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Abstract

Knowledge distillation (KD) is a technique that transfers
the knowledge from a large teacher network to a small stu-
dent network. It has been widely applied to many different
tasks, such as model compression and federated learning.
However, existing KD methods fail to generalize to gen-
eral deep directed graphical models (DGMs) with arbitrary
layers of random variables. We refer by deep DGMs to
DGMs whose conditional distributions are parameterized
by deep neural networks. In this work, we propose a novel
unified knowledge distillation framework for deep DGMs
on various applications. Specifically, we leverage the repa-
rameterization trick to hide the intermediate latent variables,
resulting in a compact DGM. Then we develop a surrogate
distillation loss to reduce error accumulation through mul-
tiple layers of random variables. Moreover, we present the
connections between our method and some existing knowl-
edge distillation approaches. The proposed framework is
evaluated on four applications: data-free hierarchical varia-
tional autoencoder (VAE) compression, data-free variational
recurrent neural networks (VRNN) compression, data-free
Helmholtz Machine (HM) compression, and VAE continual
learning. The results show that our distillation method out-
performs the baselines in data-free model compression tasks.
We further demonstrate that our method significantly im-
proves the performance of KD-based continual learning for
data generation. Our source code is available at https:
//github.com/YizhuoChen99/KD4DGM-CVPR.

1. Introduction
Knowledge distillation (KD) aims at transferring the

knowledge of a large teacher model to a small student model,
which tries to mimic the behavior of the teacher model to
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attain a competitive or superior performance [13, 20]. The
goal of this work is to develop a unified knowledge distil-
lation (KD) framework for deep directed graphical models
(DGMs). Applications of the proposed framework include:
(i) data-free hierarchical variational autoencoder (VAE) com-
pression [50], (ii) data-free variational recurrent neural net-
works (VRNN) compression [8], (iii) data-free Helmholtz
Machine (HM) compression [49], and (iv) KD based contin-
ual learning.

Deep directed graphical models (DGMs) refer to DGMs
whose conditional distributions are parameterized by deep
neural networks (DNNs), which is in contrast to the regular
DGMs with tabular conditional probability. One good ex-
ample is variational autoencoders (VAEs), whose posterior
probability of latent variables is parameterized by DNNs. A
general deep DGM may have a complex structure, consisting
of an arbitrary number of input variables, target variables,
and latent variables. Deep DGMs have been widely used
in various applications, such as image generation [53], text
generation [5], and video prediction [55].

This work is motivated by the growing popularity of re-
cent over-parameterized deep DGMs with millions of param-
eters to improve their accuracy in various tasks. However, the
large models are very computationally expensive. As a result,
it is not practical to deploy them on resource-constrained
edge devices, such as mobile phones and IoT systems [33].
One possible solution to this problem is KD, which enables
a smaller student model to approximate the performance
of a large teacher. Recently, KD has been widely applied
to many different tasks, such as model compression [20],
continual learning [34, 59], and federated learning [30, 36].
To our knowledge, the existing KD methods, however, are
only applicable to some specific DGMs, including genera-
tive adversarial networks (GANs) [2, 33], auto-regressive
models in natural language processing (NLP) [35], and VQ-
VAE [48]. They fail to generalize to the general deep DGMs,
especially to those with multiple latent variables or complex
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Figure 1. Toy example of DGM in four different forms. Diamonds
are deterministic variables and circles are random variables. (a)
Original form; (b) Auxiliary form; (c) Our semi-auxiliary form; (d)
Compact semi-auxiliary form.
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Figure 2. Toy example of accumulated error (KL divergence)
between the teacher and student for local distillation and our
method. Experimental settings are presented in the last paragraph
in Section 3.2.

dependence structures, as illustrated in Fig. 1.
Generalizing knowledge distillation to deep DGMs poses

two major challenges. First, distillation by marginalizing
all latent variables is generally intractable (as explained in
Appendix A). Secondly, distilling each layer locally and
independently may suffer from error accumulation, as shown
in Fig. 2. We can observe that the accumulated error (i.e., KL
divergence) between the teacher and student grows linearly
for local distillation. To address these challenges, we propose
a novel unified knowledge distillation framework for deep
DGMs. Specifically, we first adopt the reparameterization
trick [23,24] to convert a DGM into a compact semi-auxiliary
form. By semi-auxiliary form, we mean the latent variables,
z, in both the student and teacher models are converted into
deterministic variables with auxiliary variables, while the
input variables and target variables remain unchanged, as
shown in Fig. 1 (c). Note that different from the classical
reparameterization for VAE model training [25], ours can
be applied to both continuous and discrete variables. Then
a surrogate distillation loss is derived as a new objective of
KD. To mitigate gradient vanishing, we further incorporate a
latent distillation loss that penalizes the dissimilarity of latent
variables between the teacher and student into our objective.
We also present the connections between our approach and
some existing KD methods for specific DGMs and show
that our method is a proper generalization of these existing
methods.

We evaluate the performance of our distillation method on
four different tasks: hierarchical VAE compression, VRNN
compression, Helmholtz Machine compression, and KD-
based continual learning with VAEs. For model compression
tasks, the student model distilled by our method in a data-
free manner outperforms that trained from scratch and the
other baselines. In addition to model compression, we also
illustrate that our method can better mitigate the catastrophic

forgetting issue than the generative replay approaches in
continual learning.

In summary, our contributions include: 1) a new unified
KD framework is proposed for general deep DGMs based
on reparameterization trick, 2) we derive a novel distillation
loss that combines the latent distillation loss and surrogate
distillation loss to improve the performance of KD, and 3)
evaluation results on multiple benchmark datasets show that
our approach can not only achieve high accuracy for deep
DGMs compression but also improve the performance of
KD-based continual learning.

2. Preliminaries
• Directed Graphical Models (DGMs) DGMs such as
Bayesian Networks [9] belong to an expressive class of
probabilistic graphical models [26], in which the joint dis-
tribution is factorized into the product of many conditional
distributions according to a directed acyclic graph (DAG)
that captures variable conditional dependencies. In this work,
we primarily study knowledge distillation for deep DGMs,
especially for those with complicated dependency structures.

For deep DGMs, we are interested in modeling the con-
ditional distribution pθ(y, z|x) for target variables y and
latent variables z given input variables x, parameterized
by θ. Specifically, when there are no input variable, i.e.,
x = ∅, we actually model the joint distribution pθ(y, z).
Let Pa(·) denote the parent random variables of a certain
variable defined by the DAG of a DGM. Then the conditional
distribution pθ(y, z|x) has its factorized form below,

pθ(y, z|x) =
∏
j

pθ(yj |Pa(yj),x)
∏
i

pθ(zi|Pa(zi),x),

(1)
where yj denotes the jth target variable in y, zi denotes
the ith latent variable in z. Without loss of generality, we
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assume for two variables yi and yj , if yj is an ancestor of
yi, then it holds that i > j.
• Knowledge Distillation (KD) KD aims to transfer the
knowledge of a large teacher model to a smaller student
model. One commonly used vanilla distillation method is
to encourage the student to mimic the output of the teacher
model [20]. Given an empirical distribution of the training
data pdata(x), its distillation loss is an expected dissimilarity
measure between the output of the student and that of the
teacher. A general form of distillation loss is given by

Lkd = Epdata(x) [d(pϕ(y|x), pθ(y|x))] , (2)

where pϕ(y|x) and pθ(y|x) denote the output conditional
distribution of the teacher and student models, respectively.
ϕ and θ denote their corresponding parameters. d(·, ·) is a
dissimilarity measure between two probability distributions.
Kullback-Leibler (KL) divergence [7, 20], for example, is
one of some typical choices.

The above Eq. (2) and its extended version have been ap-
plied to different DGMs, such as vanilla neural networks [7],
GANs [2], and fully-visible auto-regressive models (e.g.,
Transformer) [22, 35]. Take fully-visible auto-regressive
models as an example. When we set d(·, ·) to KL divergence,
Eq. (2) can be factorized as

Lkd =
∑
j

Epdata (x)Epϕ(y<j |x)KLj(y<j ,x),

KLj(y<j ,x) = KL(pϕ(yj |y<j ,x) ∥ pθ(yj |y<j ,x)).

(3)

A tractable estimation to Lkd above can be obtained by
Monte Carlo method. It can also be viewed as distilling each
conditional distribution in a local and independent manner,
as shown in Fig. 3 (d).

However, to our best knowledge, the existing KD ap-
proaches are only designed for some specific DGMs. They
fail to be applied to a general DGM with multiple latent vari-
ables or complicated dependence structures. Hence, the ques-
tion is, how can we distill the knowledge from the teacher to
the student given a general DGM structure?

Intuitively, there are two naive methods: (i) marginal-
ized distillation: it marginalizes all latent variables to
get p(y|x) =

∫
p(y, z|x)dz. However, the integration∫

p(y, z|x) dz is generally intractable and thus the loss as
in Eq. (2) is also intractable. (ii) local distillation: it treats
latent variables z equally as target variables and then distills
each conditional distribution for both z and y locally and in-
dependently, as shown in Fig. 3d. The local distillation may
suffer from error accumulation through multiple layers if
each conditional distribution in the student slightly deviates
from the teacher. Fig. 2 shows a toy example that the accu-
mulated error of local distillation, i.e., the KL-divergence
between teacher and student, increases linearly as the number
of layers of latent variables rises. For detailed discussions,
please refer to Appendix A.

• Reparameterization Trick Reparameterization trick [23,
24], also called the auxiliary form of a DGM, is originally
proposed to backpropagate through a random node that is
not differentiable during training. Its basic idea is intro-
duced as follows. Given a conditional distribution of random
variable zi in a DGM, p(zi|Pa(zi),x), we convert it to a
deterministic variable by adding an auxiliary variable ϵi to
its dependence, as shown in Figure 1 (c). Here ϵi is a root
node of the DGM with an independent marginal distribution
of p(ϵi). By choosing appropriate p(ϵi) and deterministic
transformation g(·) [23], we can have zi = g(Pa(zi),x, ϵi),
where zi is determined by its parent variables Pa(zi), input
variables x, and the corresponding auxiliary variable ϵi. ϵi
serves as the source of stochasticity of zi.

In this work, note that we do not primarily use the repa-
rameterization trick for model training. Rather, we leverage
it to convert the latent variables z in DGMs to deterministic
variables so that we can effectively distill knowledge from a
compact form of DGM. Note that different from the classical
reparameterization for model training that requires contin-
uous latent variables, ours can be applied to a wider range
of variables z, including both continuous and discrete vari-
ables. Besides, the transformation function g(·) [25] in our
framework can be either differentiable or non-differentiable.
Hence, our method can be applied to much more DGMs than
the classical one. Below, we will elaborate this general idea
in more detail.

3. Modeling

In this section, we first introduce the semi-auxiliary form
of DGMs using reparameterization trick. Then we propose
a new surrogate loss function and latent distillation loss for
our KD method.

3.1. Semi-auxiliary Form

As discussed in Section 2, the two naive methods,
marginalized distillation and local distillation, do not work
well due to intractable distillation loss or error accumulation.
In order to address these issues, we propose a novel idea
that converts DGM to its semi-auxiliary form based on repa-
rameterization trick. Specifically, we convert all the latent
variables, z, in both the teacher and student to deterministic
variables with auxiliary variables, while keeping target vari-
ables y and input variables x unchanged. This is because
our ultimate goal is to encourage student to mimic the out-
put (target variable) of the teacher based on input variables.
Hence, we can omit the deterministic (latent) variables in
a DGM, yielding a compact semi-auxiliary form that only
consists of target variables, input variables and auxiliary vari-
ables. In this way, each target variable has a tractable and
direct dependence on input variables or prior target variables,
as shown in Fig. 1 (c).
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(a) (b) (c) (d) (e)

Figure 3. Examples of different distillation methods. Each pair of conditional distributions marked with same color represents an independent
distillation component. (a) Distillation on vanilla neural network. (b) GAN distillation. (c) Distillation on a 2-layer fully-visible auto-
regressive DGM. (d) Local distillation on the original DGM. (e) Our distillation method with semi-auxiliary form.

Fig. 1 illustrates a toy example of converting DGM to
its semi-auxiliary form. Fig. 1 (a) is the original form of
a DGM, and its corresponding auxiliary form is shown in
Fig. 1 (b). In this paper, we only assign auxiliary variables
to latent variables z, as shown in Fig. 1 (c). We can observe
from it that latent variables z1 and z2 are deterministic when
their ancestors are given. We thus can omit the determinis-
tic variables, leading to a compact semi-auxiliary form, as
shown in Fig. 1 (d).

3.2. Surrogate Distillation Loss

After obtaining the semi-auxiliary form of a DGM in Fig.
1 (d), our distillation loss becomes the dissimilarity between
pϕ(y|ϵ,x) and pθ(y|ϵ,x). We call it surrogate distillation
loss. Our goal is to minimize the surrogate distillation loss
w.r.t. student’s parameters θ below.

Lsd = Epϕ(ϵ)pdata(x) [d(pϕ(y|ϵ,x), pθ(y|ϵ,x))] , (4)

where ϵ denotes a set of auxiliary variables ϵ. The expec-
tation of dissimilarity is taken over both empirical data dis-
tribution pdata(x) and auxiliary variable distribution pϕ(ϵ).
The expectation can be estimated using Monte Carlo method.
Note that pϕ(ϵ) is generally chosen to be simple and fixed
distribution with no parameters, such as unit Gaussian or
standard uniform distribution. Thus, it implies that teacher’s
pϕ(ϵ) is equivalent to student’s pθ(ϵ), so there is no need to
distill pϕ(ϵ) to pθ(ϵ). An illustration is given in Fig. 3e.

Proposition 3.1. The surrogate distillation loss as defined in
Eq. (4) is an upper bound of the distillation loss as defined
in Eq. (2) when the dissimilarity measure is chosen to be KL
divergence.

We provide the detailed proof in Appendix B.
Next, we discuss the advantages of our method over the

two naive methods mentioned above. Firstly, the proposed
method bypasses the intractable computation in marginalized
distillation. While marginalized distillation measures p(y|x)

which is intractable in general, we instead measure p(y|ϵ,x)
which is easily tractable by function composition with no
need of integral or sum operation. Here p(y|ϵ,x) is tractable
because p(y|ϵ,x) =

∏
i p(yi|ϵ≤i,y<i,x).

Secondly, our method can make the DGMs shallower
than local distillation, mitigating error accumulation through
multiple layers of latent variables. As illustrated in Fig. 3d
and 3e, we can see our method only constraints the target
variables y in the student while local distillation constrains
both latent variables z and target variables y. As a result,
local distillation may suffer from error accumulation issue.
Fig. 2 shows a toy example of comparing the accumulated
error, i.e., KL divergence between the teacher and student,
for our method and local distillation. In this illustrative ex-
periment, we let student mimic the output distribution of
the teacher with L-layers latent variables for L ∈ 1, . . . , 20.
Each layer of the teacher follows the Gaussian distribution
p(zi+1|zi) = N (µ(zi), 0.01I), where µ(zi) is z1.1

i for
zi ≥ 0 and −(−zi)

1.1 for zi < 0. p(z1) is a uniform dis-
tribution U [−1, 1]. The student is parameterized by neural
networks with proper residual structure [18]. Then density
ratio estimation [43, 51] is used to measure the KL diver-
gence between the teacher and student. We can observe from
Fig. 2 that the accumulated error (KL divergence) grows lin-
early w.r.t the number of layers for local distillation because
each layer of the student deviates from the teacher to an
extent. In contrast, the accumulated error (KL divergence)
of our method increases slowly.

3.3. Latent Distillation Loss

The surrogate distillation loss in Eq.(4) can sufficiently
achieve a satisfactory performance for knowledge distilla-
tion. Nevertheless, there are still two limitations of the
proposed method for some special DGMs. Firstly, it fails to
back-propagate the gradients when there exist discrete latent
variables. Secondly, it might suffer from gradient vanishing
when the network structure with multiple latent variables is
very deep and complex.
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To deal with these issues, we propose to penalize the
dissimilarity of latent variables z in the teacher and student
model. The resulting latent distillation loss for latent vari-
ables zi is given by

L̃z,i = Epϕ(ϵ)pdata(x) [d [pϕ(zi|ϵ,x), pθ(zi|ϵ,x)]]

= Epϕ(ϵ)pdata(x) [d(pϕ(zi|ϵ≤i,x), pθ(zi|ϵ≤i,x))] ,
(5)

where ϵ≤i is a set of all the ancestral auxiliary variables of
zi. zi is deterministic when ϵ≤i and x are given. In order
to better penalize the dissimilarity of latent variables zi,
one good choice is to solely convert the current zi (not z<i)
back to its original form by removing ϵi from its dependence.
Then we have the following latent distillation loss

Lz,i = Epϕ(ϵ)pdata(x) [d(pϕ(zi|ϵ<i,x), pθ(zi|ϵ<i,x))] .
(6)

The proposed latent distillation loss can benefit our op-
timization process. When latent variables are continuous,
the latent distillation loss may provide shallower and sup-
plementary supervisory signals to hasten the convergence.
When latent variables are discrete, it can deal with the back-
propagation cutting off problem.

3.4. Final Target-Free Loss

Combining the above surrogate distillation loss with la-
tent distillation loss, our final distillation loss is given by

Lour = Lsd + λ
∑
i

Lz,i, (7)

where λ is a hyper-parameter that controls the importance
of latent distillation loss. Similar to [20], our loss in Eq. (7)
is a target-free distillation loss, which means target data is
not required for calculating it. Eq. (7) can also be applied
to DGMs with no input variables (i.e. x = ∅). In this
case, Eq. (7) can be computed in a completely data-free
manner. We summarize our KD method for a general DGM
in Algorithm 1 in Appendix C.

3.5. Connections to Other Distillation Methods

We present the connections between our method and some
existing knowledge distillation methods.
• Vanilla KD and Sequence-Level KD. When there is no
latent variable in a DGM, our distillation method in Eq. (4)
is naturally reduced to Eq. (2) by removing the dependence
on auxiliary variables ϵ, which is a typical vanilla KD [20].
Also, when the DGM is a fully visible auto-regressive model,
by removing dependence on ϵ and letting d(·, ·) be KL di-
vergence, Eq. (4) can be reduced to Eq. (3), which is the
Monte Carlo approximation of intractable sequence-level
distillation loss [22]. Please note that further simplification
has been made in [22] to enhance the practicability.
• Feature Based KD. Feature based knowledge distillation
uses the intermediary representations of a teacher network

to supervise a student network [47]. When the teacher and
student share the same size of latent features, the feature
distillation loss can be written as

Lf = rf (fϕ(x), fθ(x)), (8)

where fϕ(x) and fθ(x) are intermediary deterministic fea-
tures of the teacher and student, respectively. rf (·, ·) is a dis-
tance between two vectorized feature maps. A vanilla neural
network with multiple intermediate features can be viewed
as a DGM with multiple deterministic latent variables. De-
terministic variables can be viewed as following the degen-
erate distributions. In general, for p ≥ 1, p-Wasserstein
distance (inf E[r(a1,a2)

p])
1
p between two degenerate dis-

tributions located at a1 and a2 is equivalent to r(a1,a2).
Thus, by viewing the intermediate features as latent vari-
ables following degenerate distributions, and choosing d(·, ·)
in our latent distillation loss Lz,i as Wasserstein distance
(inf E[rf (zϕ, zθ)

p])
1
p , our latent distillation loss is reduced

to feature distillation loss in Eq. (8).
• GAN Distillation. GAN distillation in [2, 33] also in-
corporates the idea of feature distillation into their model,
which is given by

Lgan = ro(Gϕ(z), Gθ(z)) + rf (fϕ(z), fθ(z)). (9)

The first term above is the output distillation loss of the
generator and the second one is the intermediary feature
distillation loss. Similar to feature distillation loss, by view-
ing the intermediate features and generator output as la-
tent and target variables following degenerate distributions,
and choosing d(·, ·) in Lsd and Lz,i as p-Wasserstein dis-
tance (inf E[ro(yϕ,yθ)

p])
1
p and (inf E[rf (zϕ, zθ)

p])
1
p re-

spectively, our final distillation loss in Eq. (7) can be reduced
to GAN distillation loss as well.

3.6. Applications

We evaluate the performance of our method on four rep-
resentative applications selected as below.
• Data-Free Hierarchical VAE Compression. Model com-
pression is one of the most representative application of KD.
Therefore, we first apply our method to compress a popular
generative model, Hierarchical VAE in a data-free manner.
Recent studies show that VAEs generate better with over-
parametrization [53]. However, it is challenging to deploy
them to edge devices with limited computing resources. In
this work, we apply our method to compress a large 5-layer
hierarchical VAE model [50] to smaller models, as illus-
trated in Fig. 4a.
• Data-Free VRNN Compression. Then our method is
applied to compress a sequence generative model with more
complicated structure, VRNN [11], as shown in Fig. 4b.
VRNN has as many latent and target variables as the length
of the sequence in dataset.
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(a) (b) (c) (d)

Figure 4. Structures of DGMs used in our experiments. (a) Hierar-
chical VAE. (b) VRNN. (c) HM. (d) Hierarchical VAE for continual
learning.

• Data-Free HM Compression. Next, we adopt our
method to compress a model with discrete latent variables,
Helmholtz Machine (HM) [10]. The classical HM only has
one target variable and each layer is parametrized by a linear
transformation. In order to demonstrate the applicability of
our method, we extend it to a 5-layer deep HM with two
targets, as shown in Fig. 4c.
• KD-based VAE Continual Learning. In addition to
model compression, we evaluate the performance of our
method on another popular KD based application, continual
learning [59]. Our goal is to model a new distribution while
retaining the ability of modeling a learned old distribution
without access to the old dataset. Prior work on continual
learning [45, 57] mainly resort to generative replay strategy,
in which we generate a set of fake samples from VAE model
learned on old training datasets, and mix them with new
training dataset to train the new VAE model. In fact, our
experiments will show that generative replay is inferior to
our distillation method for VAE continual learning because
of the blurry nature of VAE generation.

4. Experiments
In this section, we first present a toy experiment to demon-

strate that our method can also mitigate error accumulation
issue for DGM with discrete variables. Then we evaluate
the performance of our method on the four applications as
mentioned in Section 3.6. We carry out extensive experi-
ments on five benchmark datasets: Old Faithful Geyser [17],
IAM online handwriting [38], SVHN [42], CIFAR10 [28],
and CelebA [37]. The detailed data splitting for training and
test is described in Appendix D. In addition, we present the
detailed model configurations and hyperparameter settings
of the teacher and student in Appendix E.

4.1. Toy Example for DGMs with Discrete Variables

In this experiment, we modify the illustrative toy exper-
iment in Section 3.2 to demonstrate that, the error accu-
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Figure 5. Toy example of accumulated error (KL divergence)
between the teacher and student for local distillation and our method
in a DMG with discrete random variables.

mulation issue still exists in DGMs with discrete variables,
and our method can still successfully mitigate it. Specifi-
cally, we change each layer of the teacher model in Section
3.2 to discrete variables following the binomial distribution
p(zi+1|zi) = B(1000,p(zi)), where p(zi) = ( zi

1000 )
1.2.

p(z1) is changed to uniform distribution U [0, 1]. The exper-
iment result is shown in Fig. 5. We can observe that, similar
as its continuous counterpart, the accumulated error (KL di-
vergence) grows as the number of layers increases for local
distillation method. In contrast, our method can significantly
reduce the accumulated error to a stable low level.

4.2. Evaluation on Data-Free Hierarchical VAE
Compression.

Next, we apply our distillation method to compress large
5-layer hierarchical VAE [50] models. We compare the per-
formance of the student model using our method and two
baselines: training from scratch and local distillation [1].
Experiments are carried out on three benchmark datasets:
SVHN, CIFAR10, and CelebA, with varying sizes of the
student model. We adopt four widely-used metrics, Frechet
Inception Distance (FID, lower is better) [6,19], Earth Mover
Distance (EMD, lower is better, also known as Wasserstein
Distance) [56], Maximum Mean Discrepancy (MMD, lower
is better) [16], and 1-Nearest-Neighbor Accuracy (1NN,
lower is better) [39], to evaluate the generative performance
of our method. To demonstrate the similarity of the teacher
and student, we further calculate the FID, EMD, MMD and
1NN between the student and its corresponding teacher for
different methods. Table 1 illustrates the comparison of dif-
ferent methods averaged over three random seeds on SVHN,
Cifar10, and CelebA datasets. We can observe that our
method consistently outperforms the baselines in all the met-
rics, which means the proposed method can help students
better imitate their teachers. Importantly, our data-free distil-
lation method outperforms the student model trained from
scratch, which suggests that directly optimizing a capacity-
limited student VAE may not learn a decent model that can
generate high-fidelity samples. Conversely, our method can
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help the student VAE learn better performance even without
accessing training data.

Moreover, we demonstrate that our method is stable and
robust to the change of hyper-parameter λ in Fig. 7 in the
appendix. For qualitative evaluation, we also show the sam-
ples generated from different methods on CelebA in Fig. 6
in Appendix F.

4.3. Evaluation on Data-free VRNN Compression
& HM Compression.

Next, we evaluate the performance of our method on the
other two tasks: data-free VRNN Compression and data-free
HM Compression. First, we adopt our distillation method
to compress a complicated deep sequence generative model,
VRNN. Following the prior works [8, 14], we adopt qualita-
tive measure to show the generated strokes by our method
and the baselines in Fig 8 in Appendix G. It can be observed
that our method can generate more readable and clearer
strokes than the baselines. The student VRNN distilled by
our method in Fig 8 (c) has comparable generative perfor-
mance to that of the teacher in Fig 8 (b). Hence, we can
conclude that the proposed method is able to achieve good
performance for data-free VRNN compression.

In addition, our method is applied to compress Helmholtz
Machine (HM) with discrete latent variables. The exper-
iment results, as illusrated in Fig. 7 in Appendix H, show
that it can still achieve good performance as the teacher
for HM compression. For more details, please refer to the
experimental results in Appendix H.

4.4. Evaluation on KD-based Continual Learning

We also evaluate the performance of the proposed method
on KD-based VAE continual learning using CelebA dataset.
For each group of experiments, one of forty ground-truth
attributes is selected. Based on this attribute, we divide the
whole dataset into two parts for continual learning. Specifi-
cally, we first train a VAE Mold on the first part of images,
and then we learn another VAE Mnew on the second part
by jointly minimizing a new distribution standard training
loss Lnew and an old knowledge preserving loss Lpre under
the guidance of Mold. We conduct the experiment for three
different attributes.

We compare our method with local distillation and
other two generative replay approaches: CURL [46] and
LGM [45]. All 4 methods have the same Lnew but different
Lpre. Table 2 illustrates the comparison of different meth-
ods on CelebA. We can observe from Columns Old that our
method performs much better than the baselines on preserv-
ing old knowledge. It is because local distillation method
has error accumulation issue, and CURL and LGM can only
preserve old knowledge by retraining on the generated low-
quality images. Besides, we can see from Columns New that
our method is comparable to LGM and CURL on learning

new distribution, because these methods only impose nec-
essary Lpre. However, local distillation does not work well
on new distributions, indicating that its Lpre is too large yet
ineffective.

5. Related Work
In the past few years, there is a large amount of work on

knowledge distillation (KD) for different DGMs. Most of
existing KD approaches focus on vanilla DNNs or multi-
target DNNs [7, 20, 40, 47, 58]. For instance, Chen et al. [7]
proposed a weighted cross entropy loss for multi-class object
detection models using KD. Zagoruyko et al. [40] developed
an attention based mechanism to transfer knowledge from
the teacher CNN to the student for image recognition tasks.
Tf-FD [31] is a self-feature-distillation method consisting of
intra-layer (from prominent features to redundant features)
and inter-layer (from deep semantic-rich features to shallow
features) distillation. SHAKE [32] proposed to exploit the
benefit of mutual distillation at a low computational cost by
introducing shadow head(s) for (multiple) teacher(s). The
models considered in these KD methods can be viewed as
DGMs with only one stochastic layer, consisting of one input
variable and one or multiple conditionally independent target
variables.

Some researchers also study KD for auto-regressive mod-
els without latent variables [21, 35, 44, 52]. Among them,
sequence-level knowledge distillation (SeqKD) [22] is a
promising strategy that supervises student with the teacher’s
sequence distribution over the space of all possible se-
quences. However, these methods do not generalize well to
a general DGM with latent variables.

Besides, recent studies apply KD to compress deep gen-
erative models with one layer of latent variable. To reduce
the number of parameters used in GANs, researchers [2, 33]
devised new knowledge distillation methods for compressing
GANs. [29] distilled the learned representation from VAE
models to GAN for high-fidelity synthesis. [48] leveraged
VQ-VAE with KD to develop a non-autoregressive machine
translation model. However, these works only consider mod-
els with one layer of latent variable.

In summary, existing KD methods are mainly focused
on specific DGMs, but fail to generalize to the general deep
DGMs, especially to those with multiple layers of random
variables or complex dependence structures. Different from
prior work, we developed a novel unified KD framework
for a general deep DGM using reparameterization trick. In
fact, our method serves as a bridge, which can help previous
advanced KD methods generalize to more general DGMs.

6. Conclusion
This paper proposed a new unified KD framework for

deep directed graphical models (DGMs). Specifically, we
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Table 1. Comparison of different methods for hierarchical VAE compression on SVHN, Cifar10 and CelebA datasets. The results are
averaged over 3 different random seeds. XXX-T means that this metric XXX is calculated between the student and its corresponding teacher.

dataset method #param FID (↓) EMD (↓) MMD (↓) 1NN (↓) FID-T (↓) EMD-T (↓) MMD-T (↓) 1NN-T (↓)

CelebA

teacher 6.60M 4.95 8.54 0.24 0.89 - - - -
our 0.44M 5.38 ± 0.10 8.77 ± 0.06 0.27 ± 0.01 0.92 ± 0.01 0.019 ± 0.002 6.48 ± 0.04 0.12 ± 0.00 0.17 ± 0.01
local 0.44M 6.23 ± 0.17 9.25 ± 0.11 0.33 ± 0.01 0.95 ± 0.00 0.052 ± 0.006 8.32 ± 0.14 0.26 ± 0.02 0.82 ± 0.02
scratch 0.44M 6.10 ± 0.31 9.08 ± 0.16 0.33 ± 0.02 0.95 ± 0.01 0.052 ± 0.016 8.34 ± 0.36 0.26 ± 0.05 0.82 ± 0.05
our 0.12M 5.96 ± 0.12 9.06 ± 0.09 0.31 ± 0.01 0.95 ± 0.00 0.036 ± 0.005 8.04 ± 0.11 0.23 ± 0.01 0.79 ± 0.02
local 0.12M 8.95 ± 0.19 11.24 ± 0.16 0.50 ± 0.01 0.99 ± 0.00 0.157 ± 0.018 10.82 ± 0.17 0.47 ± 0.01 0.99 ± 0.00
scratch 0.12M 8.18 ± 0.15 10.50 ± 0.14 0.45 ± 0.01 0.99 ± 0.00 0.095 ± 0.007 9.98 ± 0.03 0.43 ± 0.00 0.97 ± 0.00
our 0.04M 8.20 ± 0.12 10.66 ± 0.12 0.45 ± 0.01 0.99 ± 0.00 0.069 ± 0.004 9.91 ± 0.06 0.40 ± 0.00 0.98 ± 0.00
local 0.04M 11.08 ± 0.27 12.79 ± 0.22 0.62 ± 0.01 1.00 ± 0.00 0.139 ± 0.015 12.80 ± 0.28 0.64 ± 0.01 1.00 ± 0.00
scratch 0.04M 9.57 ± 0.14 11.46 ± 0.11 0.55 ± 0.01 1.00 ± 0.00 0.093 ± 0.004 11.19 ± 0.13 0.56 ± 0.02 1.00 ± 0.00

SVHN

teacher 5.39M 4.19 7.98 0.17 0.80 - - - -
our 0.10M 4.38 ± 0.05 7.94 ± 0.04 0.19 ± 0.00 0.81 ± 0.00 0.028 ± 0.006 6.90 ± 0.05 0.14 ± 0.01 0.47 ± 0.02
local 0.10M 5.93 ± 0.50 8.66 ± 0.32 0.30 ± 0.04 0.95 ± 0.02 0.108 ± 0.019 9.29 ± 0.41 0.40 ± 0.04 0.98 ± 0.01
scratch 0.10M 4.69 ± 0.16 8.04 ± 0.12 0.21 ± 0.01 0.85 ± 0.01 0.037 ± 0.006 7.86 ± 0.10 0.22 ± 0.01 0.80 ± 0.02
our 0.03M 4.81 ± 0.06 8.10 ± 0.03 0.22 ± 0.01 0.87 ± 0.01 0.031 ± 0.012 7.82 ± 0.08 0.23 ± 0.01 0.82 ± 0.03
local 0.03M 6.95 ± 0.35 9.40 ± 0.28 0.37 ± 0.02 0.98 ± 0.01 0.153 ± 0.017 10.39 ± 0.21 0.49 ± 0.02 1.00 ± 0.00
scratch 0.03M 5.84 ± 0.32 8.62 ± 0.18 0.31 ± 0.02 0.92 ± 0.01 0.080 ± 0.009 9.10 ± 0.22 0.39 ± 0.03 0.95 ± 0.01
our 0.01M 6.71 ± 0.38 9.22 ± 0.31 0.36 ± 0.03 0.96 ± 0.01 0.055 ± 0.011 9.13 ± 0.11 0.37 ± 0.02 0.98 ± 0.00
local 0.01M 8.26 ± 0.37 10.40 ± 0.35 0.45 ± 0.02 1.00 ± 0.00 0.170 ± 0.015 11.25 ± 0.25 0.55 ± 0.01 1.00 ± 0.00
scratch 0.01M 7.73 ± 0.28 9.95 ± 0.25 0.43 ± 0.01 0.99 ± 0.00 0.063 ± 0.015 10.22 ± 0.18 0.49 ± 0.01 0.99 ± 0.00

Cifar10

teacher 5.39M 4.63 7.57 0.25 0.89 - - - -
our 0.10M 5.47 ± 0.23 8.16 ± 0.20 0.31 ± 0.02 0.92 ± 0.01 0.024 ± 0.006 6.29 ± 0.08 0.19 ± 0.01 0.48 ± 0.01
local 0.10M 6.22 ± 0.05 8.61 ± 0.06 0.37 ± 0.00 0.94 ± 0.00 0.036 ± 0.003 7.58 ± 0.08 0.31 ± 0.01 0.91 ± 0.01
scratch 0.10M 6.19 ± 0.25 8.54 ± 0.15 0.38 ± 0.02 0.95 ± 0.01 0.034 ± 0.005 7.27 ± 0.12 0.28 ± 0.03 0.83 ± 0.03
our 0.03M 6.11 ± 0.16 8.59 ± 0.11 0.36 ± 0.01 0.95 ± 0.01 0.036 ± 0.013 7.29 ± 0.11 0.28 ± 0.01 0.82 ± 0.02
local 0.03M 7.55 ± 0.09 9.66 ± 0.05 0.45 ± 0.00 0.97 ± 0.00 0.052 ± 0.003 9.08 ± 0.07 0.44 ± 0.01 0.99 ± 0.00
scratch 0.03M 6.74 ± 0.36 8.95 ± 0.27 0.42 ± 0.03 0.96 ± 0.01 0.037 ± 0.007 7.84 ± 0.29 0.35 ± 0.03 0.93 ± 0.02
our 0.01M 7.61 ± 0.91 9.65 ± 0.79 0.47 ± 0.05 0.98 ± 0.01 0.045 ± 0.016 8.48 ± 0.78 0.42 ± 0.05 0.96 ± 0.02
local 0.01M 10.53 ± 0.74 12.10 ± 0.71 0.64 ± 0.03 1.00 ± 0.00 0.085 ± 0.015 11.38 ± 0.69 0.62 ± 0.02 1.00 ± 0.00
scratch 0.01M 10.17 ± 1.13 11.67 ± 1.01 0.64 ± 0.06 1.00 ± 0.00 0.067 ± 0.023 10.56 ± 0.99 0.61 ± 0.05 1.00 ± 0.00

Table 2. Comparison of different methods after learning new distributions on CelebA dataset. Columns Old show the measure results
between the generated images and real images on old distribution while Columns New show measure results between generated images
and real images on new distributions using four different metrics. A(±B) denotes that the metric is increased or decreased by B to A after
learning new distributions.

attribute method
FID (↓) EMD (↓) MMD (↓) 1NN (↓)

Old New Old New Old New Old New

Female → Male

our 4.39(-0.25) 4.19 7.76(-0.13) 7.58 0.23(-0.02) 0.21 0.89(-0.01) 0.84
local 4.73(+0.09) 4.25 7.93(+0.03) 7.58 0.25(+0.01) 0.21 0.93(+0.02) 0.86
CURL 5.57(+0.99) 4.18 8.37(+0.53) 7.60 0.32(+0.08) 0.21 0.96(+0.05) 0.84
LGM 5.56(+0.92) 4.12 8.37(+0.48) 7.51 0.32(+0.07) 0.20 0.96(+0.06) 0.83

No Beard → Beard

our 4.27(-0.15) 4.05 7.68(-0.07) 7.42 0.21(-0.01) 0.20 0.89(+0.01) 0.85
local 4.63(+0.21) 4.42 7.86(+0.11) 7.56 0.24(+0.02) 0.23 0.90(+0.03) 0.90
CURL 5.24(+0.81) 4.14 8.16(+0.40) 7.44 0.29(+0.07) 0.21 0.93(+0.06) 0.86
LGM 5.19(+0.77) 4.12 8.13(+0.38) 7.44 0.29(+0.06) 0.20 0.93(+0.06) 0.88

No Eyeglasses → Eyeglasses

our 4.43(-0.02) 4.50 7.75(-0.03) 7.85 0.23(-0.00) 0.24 0.87(-0.01) 0.88
local 6.51(+2.06) 4.56 8.89(+1.11) 7.79 0.37(+0.14) 0.24 0.98(+0.09) 0.92
CURL 5.31(+0.85) 4.76 8.22(+0.44) 7.98 0.30(+0.07) 0.25 0.93(+0.04) 0.90
LGM 5.28(+0.83) 4.73 8.21(+0.43) 7.96 0.29(+0.06) 0.25 0.93(+0.05) 0.90

first adopted reparametrization trick to convert latent vari-
ables into deterministic variables with auxiliary variables,
resulting in a compact semi-auxiliary form of DGM. Then a
novel objective that combines the surrogate distillation loss
and latent distillation loss was proposed to improve the per-
formance of KD. We further illustrated that our framework
is a proper generalization of some existing KD methods. We

evaluated the performance of our method on different tasks.
The results showed that it can better compress hierarchical
VAE, VRNN, HM models in a data-free manner than the
baselines. Furthermore, our method can better mitigate the
catastrophic forgetting issue in KD based continual learn-
ing of VAEs. Finally, we discussed the limitations of the
proposed method and future work in Appendix I.
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