.
[6] with A=1. Even though the notion of discrimination patterns was proposed for settings in which
predictions are made with missing values, our method still outperforms other fair models in terms of
accuracy, a measure better suited for predictions with fully-observed features.

*https://github.com/propublica/compas-analysis and https://archive.ics.uci.edu/ml
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Figure 1: Naive Bayes classifier with a sensitive attribute X and non-sensitive attributes Y7, Yo

A Intuition for discrimination patterns

Let us consider two special cases of discrimination patterns. First, if Y = (3, then a small discrimination
score |A(x, ?)| can be interpreted as an approximation of statistical parity, which is achieved when
P(d|x) = P(d). For example, the naive Bayes network in Figure |1|satisfies approximate parity for
§d=0.2 as |A(z,0)]=0.086 < ¢ and |A(Z,0)|=0.109 < §. Second, suppose X=S and Y =Z\S.
Then bounding |A(x,y)| for all joint states x and y is equivalent to enforcing individual fairness
where two individuals are considered similar if their non-sensitive attributes y are equal. The network
in Figure|]is also individually fair for § = 0.2 because maxgy, , |A(z, y1y2)| = 0.167 < 4, with
the highest discrimination score achieved at A(Z, y192) = —0.167.

Even though the example network has no discrimination pattern at the group level nor at the individual
level (with fully observed features), it may still produce a discrimination pattern. In particular,
|A(Z,y1)] =0.225 > . That is, a person with Z and y; observed and the value of Y5 undisclosed
would receive a much more favorable decision had they not disclosed X as well. Therefore, we
define J-fairness to ensure that there exists no discrimination pattern across all subsets of observable
features.

B ¢-Fairness Verification Algorithm

Algorithm 1 DiSC-PATTERNS (x,y, E)
Input: P : Distribution over D U Z, ¢ : discrimination threshold Output: Discrimination patterns L
Data: x + 0,y < 0, E « (0, L «+ ||

1: for all assignments z to some selected variable Z € Z \ XYE do
2 if Z € S then

3 if |A(xz,y)| > ¢ then add (xz,y) to L

4: if UB(xz,y, E) > 0 then DISC-PATTERNS (x2,y, E)

5 if |A(x,yz)| > 6 thenadd (x,yz) to L

6 if UB(x,yz, E) > ¢ then DISC-PATTERNS (X, yz, E)

7: if UB(x,y, EU{Z}) > 0 then DISC-PATTERNS (x,y, EU {Z})

Algorithm|[T]finds discrimination patterns. It recursively adds variable instantiations and checks the
discrimination score at each step. Specifically, x and y denote the pattern that has been constructed
until the current point in recursion, and E contain variables that should be excluded in the following
search steps. Furthermore, UB(x,y, E) bounds the degree of discrimination achievable by observing
more features after xy while excluding features E. At the end of search, if the input distribution is
0-fair, the algorithm returns no pattern; otherwise, it returns the set of all discriminating patterns.

C Degree of Discrimination Bound

We now prove the correctness of our bound on discrimination score, and describe how it can be
computed efficiently for naive Bayes networks.

C.1 Proof of Proposition

We first derive how A represents the degree of discrimination A for some pattern xy.
Apa(x,y) = P(d|xy) — P(d|y)
P(x|d)P(dy)

= Pl d)Pdy) + Plx| P@Ey) Y




Px[d)Pd]y)
P(x|d)P(d|y)+ P(x|d)P(d]y)

= A(P(x|d), P(x|d), P(d]|y))

— P(d|y)

Clearly, if | < < u then minj< <y, ( By < A( ,B,7) < maxj<y<q ( , B,7). Therefore,
ifl < P(d|yy’) < u, then the following holds for any x:

min A(P(x| ), Plx|d).7) < B(P(x|d), Pix| D). P(d]y5))

= Apa(x,yy') < lr<nva<qu(P(x |d), P(x|d), ).
Next, suppose x|, = arg max,, P(d|xx’) and x| = argmin,, P(d|xx’). Then from Lemma
we also have that x|, = arg max,, P(d|xx'yy’) and x; = argmin,, P(d|xx'yy’) for any yy’.
Therefore,
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lglguA (P(xx}|d), P(xx7|d),7)

<A (P(xxf |d), P(xx]|d), P(d| yy’)) = Apq(xx;,yy') = P(d|xxyy’') — P(d|yy’)

< P(d|xx'yy’) = P(d|yy') = Apa(xx',yy’)

< Apa(xx,,yy') = A (P(xx,, | d), P(xx, | ), P(d | yy"))

< lrér{yaSXuA (P(xx, |d), P(xx,, |d),7) . O

C.2 Computing the Discrimination Bound

To apply above proposition, we need to find x!,, x7, [, u by maximizing/minimizing P(d|xx") and
P(d|yy’) for a given pattern xy. Note that above proposition can always be applied using [ =0
and v =1, in which case the bounds are simply the smallest and largest degrees of discrimination
achievable from current x, regardless of current y. However, values of [ and u specific to the current
pattern will tighten the bounds and improve pruning. Fortunately, we can efficiently compute them
for naive Bayes classifiers.

Lemma 1. Given a naive Bayes distribution P over DUZ, a subset V = {V;} | C Z, and an
assignment w to W CZ\'V, we have: arg max,, P(d|lvw) = {argmax, P(v;|d)/P(v;|d) }?:1

That is, the joint observation v that will maximize the probability of the decision can be found by
optimizing each variable V; independently; the same holds when minimizing. The proof is as follows.

Proof. Tt suffices to prove that for a single variable V' and all evidence w, arg max, P(d|vw) =

arg max,, }Ijgz :% . We first express P(d | vw) as the following:
P(v|d)P(d 1
P(d]vw) = P( |d)P(d(U| ))—I— (P(| T;)P(c” ) - P(v|d)P(d|w)
° AR W L paTapEw)
Then clearly,
 P(v|d)P(d] (v]d)
arg max P(d |vw) = arg min = arg max =
v v Plld)P(d]w) v (v[d)

O

Given the parameters for Proposition [I] we can compute the upper bound if we can efficiently
optimize A(a, 3,v) over I <~ < u for a fixed «, S.

If @ = 0 and 8 = 0, then the probability of the pattern is zero and thus the conditional probability
of the dec~ision van’able is ill-defined. Therefore, we will assume that either « or (3 is nonzero. Let
us write A, g(7) = A(a, 5,7) to denote the function restricted to fixed o and 5. If & = (3, then



Agp = 0. Also, Ag () = —y and A, o(7) = 1 — 7. Thus, in the following analysis we assume
and /3 are non-zero and distinct.
fo<a<pg<l, EQ}@ is negative and convex in y within 0 < v < 1. On the other hand, if

0 < B < o<1, then A, g, is positive and concave. This can quickly be checked using the
following derivatives.

d ~ af & 3 ~2afla =)
7Ao¢ = 37 — ]., jAa, = 3
dy ﬁ(’Y) (ay + B(1 — 7)) dry ﬂ(’}/) (ay+ B(1 —7))

Furthermore, the sign of the derivative at v = 0 is different from that at v = 1, and thus there must
exist a unique optimum in 0 < v < 1.

Solving for %ﬁa, s(7) =0, we gety = ‘%7@ The solution corresponding to the feasible space

0 <y <lis: yop = 2 g‘_/(‘? The optimal value is derived as the following.

—Vagi
Ao s (Yont) = O‘<ﬁﬁ—wﬂ> _B=VoB _aB-vap) B-vaB 2VaB-a-§
P - (&) +p B-a T VaB(B-o) B-a F-a

Then the optimal solution is: Yop if I < Yope < w3 Tif Yopr < 15 and w if yopy > u.

D Divergence Score

D.1 Computing the Divergence Score

We will show that the divergence score for a naive Bayes distribution can efficiently be computed as
the following:

. P(dx - P(dx
Divp 45(x,y) =P(dxy)log (P(diy)y—i—)r> + P(dxy)log <P(d§cy)yzr) ; )
5—Ap q(x,y) —0—Apa(xy)

where r = 0 if ‘AP7d(X, y)| S 6, T = W if AP’d(X,y) > 6, and r = W
if Apg(x,y) < —0. Intuitively, r represents the minimum necessary change to P(dxy) for xy to be
non-discriminating in the new distribution. Note that the smallest divergence score Divp 4 5(x,y) =

0 is attained when the pattern is already fair.

We want to find the closed form solution of the optimization problem in Equation[I] Because P and
@ differs only in two assignments, we can write the KL divergence as follows:

B 2o P(dz) _ v 1o P(dxy) ) o P(dxy)

Let r be the change in probability of dxy. That is, r = Q(dxy) — P(dxy). For @ to be a valid
probability distribution, we must have Q(dxy) + Q(dxy) = P(xy). Then we have Q(dxy) =
P(dxy) + r, and Q(dxy) = P(xy) — Q(dxy) = P(dxy) — r. We can then express the KL
divergence between P and () as a function of P and 7:

9Paxy(r) £ P(dxy)log (M) + P(dxy)log (Im)

Moreover, the discrimination score of pattern xy w.r.t () can be expressed using P and r as the
following:

Q) Q1) = HEE = R = P = Pty (55 )
1 1
= AP,d(X7Y) +r <1—7(Xy) - P(y)) :



The heuristic Divp g4 5(x,y) is then written using r as follows:

. 1 1
min gpdxy(r) st ‘AP@(X,y) +7r ( ) — P(y))‘ <6 3)

— P(dxy) < r < P(dxy)

T

The objective function gp g x y is convex in r with its unconstrained global minimum at » = 0. Note
that this is a feasible point if and only if |Ap q(x,y)| < 6; in other words, when the pattern xy
is already fair. Otherwise, the optimum must be either of the extreme points of the feasible space,
whichever is closer to 0. The extreme points for the first set of inequalities are:
p = I PUlxy)+ Pld]y) =0 - Pld|xy) + P(d]y)
1/P(xy) = 1/P(y) 1/P(xy) —1/P(y)
If Apq(x,y) > 8, then ro < 71 < 0. In such case, g(r2) > g(r1) and —P(dxy) < r; < P(dxy)
as shown below:
r <0< P(Exy),
_ 0+ Pl|xy) - P(d|y) _ P(d|xy) — P(d]y)

—ry =

o Pld|xy) — P(dx|y)
1/P(xy) —1/P(y) ~ 1/P(xy)—1/P(y) = 1/P(xy)—1/P(y)
Similarly, if Ap4(x,y) < —d, then ;. > ro > 0. Also, g(r1) > g(r2) and —P(dxy) < rg <
P(dxy) as shown below:
ro > 0> —P(dxy),
—P(d|xy) + P(d|y) _ P(d|xy) — P(d]y)
1/P(xy) —1/P(y) — 1/P(xy)—1/P(y)

Hence, the optimal solution 7* is

= P(dxy)

Py < = P(dxy)

07 if |AP,d(Xa Y)| S 5’
d—A X, .
= Tpe bt i Ara(xy) >4,
if Apa(x,y) < -4,

—0—Apa(xy
1/P(xy)—1/P(y)’

and the divergence score is Divp 4 5(X,¥) = gp,dx,y (7).

D.2 Upper Bounds on Divergence Score

Here we present two upper bounds on the divergence score for pruning the search tree. The first
bound uses the observation that the hypothetical distribution @ with Ag 4(x,y) = 0 is always a
feasible hypothetical fair distribution.

Proposition 3. Let P be a Naive Bayes distribution over D UZ, and let x and 'y be joint assignments
to X CSandY C Z\ X. For all possible valid extensions x' and y’, the following holds:

max,x, P(d|z) max,xy P(d|z)

Divpas(xx',yy') < P(dxy)log + P(dxy)log

minz?y P(d | Z) Ininz|:y P(a | Z)

Proof. Consider the following point:
o — —Pllxy) + Pd]y)
1/P(xy) —1/P(y)
First, we show that above r is always a feasible point in Problem [3}

‘Ap,d@c,y) 10 (s~ 707 ‘ — |Apax,y) — Apa(x,y)| =0 <6,

_ P(d|xy)—P(d|y) _ P(d|xy)— P(dx|y) _ T
"= T PGy) ~1/Ply) = 1/P(xy) —1/P(y) )




P(d|xy) - P(d|y) _ P(d|xy) = P(dx]y) _

—rg = < dxy
"= TPkxy)~UPy) = 1Pexy) - LPy) Y
Then the divergence score for any pattern must be smaller than gp, 4 x  (70):
. P(d] X.Y) P(d]|xy)
Div X,y) < <v(ro) = P(dxy)log ———= + P(dxy) lo —
P7d7§( y)—gP,d7 ,y( 0) ( Y> gP(d|X ) ( y) gP(d|i
P(d|xy) = P(d]|xy)
P(dxy)log —————— + P(dxy)log ————*"—.
(dxy)log miny P(d|xy) (dxy)log min, P(d|xy)
Here, we use X to mean that x does not hold. In other words,
_ P(dy) — P( dxy
P(d|Xy) = P(d|xy)P(x|Xy
@1%) = B ey = 2P %),
We can then use this to bound the divergence score any pattern extended from xy:
Divp,qs(xx’, yy')
P(d|xx'yy’) = P(d|xx'yy’)
< P(dxx'yy') log — P(dxx'yy')lo =
< P(dxx"yy') log mine P(d]xxyy’) (dxx"yy’) log it P(d] xxyy)

max, |y P(d|z) + P(dxy)log max,xy P(d|z)

< P(dxy)log - = .
(dxy) ., P(d]2) ming, P(d|2)

min

O

We can also bound the divergence score using the maximum and minimum possible discrimination
scores shown in Proposition [I] in place of the current pattern’s discrimination. Let us denote the
bounds for discrimination score as follows:

A(x,y) = max A( (xx), |d), P(xx, |E),'y) , A(x,y) = min A (P(XXE |d), P(xx; |3),’y) .

I<~v<u 1<y<u

Proposition 4. Let P be a Naive Bayes distribution over D UZ, and let x and y be joint assignments
to X C Sand¥Y C Z\ X. For all possible valid extensions x' and y', Divp 4 s(xx',yy’) <

max (gP,d,xx’,yy’ (ru)a 9pP,d,xx',yy’ (Tl)) where

§—Ax,y) i -6 — A(x,y)
1/P(xx'yy’) — 1/P(yy’)’ ' 1/P(xx'yy’) — 1/P(yy")’

Tu =

Proof. The proof proceeds by case analysis on the discrimination score of extended patterns xx’yy’.

First, if |[A(xx', yy’)| < 0, Divp45(xx’,yy’) = 0 which is the global minimum, and thus is smaller
than both g(r,,) and g(r;

Next, suppose A(xx’,yy’) > 6. Then from Proposition|[1]

§—A(x,y) < 60— Apgy(xx',yy’) <0.

1/P(xx'yy’) —1/P(yy’) ~ 1/P(xx'yy’) — 1/P(yy’)

As g is convex with its minimum at 0, we can conclude Divp 4 5(xx’, yy’) = g(r*) < g(ry).

Ty =

Finally, if A(xx’,yy’) < —4, we have

- — A(Xa Y) > pF —0 — AP,d(xxla yy/) >0
T = ZTr = .
1/P(xx'yy') = 1/P(yy’) 1/P(xx'yy’) = 1/P(yy’)
Similarly, this implies Divp 4 s(xx’,yy') = g(r*) < g(r;). Because the divergence score is always
smaller than either g(r,) or g(r;), it must be smaller than max(g(r), g(r1))- O
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Lastly, we show how to efficiently compute an upper bound on gp, 4 xx’,yy’ (7u) 9P,d,xx’,yy’ (r1) from
Proposition 4] for all patterns extended from xy. This is necessary for pruning during the search for
discrimination patterns with high divergence scores. First, note that r,, and r; can be expressed as

4)

1/P(xx'yy’) — 1/P(yy")’

where ¢ = § — A(x,y) for 7, and ¢ = —§ — A(x, y) for r;. Hence, it suffices to derive the following
bound.

C
9P, dxx’,yy’ <1/P(xx/yy') — 1/P(yy/))

P d / !

= P(dxx'yy’) log -~ (boyy) c

P(dxX'yY') + 17p000yy ) =1/ Py

P(dxx'yy’) )
P(dxx'yy’) — 1/P(xx’yy’c)*1/P(yyl)
P(d|xx'yy")(1 — P(xx"|yy’)) >
@5y ) (1~ Pocd [3y7)) +¢
_ P(d|xx'yy)(1 - P(xx'|yy’

+ Pdxx'yy’) log ( 7(d|xx yy')( (xx'|yy’)) >

P(d|xx'yy’)(1 — P(xx' |yy’)) — ¢
0 ifc=0

(maxgi—xy P(d|2))(1—min,/, P(xx'|yy’))
< P(de) log (ming|—xy P(d]2))(1—max,sys P(xx’|yy’))+c
— (maxz‘=xy P(d| z))(l—minx/y/ P(xx'|yy’))

P(dxy) log

+ P(dxx'yy’) log <

— P(dxx'yy')1
(Xny)0g<P

ifc<0

ifc>0

(ming—xy P(E| z))(lfmaxx/y/ P(xx'|yy'))—c

E Proof of Proposition 2|

The probability values of positive decision in terms of naive Bayes parameters 6 are as follows:

_ Py(dxy) 0all, 0z1all, 0y a 1

By(d]xy) = = = - - -
Po(xy)  0all,0zall,0yja+0q11,0.1all,0,a 1+ —Zzgzz:dgyzy:d
z Vx| d yZyld
- P9 dy 1
Poldly) = Pg((y)) - 14 fally 010"
+ 0all, 0y a
For simplicity of notation, let us write:
0,14 011,014
Tx:Hm :xv|d7 ry = ng y\d' (5)
H19z|d adnyey\d
Then the degree of discrimination is Ap, 4(x,y) = Py(d|xy) — Pp(d|y) = ﬁ — 1+1Ty. Now

we express the fairness constraint |Ap, 4(x,y)| < J as the following two inequalities:

_5< (1+TY)_(1+TXTY) <(S
T (Ttrxry) (T+ry) T

After simplifying,
Ty — xry > —0(1 4+ rxry + 1y + Txrf,), Ty — TxTy <O+ rxry +1y + rxrf,).

We further express this as the following two signomial inequality constraints:

1-— 1 1 1-—
((5 5) rxTy — (—g 5) Ty — Txrf, <1, - (;‘5_6> rxTy + (5 5) Ty — rxri, <1 (6)

Note that 7« and ry according to Equation are monomials of 0, and thus above constraints are also
signomial with respect to the optimization variables 6. O
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Table 3: Data statistics (number of training instances, sensitive features .S, non-sensitive features IV,
and potential patterns) and the proportion of patterns explored during the search

Dataset Statistics Divergence score Discrimination score
Dataset Size S N #Pat. k| 6=001 0=005 6=010| 6=0.01 6=005 06=0.10
COMPAS 48834 4 3 15K 1| 6.387e-01 5.634e-01 3.874e-01 | 8.188e-03 8.188e-03  8.188¢-03

10 | 7.139e-01  5.996e-01  4.200e-01 | 3.464e-02 3.464e-02 3.464e-02
100 | 8.222e-01  6.605e-01 4.335e-01 | 9.914e-02 9.914e-02  9.914e-02

Adult 32561 4 9 1IM 1| 3.052e-06 7.260e-06 1.248e-05 | 2.451e-04 2.451e-04 2.451e-04
10 | 7.030e-06 1.154e-05 1.809e-05 | 2.467e-04 2.467e-04 2.467e-04
100 | 1.458e-05 1.969e-05 2.509e-05 | 2.600e-04 2.600e-04 2.597e-04

German 1,000 4 16 23B 1| 5.075e-07 2.731e-06 2.374e-06 | 7.450e-08 7.450e-08 7.450e-08
10 | 9.312e-07 3.398e-06 2.753e-06 | 1.592e-06 1.592e-06 1.592e-06
100 | 1.454e-06 4.495e-06 3.407e-06 | 5.897e-06 5.897e-06 5.897e-06

g R T ———s
=04 s Bm All |
.g g " ga® m Disc
B= Di
S 03| P N
é @' TO!
5 02| ® o° .
8 L]
e A
@01l 2
=) I R R Lol Lol
1074 103 102 1071

Probability of Pattern

Figure 2: Discrimination patterns with § = 0.1 for the max-likelihood NB classifier on COMPAS.

F Additional Experiments

Table [3] shows a summary of the three datasets used and the fraction of patterns explored by our
discrimination pattern miner, on different rank heuristics and & and ¢ values.

To study the efficacy of the divergence score in finding interesting patterns, we plot all discrimination
patterns in the COMPAS dataset (see Figure[2). The top-10 patterns according to three measures
(discrimination, divergence, and probability) are highlighted. The observed trade-off between
probability and discrimination score indicates that the top patterns according to one measure are
ranked low according to the other measure. The divergence score, however, balances the two measures
and returns patterns that have high probability and discrimination scores. Moreover, the patterns
selected by the divergence score lie on the Pareto front of probability and discrimination score. This
in fact always holds by definition; fixing the probability and increasing the discrimination score also
increases the divergence score, and vice versa.

Figure 3| shows the number of iterations it takes for our algorithm to learn a §-fair model, on the three
datasets with varying values of k and d. As noted earlier, all instances converge in a small number of
iterations.

Table 4: Number of remaining patterns with 6 =0.1 in naive Bayes models trained on discrimination-
free data.

Dataset A=05 A=09 AX=095 X=099 X=I1.0

COMPAS 2,504 2,471 2,470 3,069 0
Adult >le6 661 652 605 0
German >1e6 3 2 0 0

Lastly, we empirically demonstrate that discrimination patterns still occur when learning naive Bayes
models from fair data. We use the data repair algorithm proposed by Feldman et al. [6] to remove
discrimination from data, and learn a naive Bayes model from the repared data. Table {4{shows the
number of remaining discrimination patterns in such model, where A determines the tradeoff between
fairness and accuracy in the data repair step. The results indicate that as long as preserving some
degree of accuracy is in the objective, this method leaves lots of discrimination patterns, whereas our
method removes all patterns.
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number of iterations number of iterations

number of iterations

adult (k=1) adult (k=10)

adult (k=100)

. o KLD 15 12 1
~@— Difference 114
i ® 10
19 A
171 114 97
15 81
94
13 [
] 6 -
11 7
94 54
71 5 41
0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5
compas (k=1) compas (k=10) compas (k=100)
6
17 1
9
15 1 54
13 7
11 1 41
9
5 4
34
7
5 3 2
34
1 14 14
0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5
german (k=1) german (k=10) german (k=100)
154
19 A 114
13 A
16
11 4 91
13 1
91 7]
10
74
5
74 5
4 34 3
1 14 14
0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5
fairness threshold fairness threshold fairness threshold

Figure 3: Number of iterations of J-fair learner until convergence
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