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Abstract
Probabilistic programming is emerging as a popular and ef-
fective means of probabilistic modeling and an alternative to
probabilistic graphical models. Probabilistic programs pro-
vide greater expressivity and flexibility in modeling prob-
abilistic systems than graphical models, but this flexibil-
ity comes at a cost: there remains a significant disparity in
performance between specialized Bayesian network solvers
and probabilistic program inference algorithms. In this work
we present a program analysis and associated optimization,
flip-hoisting, that collapses repetitious parameters in dis-
crete probabilistic programs to improve inference perfor-
mance. flip-hoisting generalizes parameter sharing – a
well-known important optimization from discrete graphical
models – to probabilistic programs. We implement flip-
hoisting in an existing probabilistic programming language
and show empirically that it significantly improves inference
performance, narrowing the gap between the performances of
probabilistic programs and probabilistic graphical models.

1 Introduction
Probabilistic graphical models and probabilistic programs
are two of the most widely used probabilistic modeling
frameworks in artificial intelligence. Probabilistic programs
are a flexible modeling paradigm that allows users to craft
detailed and concise descriptions of complex probabilistic
systems using the standard syntax and semantics of a pro-
gramming language. Currently, the price for this modeling
expressivity is inference performance: probabilistic program
inference lags behind the sophisticated tools and techniques
that have been developed by communities focused on more
constrained modeling paradigms such as discrete probabilis-
tic graphical modeling.

What is the key behind the impressive scalability of
graphical model inference? In short, it is identifying and ex-
ploiting structure during inference. In the worst-case, infer-
ence is #P-hard (Roth 1996); hence, to scale, it is necessary
to find problem-specific structure that avoids this worst-case.
A long-running theme in the development of graphical mod-
els has been to eke out ever more performance by identify-
ing increasingly nuanced and subtle kinds of structure and
exploiting this structure through specially crafted inference
algorithms. The end result of these efforts is a suite of scal-
able discrete graphical model systems that significantly out-
perform all existing probabilistic programming languages

(PPLs) on the special case of discrete Bayesian networks.
However, these methods are limited to graphical models:
thus far they do not apply to probabilistic programs which
are much more general, involving data structures, arithmetic,
functions, and other operations.

The traditional approach to making programs run faster
is to apply program optimizations, a standard suite of pro-
gram transformations that maintain the program’s original
behavior while improving performance. For example, com-
mon sub-expression elimination (CSE) attempts to reduce
redundant code by computing the result once, storing it in
a local variable, and then re-using that local variable many
times. In the context of probabilistic programs, CSE can
have tremendous benefits on inference performance, since it
can potentially reduce the overall number of random vari-
ables introduced by the probabilistic program: intuitively,
when possible, one would like to flip a single coin and re-
use it rather than to flip a new coin for every use. However,
CSE is challenging to implement for PPLs since common
sub-expressions might be correlated probabilistically and re-
using them naively can change the semantics of the program.

Closing the gap between graphical model and PPL infer-
ence, as well as bringing to bear insights from Bayesian
network optimizations to probabilistic programs, will re-
quire a rich suite of probabilistic program optimizations. In
this work we propose a new family of generic probabilis-
tic program optimization called flip-hoisting that gener-
alizes common sub-expression elimination to probabilistic
programs, reducing the overall number of random variables
introduced by the probabilistic program and hence expo-
nentially reducing the state space of the probabilistic pro-
gram. The key behind our approach is a sound but incom-
plete branch-sensitive analysis of the probabilistic program
that statically determines when it is safe to re-use a random
variable. This analysis is efficient in the size of the program
and is effective on realistic examples.

First, in Section 1 we give a motivating example that gives
more intuition behind how flip-hoisting works. Section 2
gives necessary background. Section 3 formally describes
the flip-hoisting procedure and argues for its correctness.
Section 4 describes how to implement flip-hoisting for
an existing probabilistic program. Section 5 shows empiri-
cally that flip-hoisting is effective on realistic examples
from graphical modeling and probabilistic verification, giv-



1 let x = flip1 0.1 in let z = flip2 0.2 in

2 let y = if x && z then flip3 0.3

3 else if x && !z then flip4 0.2

4 else flip5 0.3

5 in y

(a) No optimizations; subscripts are for referencing.
1 let x = flip 0.1 in

2 let tmp = flip 0.2 in

3 let z = tmp in

4 let y = if x && z then flip 0.3

5 else if x && !z then tmp

6 else flip 0.3

7 in y

(b) Invalid flip-hoisting.
1 let x = flip 0.1 in let z = flip 0.2 in

2 let tmp = flip 0.3 in

3 let y = if x && z then tmp

4 else if x && !z then flip 0.2

5 else tmp

6 in y

(c) Valid flip-hoisting.

Figure 1: Examples of flip-hoisting on Dice programs.

ing new state-of-the-art performance for probabilistic pro-
gramming languages on these tasks. Section 6 gives an
overview of related work. Section 7 concludes.

Motivating Example and Overview
Consider the example probabilistic program in Figure 1a.

Throughout this paper examples will be written in Dice,
though we note here that flip-hoisting is generic and gen-
eralizes in a straightforward manner to other PPLs. Dice is
a functional probabilistic programming language that sup-
ports discrete random variables; in Dice, the syntax flip θ
denotes a random variable that is true with probability θ
(Holtzen, Van den Broeck, and Millstein 2020).

Observe that this program has some potentially redundant
flips: flip 0.2 and flip 0.3 both occur twice in
the program. So, we ask: can we optimize this program to
a version where these two flips occur exactly once? For
flip 0.2 the answer is no. Consider the invalid hoisted
program in Figure 1b. This hoisting changes the semantics
of the original program. In the original program it is possi-
ble that x = true, y = false, and z = true; this
assignment is not possible in the hoisted version since y is
constrained to be equal to z in this case. This failure mode
introduces a spurious dependence between the two flips,
coupling them when the semantics of the original program
depended on them being decoupled.

What is a sufficient condition for ensuring that a hoist-
ing is valid? One is that there is no path through the proba-
bilistic program that encounters both candidate flips; we
call such flips redundant. This is the case for flip 0.3,
and a valid flip-hoisting of this is shown in Figure 1c.
The key observation is that the if-expression on Line 2 has
mutually exclusive branches, guaranteeing that there is no
program execution for which the two separate instances of

A B

(a) A simple Bayesian network with 2 variables.

A Pr(A)

0 0.2
1 0.3
2 0.5

A B Pr(B | A)

0 0 0.1
0 1 0.9
1 0 0.2
1 1 0.8
2 0 0.2
2 1 0.8

(b) The CPTs for A and B.
1 let A = discrete(0.2, 0.3, 0.5) in

2 let B = if A==0 then flip 0.1

3 else if A==1 then flip 0.2

4 else flip 0.2 in (A, B)

(c) A Dice encoding of the Bayesian network.

Figure 2: Bayesian network encoding as Dice program.

flip 0.3 are simultaneously exercised; in this case, it is
safe to flip just a single coin.

In this paper we give an analysis for identifying and merg-
ing redundant flips in probabilistic programs. In general,
determining if it is safe to merge two flips is a special
case of reachability analysis, and so is undecidable for gen-
eral programs. Hence, we identify a sound but incomplete
strategy that is effective for existing programs. We analyze
only if-expressions whose guards have a particular form
of structure: conjunctions of literals. This analysis is strong
enough to perform the hoisting shown in Figure 1c automat-
ically. In Section 3 we give more details about this analy-
sis, argue that it is efficient in the size of the program and
prove it is sound. In Section 5 we show empirically that this
restriction is practical by showing that it benefits existing
probabilistic programs derived from graphical models and
problems from probabilistic verification.

2 Bayesian Network Background
Throughout this paper we will be comparing and contrast-

ing approaches to inference in probabilistic graphical mod-
els and probabilistic programs. To facilitate this discussion
in this section we introduce (1) essential background on en-
coding Bayesian networks as probabilistic programs and (2)
an overview of existing methods in the Bayesian networks
literature for exploiting parameter repetition.

Bayesian Network Encoding
Figure 2a shows an example discrete Bayesian network on
two variables, A and B. The variable A takes on values in
the domain {0, 1, 2}, and B on the domain {0, 1}. The con-
ditional probability tables (CPTs) are given in Figure 2b.

Figure 2c represents this Bayesian network as a Dice
program. It requires the use of a new keyword, discrete,
which defines a discrete probability distribution over in-
teger values. Then, to define the conditional distribution



Pr(B | A), we branch on each possible value of A, flip-
ping a differently weighted coin for each possible value of
A. Finally, Line 4 returns a tuple (A,B) which represents
the distribution on all values the variables in the Bayesian
network can jointly take.

Parameter Sharing
Finding and exploiting the intricate structure of CPTs is a
long-running enterprise in the PGM community (Choi, Kisa,
and Darwiche 2013; Sanner and McAllester 2005; Boutilier
et al. 1996). In particular, Chavira and Darwiche (2008)
identified parameter sharing as an important optimization
for speeding up exact probabilistic inference in graphical
models. The CPT for Pr(B | A) in Figure 2b has repetitious
parameters: Pr(B = 1 | A = 1) = Pr(B = 1 | A = 2).
Chavira and Darwiche (2008) showed how to exploit repe-
titious parameters while encoding a graphical model into a
logical representation.

In essence parameter sharing is a special case of flip-
hoisting, and served as an inspiration for our approach. This
can be seen in Figure 2c, where flip 0.2 is redundant
and can be hoisted. There are important differences between
parameter sharing and flip-hoisting. First, flip-hoisting
has global scope: parameter sharing is limited to exploit-
ing repetitious parameters within a single CPT, while flip-
hoisting is a whole-program analysis that applies to arbitrary
probabilistic programs with program structure like condi-
tionals and tuples. Second, parameter sharing works on a
logical undirected representation of the Bayesian network,
and hence is tied to a specific kind of inference algorithm;
flip-hoisting is a program optimization that works on a di-
rected probabilistic program regardless of the down-stream
inference algorithm that is applied.

Encoding Discrete Distributions A question raised by
the comparison between flip-hoisting and parameter shar-
ing is: how does flip-hoisting – which, as its name im-
plies, only handles Boolean random variables – handle arbi-
trary discrete random variables? The problem of translating
discrete distributions into some combination of Bernoulli
random variables is known as categorical encoding, and it
has been studied in the graphical modeling literature in the
context of weighted model counting. There are many possi-
ble encodings, and an important conclusion is that the over-
all inference performance is quite sensitive to this choice.
For instance, ENC3 from Chavira and Darwiche (2008) can
exploit repetitious parameters, but is generally regarded to
require more Boolean random variables than the SBK en-
coding introduced by Sang, Beame, and Kautz (2005). One
contribution of the present work is a study of categorical
encodings in the context of probabilistic programs. In par-
ticular, we show how to exploit repetitious parameters with
SBK-like encodings; this will be elaborated on in Section 4.

3 flip-hoisting
In this section we formally introduce flip-hoisting. In or-
der to unambiguously refer to each flip in a program, we
assume that each one has a unique numeric id; we assign

these ids as subscripts as shown in Figure 1a. Denote syntac-
tic probabilistic programs as p, and let JpK denote the prob-
ability distribution on the values returned by p.

Hoisting, denoted hoist(p, i, j), is a function that pro-
duces a program wherein flips i and j (assumed to have
the same parameter value) are replaced by a reference to a
single new flip.1 For instance, if pex is the program in
Figure 1a, then hoist(pex, 3, 5) outputs the program in Fig-
ure 1c. Hoisting itself is efficient and simple to implement
as a single pass over the program; the challenge is knowing
when hoisting is sound:

Definition 1 (Sound hoisting). For a probabilistic program
p, hoisting flips i and j is sound if JpK = Jhoist(p, i, j)K.

This definition does not yield an algorithm as determin-
ing whether a hoisting is sound is hard: it requires reasoning
about whether or not two probabilistic programs are equiv-
alent, a challenging computational task. Hence we require a
simplification that aids in implementation. One route is ana-
lyzing the path conditions for each flip, a familiar concept
from symbolic execution (King 1976):

Definition 2 (Path conditions). The path conditions PC(p, i)
for flip i in probabilistic program p is the set of neces-
sary and sufficient conditions on flips that ensure execu-
tion reaches flip i.

For instance, PC(pex, 3) = flip1 ∧ flip2, since if
flip3 is executed then the guard of the if-statement on
Line 2 must be true, which implies that these two flips are
true. The path conditions yield a more tractable test:

Theorem 1 (Path redundancy). For program p, hoisting
flips i and j is sound if the flips have the same pa-
rameter value and PC(p, i) is inconsistent with PC(p, j).

Proof sketch. A path through a program p is a total assign-
ment to flips encountered during an execution of the pro-
gram; for instance, one path through Figure 1a is {flip1 =
true,flip2 = false,flip4 = true}. This informa-
tion uniquely determines the result of the execution along
this path as well as the probability of taking the path. Intu-
itively there is a correspondence between the paths of p and
hoist(p, i, j) that ensures that the programs are equivalent.

The most interesting paths are those that encounter one
of the hoisted flips — we can show that such paths are
in one-to-one correspondence between p and hoist(p, i, j).
Without loss of generality, consider a path through p that in-
cludes flip i. Since PC(p, i) is inconsistent with PC(p, j)
this path must not include flip j. Hence by the definition
of the hoist function there is a path through hoist(p, i, j)
that is identical to this path but with flip i replaced by
the newly introduced flip, and with the same result value.
Similarly, for each path through hoist(p, i, j) that goes
through the line of code where flip i was in p, there must
exist an equivalent path in p containing flip i instead of
the new flip.

1In general there are multiple possible places where the new
flip can be inserted, but that is irrelevant here.



Path redundancy reduces the problem of checking hoist-
ing soundness to satisfiability, which is still too computa-
tionally hard to be implemented as a practical optimization.
Next, we consider two strengthenings of path redundancy
that capture common cases occurring in probabilistic pro-
grams and Bayesian networks; these strengthenings yield
polytime soundness checks in the size of the program.

Local Hoisting
One of the strictest strengthenings of path redundancy is lo-
cal redundancy, which avoids the need to reason about the
intricacies of if-statement guards altogether.
Definition 3 (Locally redundant flips). Two flips i and
j are locally redundant if they have the same parameter
value and appear in disjoint branches of the same if.

Determining whether or not two flips are locally redun-
dant is an efficient syntactic check on the program. flips 3
and 5 in the program in Figure 1a are locally redundant: they
occur in disjoint branches of the if-expression on Line 2.
Proposition 2. It is sound to hoist locally redundant flips.

Proof. Follows from Theorem 1 and the fact that two locally
redundant flips by definition have inconsistent PC.

While seemingly simple, local hoisting is already a sur-
prisingly powerful and general optimization. Because each
CPT of a BN is encoded as a multi-way if expression, as
shown earlier, local hoisting brings to probabilistic programs
the ability to exploit repeated parameters within each CPT.
Further, local hoisting is more generally applicable, as we
demonstrate later on existing probabilistic programs that are
not derived from graphical models.

Global Hoisting
Local hoisting is limited: it can only find hoisting oppor-

tunities that are local to each if-expression. In this section
we develop a more complete analysis, which we call global
hoisting, that retains the tractability of local hoisting while
finding hoisting opportunities that span multiple ifs.

Consider the minimal example in Figure 3a that we la-
bel pg . In this program flips 2 and 4 are path redundant
since PC(pg, 2) = flip1 and PC(pg, 4) = ¬flip1, which
are clearly inconsistent logical sentences. However, these
two flips are not locally redundant. We would like to effi-
ciently certify that it is safe to hoist these flips and others
similar to them. To accomplish this we will perform a form
of data-flow analysis on the program. The essence behind
data-flow analysis is to traverse the program and collect a set
of facts – stated as logical propositions – that hold at each
point in the program. By suitably constraining the structure
of these facts we ensure that the analysis itself is efficient.

Figure 3c shows pg annotated with the data-flow facts re-
quired to perform global hoisting. We track two kinds of
facts: (1) aliasing facts, marked with blue boxes, that relate
local variables to the flips that they must be equal to; and
(2) constraint facts, in yellow boxes, that list assignments
to flips that are implied by if-statement guards. For in-
stance, we know that on Line 4 it must be the case that {1 =

1 let x = flip1 0.1 in

2 let y = if x then flip2 0.2 else flip3 0.3 in

3 let z = if !x then

4 flip4 0.2 else flip5 0.4 in (y, z)

(a) Example unhoisted program pg .
1 let x = flip1 0.1 in

2 let tmp = flip2,4 0.2 in

3 let y = if x then

4 tmp else flip3 0.3 in

5 let z = if !x then

6 tmp else flip5 0.4 in (y, z)

(b) Global flip-hoisting.
1 let x = flip1 0.1 in

2 {x=1}

3 let y = if x then

4 {1 = true} flip2 0.2

5 else

6 {1 = false} flip3 0.3 in

7 let z = if !x then

8 {1 = false} flip4 0.2

9 else

10 {1 = true} flip5 0.4 in (y, z)

(c) The program pg annotated with data-flow facts.

Figure 3: Example of global flip-hoisting.

true} since we (1) know from the aliasing facts that x is
assigned to be equal to flip1 and (2) know that the guard
constrains x to be true since the branch was taken.

Once the data-flow analysis is complete, it is straightfor-
ward to use the set of constraint facts that hold at each flip
to determine when it is safe to hoist. To check if flip i and j
are redundant, check if their corresponding constraint facts
are inconsistent by checking if they disagree on any assign-
ments to literals, which is efficient. By definition, inconsis-
tency of constraint facts would imply path redundancy of the
two flips, and hence hoisting these two will be sound.

There are a few more details about the data-flow analysis
that are necessary to make it work. First, in order to effi-
ciently construct the constraint facts, we only derive such
facts from if guards that are conjunctions of literals, which
can be analyzed in a simple linear pass; for other guards
we conservatively derive no facts. Next, at join points – the
points in the program at which two branches merge back
into a single flow of execution – we take the intersection of
all data-flow facts to conservatively ensures soundness.

Global hoisting is a strict generalization of local hoisting.
When applied to BNs encoded as probabilistic programs, it
enables forms of cross-CPT parameter sharing. More gener-
ally, global hoisting is able to identify flip redundancies
in the presence of complex control flow.

4 Implementation in Dice
The previous section described flip-hoisting as a generic
optimization that can be applied to any probabilistic pro-
gramming language (albeit with minor modifications to lan-



guage syntax). To validate the effectiveness of this optimiza-
tion in practice we implemented it in the Dice probabilistic
programming system (Holtzen, Van den Broeck, and Mill-
stein 2020). This implementation requires solving two addi-
tional technical problems that we detail in this section. The
first, categorical encodings, was foreshadowed previously: it
is the mechanism by which we translate a discrete probabil-
ity distribution into a collection of flips. It is an important
decision for performance reasons and affects how many op-
portunities for flip-hoisting will be available.
Dice’s performance is very sensitive to the order in

which flips are introduced in the program. Hence, the sec-
ond implementation detail, order preservation, refines our
description of hoisting to be respectful of the variable order
specified by the programmer. Ultimately order preservation
allows us to prove that flip-hoisting can never hurt Dice’s
inference performance (Theorem 3).

Categorical Encodings
It is well-known from the graphical modeling literature that
inference performance is sensitive to the way in which cat-
egorical (or discrete) random variables are encoded into
Boolean random variables (Chavira and Darwiche 2008).
This encoding is often necessary because of details of the
underlying inference algorithm: for instance, in Dice it is
assumed that all random variables are binary because infer-
ence relies on a logical encoding. In this section we give a
new categorical encoding strategy for probabilistic programs
that is hoisting aware: it seeks to surface hoisting opportu-
nities during the encoding.

First we need a way to represent integer values using
a collection of Booleans. We do this naturally using a bi-
nary encoding and tuples. For instance the integer 2 can be
encoded as a little-endian binary tuple (true,false),
where the first value is the 2’s place and the second value
is the 1’s place; this encoding requires knowing a-priori a
fixed bit-width, which is a requirement in Dice programs.

Now we use this binary encoding on integers to define the
categorical encoding. Consider the simple discrete distribu-
tion discrete(0.1, 0.4, 0.5). One way to encode
this distribution using flips is to flip a sequence of coins
for each value; this is analogous to the encoding introduced
by Sang, Beame, and Kautz (2005) in the context of graphi-
cal models. The sequential encoding is:
1 if flip 0.1 then (false, false)
2 else if flip 0.4/0.9 then (false, true)
3 else (true, false)

The above listing defines a distribution on pairs of
Booleans that matches the original discrete: the tu-
ple (false, false) – which corresponds with integer
value 0 – is given a probability of 0.1. On each subsequent
flip it is necessary to re-normalize by dividing by the re-
maining probability mass, which is why the second flip is
true with probability 0.4/0.9. As a consequence, changing
the order in which values are output may result in very dif-
ferent parameters being present in the program. For instance,
we could change the above encoding to output (false,
true) before (false, false), in which case the first
flip would have parameter 0.4 and the second 0.1/0.6.

Now consider the case when there are multiple
discretes that share one or more parameters, a fairly
common circumstance. We would like to encode these
discretes in such a way to maximize hoisting opportu-
nities. As a heuristic to accomplish this, we choose an order
that places parameters in the output order in descending or-
der according to the total number of times each parameter
appears in the program: this way, during re-normalization,
these common parameters are less likely to be lost.

Maintaining Variable Order
To discuss the effects of flip-hoisting on the Dice in-
ference algorithm, we must first briefly take a look at the
compilation process. A Dice program is compiled into a
binary decision diagram (BDD) along with a weight func-
tion such that probabilistic inference of the original pro-
gram is reduced to weighted model counting (WMC) on the
BDD (Holtzen, Van den Broeck, and Millstein 2020). The
BDD represents all possible paths through the program and
has a variable for each flip made along these paths. Since
the size of the BDD is worst-case exponential in the number
of variables, and since the cost of WMC on the BDD is lin-
ear in its size, eliminating variables from the BDD can have
a substantial performance benefit, exactly what our flip-
hoisting optimization targets by sharing flips across dif-
ferent execution paths.

The size of a BDD is heavily dependent on the variable
order used to create it. For each function, the Dice com-
piler generates a variable order for its compiled BDDs that
is consistent with program order. For example, in Figure 1a,
the BDD variable corresponding to flip 0.1 will appear
in the variable order before that corresponding to the flip
0.2 in z, as they are always executed in that order.

As described above, flip-hoisting has the effect of
“moving” flips earlier in the program, which changes their
order relative to other flips and hence changes the BDD
variable order. Changing the variable order means that the
resulting BDD can be drastically different than the original
one, and possibly much larger in size. To avoid this problem,
our flip-hoisting optimization performs additional hoist-
ing of flips in order maintain the original variable order.
This guarantees the compiled size will not increase (and, as
we show later, it the size sometimes substantially decreases):

Theorem 3. Let |p| be the number of nodes in the BDD
compiled from p and let i and j be flip indexes in
p. If hoisting preserves the program variable order, then
|hoist(p, i, j)| ≤ |p|.

We will sketch a proof here to avoid going into the de-
tails of Dice compilation. Since the order of variables in
the program are unchanged after hoisting, so too is the or-
der of variables in the compiled BDD. Then, hoisting can be
thought of as relabeling flips i and j to have a common
label; this does not change the size of the BDD. The result-
ing BDD will then be reduced to canonical form, which may
decrease the size; this is where we may profit from flip-
hoisting, as there may be more compression opportunities.

Hence, order-preserving hoisting can never hurt – but can
often help, as we will see – Dice compilation performance.



However, one thing to note is that it is not always possi-
ble to perform an order-preserving hoisting. In particular,
for global hoisting, there can be the situation that redundant
flips cannot be hoisted without breaking some ordering for
the flips between the redundant flips. So, to satisfy the con-
ditions of Theorem 3, it is occasionally necessary to forego
hoisting opportunities for the sake of preserving order.

5 Experiments
The previous sections described the flip-hoisting opti-
mization and how to implement it specifically in Dice.
In this section we seek to validate the efficacy of flip-
hoisting on realistic probabilistic programs. To accomplish
this, we implemented flip-hoisting as an optimization in
the Dice compiler, and tested the performance on a variety
of example probabilistic programs coming from Bayesian
networks and probabilistic verification.2 The experiments
were run on an Intel Xeon E5-2640 with 512 GB of memory
and CentOS Linux 7. We consider two primary performance
metrics before and after optimization: (1) number of flips,
which measures how effectively flip-hoisting reduces the
state space of the program; and (2) BDD size, which mea-
sures how much flip-hoisting improves the performance
of Dice’s default compilation. We evaluated both global
and local flip-hoisting on examples from Bayesian net-
works and probabilistic verification, and found that on many
examples flip-hoisting found numerous optimization op-
portunities and reduced the BDD size on some examples by
an order of magnitude.

Local flip-hoisting
First we evaluate local flip-hoisting on a collection of
well-known examples from the graphical models commu-
nity encoded as Dice programs.3 Prior work observed the
presence of redundant parameters in these models (Chavira
and Darwiche 2008), so our question is can Dice with
flip-hoisting exploit these redundant parameters?
flip-hoisting cannot be beneficial for inference if there

are no hoisting opportunities, so first we measure the num-
ber of flips for each benchmark before and after op-
timization in Table 1. The first column, “No Opt”, is a
baseline with no optimizations; the second column, “Base
Opt”, includes some baseline optimizations that ensures that
our improvements are due to flip-hoisting;“Hoist” applies
flip-hoisting to Dice programs with a default encoding
for discrete random variables; “Seq+Hoist” applies flip-
hoisting to sequentially encoded Dice programs. In almost
every example flip-hoisting results in a significant de-
crease in the overall number of flip. In general, the se-
quential encoding provided further reductions on several ex-
amples; particularly notable is the PIGS benchmark, where
sequential hoisting provided a 50% reduction.

Now we report how local flip-hoisting helps Dice’s
inference performance, shown in Table 2. We observe that
hoisting provides BDD size benefits on all examples, ex-
perimentally validating Theorem 3. The benefits of the se-

2All our code will be released as open-source.
3See https://www.bnlearn.com/bnrepository/.

Table 1: Number of flips in the program when local
flip-hoisting is applied for various Bayesian networks.

Benchmarks No Opt Base Opt Hoist Seq+Hoist

ALARM-A 585 504 201 137
ALARM-S 585 504 247 222
ALARM 585 504 201 133
ANDES 1,157 1,084 328 328
BARLEY 135,059 114,005 59,254 41,998
BN 78 829 829 328 328
BN 79 829 829 328 328
CHILD 330 227 171 140
CPCS54 829 829 328 328
DIABETES 619,292 77,185 15,194 11,967
DIAG A 5,005 3,910 377 415
DIAG AM 5,005 3,910 377 415
DIAG B 22,600 19,136 672 695
DIAG BM 22,600 19,136 672 695
EMDEC6G 826 807 712 712
HAILFIND 3,683 2,155 1,149 871
HEPAR2 1,582 1,453 1,283 1,272
INSURANCE 1,217 650 320 315
LINK 14,503 496 458 458
MILDEW 690,940 30,916 26,318 21,498
MOISSAC3 57,813 13,419 2,472 1,766
MUNIN 119,529 25,625 19,148 16,487
MUNIN1 22,956 4,712 3,428 2,918
MUNIN2 103,439 22,825 17,963 15,525
MUNIN3 106,660 23,478 18,856 16,281
MUNIN4 119,289 25,385 19,145 16,474
PATHFIND 91,358 28,703 1,897 1,652
PIGS 8,427 2,066 1,178 586
TCC4E 1,604 1,604 545 545
WATER 10,203 3,113 1,813 1,783
WIN95PTS 574 350 125 125

Table 2: BDD size for compiled programs for local flip-
hoisting. A “–” denotes a 20-minute time out.

Benchmarks No Opt Base Opt Hoist Seq+Hoist PL

ALARM-A 73,883 51,679 18,859 26,001 ✓
ALARM-S 256,271 214,376 143,068 200,029 ✓
ALARM 298,867 254,766 87,168 139,506 ✓
ANDES 87,119,041 8,520,656 3,301,994 3,301,994 –
BARLEY – – – – –
BN 78 3,499,826 3,305,000 3,235,616 3,235,616 –
BN 79 21,497,148 21,200,743 20,453,340 20,453,340 –
CHILD 2,542 2,112 1,680 2,660 ✓
CPCS54 2,450,688 2,438,881 2,310,466 2,310,466 –
DIABETES – – – – –
DIAG A 5,020,830 41,257 6,241 5,172 –
DIAG AM 5,020,830 26,197 6,241 5,172 –
DIAG B – 97,573 10,628 9,615 –
DIAG BM – 147,375 10,628 9,615 –
EMDEC6G 169,096 75,999 12,214 12,214 –
HAILFINDER 2,635,901 145,917 140,963 174,793 –
HEPAR2 36,375 36,244 36,037 39,218 ✓
INSURANCE 190,242 90,095 71,396 97,231 ✓
LINK – 15,117,830 14,964,749 14,964,749 –
MILDEW – – – – ✓
MOISSAC3 – 498,240 267,648 246,846 –
MUNIN – 4,998,135 3,350,854 4,719,494 –
MUNIN1 – 4,328,101 2,162,624 2,735,348 –
MUNIN2 – 10,324,147 6,208,220 8,760,584 –
MUNIN3 – 14,235,596 10,708,445 14,393,174 –
MUNIN4 – 5,067,973 3,315,918 4,555,212 –
PATHFIND 571,839 61,157 16,153 18,777 –
PIGS 409,226 180,124 140,617 89,537 –
TCC4E 3,112 3,112 1,321 1,321 –
WATER 39,494,260 44,703 26,714 28,189 –
WIN95PTS 75,182 1,545 982 982 ✓



quential encoding on size are less clear-cut; on some ex-
amples it is out-performed by the default Dice encoding
(both with hoisting). This is likely due to the fact that these
two encodings produce different logical formulae, and hence
non-equivalent BDDs. As a consequence, even though the
sequential encoding enables more hoisting opportunities, it
is not enough to overcome the implicit size advantage of
the default Dice encoding on some examples. Three of
the benchmarks – BARLEY, MILDEW, and DIABETES –
are particularly challenging, and Dice does not terminate
on these within 20 minutes on any settings, even though
flip-hoisting found many hoisting opportunities in each.
We pause here to note that we have aimed this work to per-
form hoisting at the program level, without touching the in-
ference and compilation approach within Dice. For Dice
to consistently benefit from the reduced number of flips
in Seq+Hoist, one likely needs a tighter interplay between
hoisting and compilation, which we leave for future work.

For broader context on these performance results, the col-
umn “PL” reports whether or not ProbLog (Fierens et al.
2011) was able to solve the Bayesian network within 20 min-
utes (a “✓” denotes successful termination). ProbLog is a
well-engineered probabilistic logic programming language,
and we employ its default inference pipeline that is special-
ized for discrete distributions. Dice with hoisting outper-
forms ProbLog on 21 benchmarks, and loses on only 1. This
gives perspective on the difficulty of these benchmarks and
shows the utility of our optimizations to Dice.

Hoisting in probabilistic verification The success of pa-
rameter sharing is well-documented in graphical models,
and our experiments here show that these successes translate
to probabilistic program encodings of well-known Bayesian
networks. The question remains, however: do there exist
natural hoisting opportunities in other kinds of probabilis-
tic programs? Holtzen et al. (2021) introduced a new class
of probabilistic programs coming from the probabilistic
verification community; these models have very different
structure from graphical models. We also ran local flip-
hoisting on these models, and found that in 2 out of 7 pro-
grams – “Weather Factory” and “nand” – there were hoist-
ing opportunities: for “Weather Factory” hoisting reduced
the BDD size from 2,228,213 nodes to 1,687,555 nodes.
Hence, local flip-hoisting is a general optimization that
helps probabilistic models other than Bayesian networks.

Global Hoisting
We evaluated the flip count and the BDD sizes of the
benchmarks when we applied global flip-hoisting with
and without the Sequential encoding. Global hoisting, while
more general than local hoisting, is a more nuanced phe-
nomenon that is not as wide-spread in Bayesian networks.
Nonetheless, it still helped some examples and their results
are presented in Tables 3 and 4.

The largest improvement from global hoisting was
EMDEC6G, where 34 flips were eliminated and the BDD
size was decreased by 34 nodes. TCC4E and WIN95PTS had
some decreases in BDD size following their slight decrease
in flip count as well. In the future, we aim to broaden the

Table 3: Number of flips for global flip-hoisting.

Benchmarks Local Seq+Local Global Seq+Global

EMDEC6G 712 712 678 678
TCC4E 545 545 541 541
WIN95PTS 125 125 124 124

Table 4: Size of compiled BDDs for global flip-hoisting.

Benchmarks Local Seq+Local Global Seq+Global

EMDEC6G 12,214 12,214 12,180 12,180
TCC4E 1,321 1,321 1,317 1,317
WIN95PTS 982 982 975 975

scope of global hoisting to richer classes of if-expressions,
and further tighten the relationship between global hoisting
and the underlying inference algorithm.

6 Related Work
Symbolic Optimizations. Probabilistic programming sys-
tems like Psi and Hakaru internally represent probabil-
ity distributions symbolically using computer algebra sys-
tems (Gehr, Misailovic, and Vechev 2016; Gehr, Steffen, and
Vechev 2020; Narayanan et al. 2016). These methods dif-
fer from ours in that they operate on an internal symbolic
representation, rather than the original program, and also to
our knowledge they do not directly exploit state-space re-
duction enabled by flip-hoisting. A related idea is to use
knowledge of conjugacy between distributions to simplify
programs; this is employed by systems such as BUGS and
JAGS, but exploits a distinct structure from flip-hoisting
where no conjugacy is necessary (Plummer et al. 2003;
Thomas, Spiegelhalter, and Gilks 1992).

Probabilistic Graphical Models. There is a rich literature
in optimizing the representation of probabilistic graphical
models for faster inference (Chavira and Darwiche 2008;
Darwiche 2009; Choi, Kisa, and Darwiche 2013; Dudek,
Phan, and Vardi 2020; Dilkas and Belle 2021). Chavira and
Darwiche (2008) optimize the encoding the discrete graph-
ical models that exploits an analogous notion of duplicate
flips. Our setting is more general and applies to broader
classes of models than those that can be represented as prob-
abilistic graphical models, and can be thought of strictly as
a generalization of this approach.

7 Conclusion and Future Work
We present flip-hoisting, a family of optimizations that
apply common sub-expression elimination to discrete prob-
abilistic programs. flip-hoisting empirically makes infer-
ence more efficient. In the future, we anticipate extending
flip-hoisting to programs with structure like continuous
random variables and procedures. Long term, we expect
flip-hoisting to become a part of a standard suite of op-
timizations that are applied to all probabilistic programs to
speed up inference.
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A Supplemental Experiments
We present here the full tables of all experiment results for
every benchmark. Table 5 shows the total number and the
number of distinct raw parameters in each the benchmarks.
This tally is made with respect to other parameters within
the scope of the e1 sub-expression of a let- statement.
This number of distinct parameters is useful for compar-
ing with Bayesian network encodings like those discussed
in (Chavira and Darwiche 2008). The encodings described
by Chavira and Darwiche (2008) have as a lower bound the
number of distinct parameters reported in this table; our ex-
periments show that we can reduce the number of overall
flips below this bound, showing a potential theoretical ad-
vantage over Chavira and Darwiche (2008) in terms of num-
ber of required Boolean random variables.

Table 6 presents the flip counts of each benchmark with
and without the optimizations applied. Table 7 shows all the
sizes of the compiled programs with the combinations of op-
timizations.

Table 5: Number of parameters in a Bayesian network.

Benchmarks Total Distinct

ALARM-ALT 680 167
ALARM-SAFER 680 258
ALARM 752 182
ANDES 1,157 357
BARLEY 130,179 35,712
BN 78 829 328
BN 79 829 328
CHILD 306 152
CPCS54 829 328
DIABETES 461,069 16,612
DIAGNOSE A 4,764 434
DIAGNOSE A MULTI 4,764 434
DIAGNOSE B 22,634 729
DIAGNOSE B MULTI 22,634 729
EMDEC6G 826 717
HAILFINDER 3,741 835
HEPAR2 2,139 1,914
INSURANCE 1,419 427
LINK 18,317 1,264
MILDEW 547,158 6,631
MOISSAC3 49,554 1,596
MUNIN 98,423 23,114
MUNIN1 18,856 3,989
MUNIN2 82,670 21,396
MUNIN3 84,485 22,575
MUNIN4 96,327 22,731
PATHFINDER 91,486 2,138
PIGS 8,427 1,474
TCC4E 1,604 545
WATER 13,484 3,578
WIN95PTS 574 168



Table 6: Number of flips in the program. A ”-” denotes a 20-minute time out.

Benchmarks No Opt Base Opt Local Hoist Global Hoist Seq+Local Hoist Seq+Global Hoist

ALARM-ALT 585 504 201 201 137 136
ALARM-SAFER 585 504 247 247 222 222
ALARM 585 504 201 201 133 133
ANDES 1,157 1,084 328 328 328 328
BARLEY 135,059 114,005 59,254 - 41,998 -
BN 78 829 829 328 328 328 328
BN 79 829 829 328 328 328 328
CHILD 330 227 171 171 140 140
CPCS54 829 829 328 328 328 328
DIABETES 619,292 77,185 15,194 15,194 11,967 11,967
DIAGNOSE A 5,005 3,910 377 377 415 415
DIAGNOSE A MULTI 5,005 3,910 377 377 415 415
DIAGNOSE B 22,600 19,136 672 672 695 695
DIAGNOSE B MULTI 22,600 19,136 672 672 695 695
EMDEC6G 826 807 712 678 712 678
HAILFINDER 3,683 2,155 1,149 1,149 871 871
HEPAR2 1,582 1,453 1,283 1,283 1,272 1,272
INSURANCE 1,217 650 320 320 315 315
LINK 14,503 496 458 458 458 458
MILDEW 690,940 30,916 26,318 - 21,498 -
MOISSAC3 57,813 13,419 2,472 2,472 1,766 1,766
MUNIN 119,529 25,625 19,148 19,148 16,487 16,487
MUNIN1 22,956 4,712 3,428 3,428 2,918 2,918
MUNIN2 103,439 22,825 17,963 17,963 15,525 15,525
MUNIN3 106,660 23,478 18,856 18,856 16,281 16,281
MUNIN4 119,289 25,385 19,145 19,145 16,474 16,474
PATHFINDER 91,358 28,703 1,897 1,897 1,652 1,652
PIGS 8,427 2,066 1,178 1,178 586 586
TCC4E 1,604 1,604 545 541 545 541
WATER 10,203 3,113 1,813 1,813 1,783 1,783
WIN95PTS 574 350 125 124 125 124



Table 7: BDD Size of compiled programs. A ”-” denotes a 20-minute time out.

Benchmars No Opt Base Opt Local Hoist Global Hoist Seq+Local Hoist Seq+Global Hoist

ALARM-ALT 73,883 51,679 18,859 18,859 26,001 26,001
ALARM-SAFER 256,271 214,376 143,068 143,068 200,029 200,029
ALARM 298,867 254,766 87,168 87,168 139,506 139,506
ANDES 87,119,041 8,520,656 3,301,994 3,301,994 3,301,994 3,301,994
BARLEY - - - - - -
BN 78 3,499,826 3,305,000 3,235,616 3,235,616 3,235,616 3,235,616
BN 79 21,497,148 21,200,743 20,453,340 20,453,340 20,453,340 20,453,340
CHILD 2,542 2,112 1,680 1,680 2,660 2,660
CPCS54 2,450,688 2,438,881 2,310,466 2,310,466 2,310,466 2,310,466
DIABETES - - - - - -
DIAGNOSE A 5,020,830 41,257 6,241 6,241 5,172 5,172
DIAGNOSE A MULTI 5,020,830 26,197 6,241 6,241 5,172 5,172
DIAGNOSE B - 97,573 10,628 10,628 9,615 9,615
DIAGNOSE B MULTI - 147,375 10,628 10,628 9,615 9,615
EMDEC6G 169,096 75,999 12,214 12,180 12,214 12,180
HAILFINDER 2,635,901 145,917 140,963 140,963 174,793 174,793
HEPAR2 36,375 36,244 36,037 36,037 39,218 39,218
INSURANCE 190,242 90,095 71,396 71,396 97,231 97,231
LINK - 15,117,830 14,964,749 14,964,749 14,964,749 14,964,749
MILDEW - - - - - -
MOISSAC3 - 498,240 267,648 267,648 246,846 246,846
MUNIN - 4,998,135 3,350,854 3,350,854 4,719,494 4,719,494
MUNIN1 - 4,328,101 2,162,624 2,162,624 2,735,348 2,735,348
MUNIN2 - 10,324,147 6,208,220 6,208,220 8,760,584 8,760,584
MUNIN3 - 14,235,596 10,708,445 10,708,445 14,393,174 14,393,174
MUNIN4 - 5,067,973 3,315,918 3,315,918 4,555,212 4,555,212
PATHFINDER 571,839 61,157 16,153 16,153 18,777 18,777
PIGS 409,226 180,124 140,617 140,617 89,537 89,537
TCC4E 3,112 3,112 1,321 1,317 1,321 1,317
WATER 39,494,260 44,703 26,714 26,714 28,189 28,189
WIN95PTS 75,182 1,545 982 975 982 975


